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HARMONIC MAPS AND SHIFT-INVARIANT

SUBSPACES

ALEXANDRU ALEMAN, RUI PACHECO, AND JOHN C. WOOD

Abstract. With the help of operator-theoretic methods, we de-
rive new and powerful criteria for finiteness of the uniton num-
ber for a harmonic map from a Riemann surface to the unitary
group U(n). These use the Grassmannian model where harmonic
maps are represented by families of shift-invariant subspaces of
L2(S1,Cn); we give a new description of that model.

1. Summary of results

Harmonic maps from surfaces to Lie groups and symmetric spaces oc-
cur in many guises including geodesics, minimal surfaces and non-linear
sigma models in the physics of elementary particles. Since any com-
pact Lie group or symmetric space can be embedded in the unitary
group U(n), the study of harmonic maps into this group is key. The
Grassmannian model of G. Segal [27] relates these harmonic maps to
families of shift-invariant subspaces of the Hilbert space L2(S1,Cn).

A fundamental class of such harmonic maps is those of finite uniton
number — these can be constructed algorithmically as finite products,
akin to Blaschke–Potapov products in the theory of shift-invariant sub-
spaces; it is thus important to know when a harmonic map is of finite
uniton number. We shall give new and powerful criteria for finiteness
of the uniton number involving an operator arising in the Grassman-
nian model, see Theorem 3.6, and show that these criteria are local,
see Corollaries 4.2, 4.3.

We then give some applications including an elegant criterion for finite-
ness of the uniton number for harmonic maps given by a constant po-
tential in the sense of [10], see Theorem 4.6, which extends a result in
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[6]. Some geometrical examples follow in §4.3 involving the first return
map which gives a simple proof that superconformal harmonic maps
are never of finite uniton number (Proposition 4.14 and Corollary 4.16).

In [7] tests for harmonicity and related concepts were given which used
diagrams involving subbundles related to a harmonic map. We give
conditions for finiteness of the uniton number for quite general dia-
grams (Theorem 4.18).

On the way, we obtain a new description of the Grassmannian model:
Proposition 3.1 provides an intrinsic characterization of shift-invariant
subspaces that can be represented by a smooth loop in U(n), and The-
orem 3.3 generalizes this to subbundles of shift-invariant subspaces.
These two results give a simple and effective alternative to the ap-
proach in [26, §7.1] and we hope they are of independent interest. We
thank Martin Guest for comments on this and for pointing out to us
the interpretation of some of our constructions in terms of D-modules.

2. Introduction and Preliminaries

2.1. Background. This section is written with the needs of the func-
tional analysis community in mind: much of it will be familiar to ge-
ometers working in harmonic maps, who might like to skip to §2.2. A
smooth map ϕ between two Riemannian manifolds (M, g) and (N, h)
is said to be harmonic if it is a critical point of the energy functional

E(ϕ,D) =
1

2

∫

D

|dϕ|2ωg

for any relatively compact D in M , where ωg is the volume measure,
and |dϕ|2 is the Hilbert-Schmidt norm of the differential of ϕ. Using
coordinates it is easy to see that E(ϕ,D) is the natural generalization
of the classical integral of Dirichlet in R

d:

D[u] =

∫

Ω

|∇u|2 dV, Ω ⊆ R
d.

Recall that a Riemann surface is a 2-dimensional manifold equipped
with complex charts M ⊇ V → U ⊆ C such that any two charts are
related by a complex analytic function between open subsets of C, see,
for example, [14]. The image in U of a point z ∈ V ⊆ M under a
complex chart is called its (complex) coordinate (with respect to that
chart); as is normal we shall denote this by the same letter z. Because
of conformal invariance, see, for example, [32, §1.2], the above energy
functional, and so the notion of harmonic map from a Riemann surface,
is well defined.
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In this paper we consider harmonic maps from a Riemann surface M
into the group U(n) of unitary matrices of order n. Such maps are in-
teresting for many reasons. For example (see [28]), when M coincides
with the Riemann sphere S2, they are equivalent to harmonic maps
of finite energy from the plane, they provide a nonlinear σ-model for
particle physics [33], and they give minimal branched immersions in
the sense of [17]. As any compact Lie group has a totally geodesic
embedding into U(n) for some n, these maps include harmonic maps
into compact Lie groups and, in particular, harmonic maps into sym-
metric spaces. There is a vast literature on the subject (for example,
see [11, 31] for the general theory and [28, 32] for some background
relevant to this paper).

Given a smooth map ϕ :M → U(n), one can use a standard variational
argument to derive an equivalent differential condition for harmonicity.
More precisely (see [30] or [28, Sec. 3.1]), consider the matrix-valued
1-form

(2.1) 1
2
ϕ−1dϕ := Aϕz dz + Aϕz̄ dz̄,

where z is a local (complex) coordinate on M . Then it turns out that
ϕ is harmonic if and only if

(2.2) (Aϕz )z̄ + (Aϕz̄ )z = 0.

This equation, as for all our key equations below, is invariant under
change of local complex coordinate, an extension of the usual conformal
invariance of the Laplacian.

We remark that, since the right-hand side of (2.1) has values in the Lie
algebra u(n) of U(n), Aϕz̄ is minus the adjoint of Aϕz . Also, computing
directly from Aϕz = 1

2
ϕ−1ϕz and Aϕz̄ = 1

2
ϕ−1ϕz̄ we obtain a further

equation called the integrability equation,

(2.3) (Aϕz )z̄ − (Aϕz̄ )z = 2[Aϕz , A
ϕ
z̄ ],

valid for any smooth map ϕ.

In her study of harmonic maps [30], K. Uhlenbeck introduced the notion
of an extended solution, which is a smooth map Φ : S1 ×M → U(n)
satisfying Φ(1, ·) = I and such that, for every local coordinate z on M ,
there are gl(n,C)-valued maps Az and Az̄ for which

(2.4) Φ(λ, ·)−1dΦ(λ, ·) = (1− λ−1)Azdz + (1− λ)Az̄dz̄.

The introduction of a ‘spectral parameter’ λ is a key idea in integrable
systems, see [15] for background and references. Note that we can
consider Φ as a map from M into the loop group of U(n) defined by
ΩU(n) = {γ : S1 → U(n) smooth : γ(1) = I}. If Φ is an extended
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solution, then ϕ = Φ(−1, ·) is a harmonic map with Aϕz = Az and
Aϕz̄ = Az̄. Conversely, for a given harmonic map ϕ : M → U(n), an
extended solution with the property that

Φ−1(λ, ·)dΦ(λ, ·) = (1− λ−1)Aϕz dz + (1− λ)Aϕz̄ dz̄

is said to be associated to ϕ, and we have

Φ(−1, ·) = uϕ

for some constant u ∈ U(n). If M is simply connected, the existence
of extended solutions is guaranteed by (and is actually equivalent to,
see [30]) the harmonicity condition (2.2). The solution is unique up
to multiplication from the left by a constant loop, i.e., a U(n)-valued
function on S1, independent of z ∈ M . Moreover (see [30, Thm 2.2]
and Remark 3.4), the extended solution can be chosen to be a smooth
map, or even holomorphic in λ ∈ C \ {0} and real analytic in M .

We shall make use of a method called the Grassmannian model [27],
which associates to an extended solution Φ the family of closed sub-
spaces W (z), z ∈M, of L2(S1,Cn), defined by

(2.5) W (z) = Φ(·, z)H+,

where H+ is the usual Hardy space of Cn-valued functions, i.e., the
closed subspace of H := L2(S1,Cn) consisting of Fourier series whose
negative coefficients vanish. Note that the subspaces W (z) form the
fibres of a smooth bundle W over the Riemann surface (which is, in
fact, a subbundle of the trivial bundle H := M × L2(S1,Cn), see §3.1.
Let us denote by ∂z and ∂z̄ the derivatives with respect to z and z̄ on
M , respectively, and by S the forward shift on L2(S1,Cn):

(Sf)(λ) = λf(λ), λ ∈ S1.

If f : S1×M → C
n is differentiable in the second variable and satisfies

f(·, z) ∈ W (z), z ∈M , it follows from (2.4) that

(2.6) S∂zf(·, z) ∈ W (z), ∂z̄f(·, z) ∈ W (z),

i.e., in terms of differentiable sections we have

(2.7) S∂zW (z) ⊆ W (z), ∂z̄W (z) ⊆ W (z),

which we shall often abbreviate to S∂zW ⊆ W and ∂z̄W ⊆ W . In
fact, these equations are equivalent to (2.4) see [27, 15]. An obvi-
ous advantage of this approach is that it yields coordinate-free equa-
tions, since the derivatives of the coordinates involved in the chain rule
are absorbed in the corresponding subspaces. On the other hand, the
objects involved here are shift-invariant subspaces of L2(S1,Cn), and
using them in order to develop a qualitative theory of the solutions
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of (2.4) leads to a number of challenging problems, due to the fact
that, in general, Uhlenbeck’s extended solutions cannot be found ex-
plicitly. Moreover, alternative approaches to the theory of harmonic
maps lead to more general representations of the bundles W . For ex-
ample, extended framings associated to primitive harmonic maps into
k-symmetric spaces (see [1]), or the Dorfmeister–Pedit–Wu construc-
tion [10], lead naturally to bundles W , satisfying (2.6), and given by

(2.8) W (z) = ψ(·, z)H+,

where ψ : S1×M → GL(n,C) is a smooth map. The bundles obtained
this way are characterized in [26, §7.1]; see Theorem 3.3 below for
an alternative approach. Of course, (2.6) implies that the negative
Fourier coefficients of λψ−1(λ, z)∂zψ(λ, z) and of ψ−1(λ, z)∂z̄ψ(λ, z)
vanish, but, in general, it is not clear which maps ψ occur this way. For
example, this condition is fulfilled if the potential ψ−1(λ, z)∂zψ(λ, z) is
a holomorphic potential in the sense of [10].

The Iwasawa decomposition of loop groups [26, Theorem (8.1.1)] im-
plies that W (z) = Φ(·, z)H+, with Φ : S1 ×M → U(n) smooth; given
such a Φ, it is easy to verify that (2.6) implies that ΦΦ−1(1, ·) is an
extended solution. However, Φ cannot usually be determined explicitly
except in the finite uniton case, cf. [28], and in many cases we would
like to develop our study based on the properties of ψ or W .

The main purpose of this paper is to explore the connection between
harmonic maps which possess extended solutions, and the associated
infinite-dimensional family (i.e., bundle) W = W (z) of shift-invariant
subspaces (2.5). By extension we shall call the family W (z) an ex-
tended solution as well. It turns out that this point of view leads to
very interesting new results about harmonic maps and to a beautiful in-
terplay between differential geometry and operator theory. Recall that
all harmonic maps from a simply connected surface have an extended
solution locally, and globally on a simply connected domain; further,
for arbitrary domains any two extended solutions, and so the resulting
W , differ by premultiplication by a loop which does not change the
criteria in our main results.

In this paper, we shall focus on the important question of finiteness of
the uniton number; in [1], we take up the question of symmetry. We
say that the harmonic map ϕ :M → U(n) has finite uniton number if
there exists an extended solution Φ0 associated to ϕ, which is defined
on the whole of M and is a trigonometric polynomial in λ ∈ S1, i.e.,
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there exist r, s ∈ N such that

(2.9) Φ0(λ, z) =
s∑

k=−r

Ck(z)λ
k, Ck :M → gl(n,C) smooth.

Consequently, an arbitrary extended solution Φ associated to ϕ will
have the form vΦ0 with v : S1 → U(n) independent of z ∈ M (and
satisfying v(1) = v(−1) = I); we shall say that such a Φ, and the
corresponding W = ΦH+, are of finite uniton number, too. The stan-
dard factorization theory of matrix-valued functions on S1 (see [23, 25])
shows that such functions are essentially polynomial Blaschke–Potapov
products depending on z ∈ M . More precisely, there exist subbundles
α1, . . . , αm of M × C

n such that

(2.10) Φ(λ, z) = v(λ)
m∏

j=1

(παj(z) + λπ⊥
αj(z)

),

where πα denotes the orthogonal (Hermitian) projection onto the sub-
space α of Cn and π⊥

α = πα⊥ . It is well known that, for n > 1, the
factors in the product above are not necessarily unique, and this is one
of the major technical difficulties in dealing with these objects. How-
ever, it is shown in [30] that the factors can be chosen such that for
k ≤ m, the partial products

Φk(λ, z) =
k∏

j=1

(παj(z) + λπ⊥
αj(z)

)

are extended solutions as well. The Blaschke–Potapov factors involved
in such a factorization are called unitons of Φ and (2.10) is its uniton
factorization. For λ = −1 this yields a factorization of the original har-
monic map ϕ, also called a uniton factorization, and the corresponding
factors are called unitons of ϕ. Not every factorization of the Blaschke–
Potapov product above yields unitons: a complete description of those
which do yield unitons in terms of ‘λ-filtrations’ has been obtained in
[28].

As a special case we say that Φ and the correspondingW = ΦH+ is S1-
invariant if f ∈ W implies that fµ ∈ W for all µ ∈ S1, where fµ(λ) =
f(µλ), λ ∈ S1. As in [30, Proposition 10.4], an S1-invariant extended
solution has a uniton factorization with nested unitons α1 ⊆ α2 ⊆ · · · ⊆
αm, which are holomorphic, i.e., ∂z̄(αi) ⊆ αi, and superhorizontal, i.e.,

(2.11) ∂z(αi) ⊆ αi+1, i = 1, . . . ,m− 1,

cf. [28, §2.3, 3.3].
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One of the remarkable results in [30] is that, for the Riemann sphere
M = S2, every harmonic map has finite uniton number. More gener-
ally, on a compact Riemann surface M , any extended solution has the
form (2.10) [24], so any harmonic map which has an extended solution
on M is of finite uniton number. By the uniformization (or Riemann
mapping) theorem [14], all Riemann surfaces M have a simply con-
nected covering space Π : M̃ → M where M̃ is the Riemann surface
S2, C or the open unit disk of C. The projection Π is holomorphic so
that a map ϕ from M is harmonic if and only if ϕ ◦Π is harmonic. All
harmonic maps have an extended solution on a simply connected cov-
ering space, for example, harmonic maps from a torus can be thought
of as doubly periodic harmonic maps on C, and since C is simply con-
nected, have extended solutions on C. If there is an extended solution
which is doubly periodic too, and so descends to the torus, then, by the
above result for compact surfaces, the harmonic map is of finite uni-
ton number; otherwise it is not, as in the case of Clifford solutions, cf.
Example 4.15. In fact, we show in §4.1 that the notion of finite uniton
number is local : a harmonic map ϕ from a Riemann surface is of finite
uniton number if and only if its restriction to an open set is of finite
uniton number, and this holds if and only if its composition with Π is
of finite uniton number. We should also point out that on non-compact
Riemann surfaces there always exist harmonic maps which are not of
finite uniton number (see §4.2 below).

2.2. New results. Our main result, Theorem 3.6, provides a necessary
and sufficient criterion for finiteness of the uniton number. At the level
of the Grassmannian model the criterion is easy to explain: it simply
requires that the sequence

W(i) := W + ∂zW + · · ·+ ∂izW

stabilizes. This sequence is a key tool in our approach. In §3.2 we
prove that each W(i) extends to a holomorphic subbundle of the trivial
bundle H = M × L2(S1,Cn). If W = ψH+ as in (2.8), the result
can be rephrased in terms of the differential operators Tψ(λ) = ∂z +
ψ−1∂zψ and it asserts that the uniton number is finite if and only if the
maximum power of λ−1 in T iψ(λ) remains bounded for i ∈ N. It turns
out that this general criterion has a number of interesting applications.
For example, in certain extreme cases we can obtain necessary and
sufficient conditions for the uniton number to be finite using only the
bundle ImAϕz := AϕzC

n and its ∂z-derivative (see §3.4 for a more general
version). In particular, this will lead to a complete characterization of
such harmonic maps into U(2) (Corollary 4.5). Another important
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special case where the criterion can be successfully applied is that of
constant potentials, i.e. when W = ψH+ as in (2.8), with ψ−1∂zψ
constant in z ∈ M . In Theorem 4.6 we prove that the underlying
harmonic map ϕ has finite uniton number if and only if

(λ, µ) 7→ det(µI − ψ−1∂zψ)

is holomorphic in {(λ, µ) ∈ C
2 : |λ| < 1}. This extends to U(n) a

result proved for SU(2) by F.E. Burstall and F. Pedit [6].

In §4.3, we take a more geometrical approach, interpreting the opera-
tor Tϕ(λ) in terms of Aϕz and a derivation Dϕ

z associated to ϕ. This is
particularly effective for harmonic maps into Grassmannians. Iterat-
ing a construction akin to taking a Gauss map generates a diagram of
subbundles and maps between them. If this diagram terminates, then
the harmonic map is of finite uniton number (Proposition 4.9). Oth-
erwise, it closes up and the composition of maps around the resulting
cycle is called the first return map. The nilpotency of this map gives a
necessary condition for the uniton number to be finite (Theorem 4.10).
In particular, an interesting class of harmonic maps called superconfor-
mal, which include the famous Clifford solutions on C and associated
Clifford tori, are easily seen to be not of finite uniton number.

For more complicated diagrams of subbundles and maps, we generalize
the above work to give conditions for finiteness of the uniton number
in terms of the composition of maps around cycles, see Theorem 4.18.

3. The bounded powers criterion

In this section we establish a criterion for whether an extended solution
is of finite uniton number or not. We then give some applications. First
we introduce a description of the Grassmannian model, which is the
main tool used in our approach.

3.1. The Grassmannian model. We recall the Grassmannian model
of Pressley and Segal [26, §7 & 8]: Let H− = H⊥

+, and let P± denote

the orthogonal projections of H = L2(S1,Cn) onto H±. Set Gr(n) equal
to the Hilbert manifold of closed shift-invariant subspaces V of H such
that P+ : V → H+ is a Fredholm operator and P− : V → H− is a
Hilbert-Schmidt operator and set Gr(n)∞ equal to the subspace of Gr(n)

satisfying the smoothness condition (iii) below. Then Pressley and
Segal show that the map γ 7→ γH+ is a bijection from the smooth loop
group ΩU(n) to Gr(n)∞ . We here replace the Fredholm–Hilbert-Schmidt
condition with the following simpler condition:
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S|V is a pure shift, i.e.
⋂
k∈N S

kV = {0},
of multiplicity n, that is dimV ⊖ SV = n.

Here V ⊖SV = V ∩ (SV )⊥. Note that this condition holds if and only
if V has the form V = γH+ with γ(λ) ∈ U(n) a.e. on S1; the ‘if’
direction is trivial, and the ‘only if’ direction follows from [19, Lecture
VI]).

The following gives conditions for smoothness of γ.

Proposition 3.1. Let V be a closed shift-invariant subspace of H =
L2(S1,Cn), such that S|V is a pure shift of multiplicity n. Then the
following are equivalent :

(i) V = γH+ for a unique γ ∈ ΩU(n);
(ii) V ⊖ SV is a subspace of C∞(S1,Cn) of dimension n;
(iii) The subspaces P+V

⊥ and P−V are contained in C∞(S1,Cn).

Proof. (i) ⇒ (ii) is immediate, since V ⊖ SV = {γe : e ∈ C
n}. The

reverse implication (ii) ⇒ (i) is just the ‘constant version’ of the first
part of the following theorem, so does not need a separate proof. To
see that (i) ⇒ (iii) note first that V ⊥ = γH−. Moreover, if f ∈ H−,
then γ(λ)f ∈ H−, i.e. P+γ(λ)f = 0, for all λ ∈ S1. Thus by the well
known formula for P+ (see [23]), we have

P+γf(λ) = P+[(γ − γ(λ))f ](λ) =

∫

S1

(γ(ζ)− γ(λ))f(ζ)

ζ − λ

dζ

2πi
.

Clearly, the integral on the right belongs to C∞(S1,Cn). The proof
that P−V ⊆ C∞(S1,Cn) is identical. Finally, if (iii) holds, V = γH+

with γ(λ) ∈ U(n) a.e., in order to prove (i) it suffices to show that γ ∈
C∞(S1,Cn). For every e ∈ C

n we have P−γe, P+S
−1γe ∈ C∞(S1,Cn).

If γ(λ) =
∑

k∈Z γ̂kλ
k, a direct computation gives

P+S
−1γe = λ−1(P+γe(λ)− γ̂0).

Thus

γe(λ) = P−γe(λ)+P+γe(λ) = P−γe(λ)+λP+S
−1γe(λ)+γ̂0 ∈ C∞(S1,Cn).

�

Remark 3.2. (a) Proposition 3.1 gives the following description: Gr(n)∞

is the set of closed shift-invariant subspaces V of H with S|V a pure
shift of multiplicity n such that one of the equivalent conditions (i), (ii)
or (iii) in the proposition holds.

(b) From the proof of [26, Theorem 8.3.2], we see that the condition
of S|V being a pure shift of multiplicity n is actually implied by the
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Fredholm–Hilbert-Schmidt condition. The reverse implication fails in
general, but under the smoothness assumptions (ii) or (iii) of Proposi-
tion 3.1 the conditions are equivalent.

Theorem 3.3. Let V (z), z ∈M be a family of closed, shift-invariant
subspaces of L2(S1,Cn), such that:

(i) S|V (z) is a pure shift for all z ∈M ;
(ii) the subspaces

V (z)⊖ SV (z) = V (z) ∩ (SV (z))⊥

form a smooth subbundle of rank n of M × C∞(S1,Cn).

Then there exists a smooth U(n)-valued function ψ on S1 × M with
ψ(1, z) = I such that V (z) = ψ(·, z)H+. If, in addition,

(iii) ∂z̄V ⊆ V ,

then locally at every point of M , V (z) = u(·, z)H+, with u GL(n,C)-
valued, smooth on S1 ×M , and holomorphic in z ∈ M . In particular,
V is a holomorphic subbundle of H =M × L2(S1,Cn).

Proof. Orthonormalize a locally smooth basis of V (z)⊖SV (z) to obtain
the columns of a locally defined, smooth U(n)-valued function v such
that V (z) ⊖ SV (z) = v(·, z)Cn. By (i) and the Wold–Kolmogorov
decomposition [23, p. 17], we have

V (z) =
⊕

k≥0

Sk(V (z)⊖ SV (z)) =
⊕

k≥0

Skv(·, z)Cn = v(·, z)H+.

It is also well known that the representation V = vH+ is unique up
to multiplication from the right by a U(n)-valued function constant in
λ ∈ S1 (see [23, p. 17], for example). Therefore, for v as above, the
function ψ(λ, z) = v(λ, z)v−1(1, z) is well defined, smooth on S1 ×M ,
has ψ(1, z) = I, and satisfies V (z) = ψ(·, z)H+.

In order to verify the second assertion, we shall prove that there exist
locally defined (in z ∈ M) GL(n,C)-valued smooth functions F with
F (·, z)e ∈ H+, e ∈ C

n, such that ψF is holomorphic in z.

This gives the desired local representation with u = ψF . For the last
assertion, note first that from this representation it follows that V is a
holomorphic Hilbert bundle onM (see [21, p. 43]). Moreover, V (z) has
the locally holomorphic Riesz basis [23, p. 132] {Sku(·, z)ej : 1 ≤ j ≤
n, k ≥ 0}, where {ej : 1 ≤ j ≤ n} is the canonical basis in C

n, which
can be completed to the locally holomorphic Riesz basis of L2(S1,Cn)
given by {Sku(·, z)ej : 1 ≤ j ≤ n, k ∈ Z}; thus V is a holomorphic
subbundle of H.
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We transfer the problem of finding a function F as above to the complex
plane by using a local coordinate which we also denote by z ∈ U ⊆ C.
We now choose an open disc ∆ = {|z − z0| < r}, r > 0 in U ; the
condition that z → ψ(λ, z)F (λ, z) is holomorphic in ∆ is

∂z̄
(
ψ(λ, z)F (λ, z)

)
= 0.

If we denote by
Dψ(λ, z) = ψ−1(λ, z)∂z̄ψ(λ, z)

this becomes equivalent to the equation

(3.12) ∂z̄F (·, z) = −Dψ(·, z)F (·, z).
We seek a smooth, GL(n,C)-valued solution F of (3.12) such that, for
every z ∈ ∆, F (·, z) belongs to Λ+(gl(n,C)), the closed subspace of
L2(S1, gl(n,C)) consisting of functions whose negative Fourier coeffi-
cients vanish.

The equation (3.12) can be handled with help of an integral equation
which we shall introduce below.
Assume that the disc {|z − z0| ≤ 2r} lies in U , and let χ : C → [0, 1]
be a smooth function with χ(z) = 1 when |z| ≤ 1, χ(z) = 0 when
|z| ≥ 4

3
. Set χr(z) = χ( z−z0

r
). Given a continuous gl(n,C)-valued

function F on {|z − z0| < 2r}, extend the product χrDψF to be zero
outside {|z − z0| < 4r

3
}, and define

(3.13) C∆F =
1

π

∫

C

χrDψF (t)

t− z
dm(t) =

1

2π

∫

C

χrDψF (t+ z)

t
dm(t),

where m denotes the area measure on C. Note that, if G0 ∈ gl(n,C) is
constant, a smooth solution F of

(3.14) F + C∆F = G0

will satisfy (3.12). Indeed, the basic property of the Cauchy transform:

∂z̄
1

π

∫

C

H(t)

t− z
dm(t) = ∂z̄

1

2πi

∫

C

H(t)

t− z
dt ∧ dt = H(z),

valid for every compactly supported continuous function H on C (see
for example, [2]), implies that on ∆ we have

∂z̄F +DψF = ∂z̄F + χrDψF = ∂z̄(F + C∆F ) = 0.

The remainder of the proof consists of two steps. We show that, if the
radius r of ∆ is sufficiently small, more precisely, if

(3.15) sup
λ∈S1,|z−z0|≤

4
3

‖Dψ(λ, z)‖
1

π

∫

|t|< 4
3
r

dm(t)

|t| <
1

3
,
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then:
1) for every constant G0 ∈ gl(n,C), (3.14) has a smooth solution F on
S1 ×M such that, for each z ∈ ∆, F (z, ·) belongs to Λ+(gl(n,C));
2) for G0 = ICn, the solution of (3.14) is GL(n,C)-valued.

1) Let ∆′ = {|z − z0| ≤ 2r} ⊆ U , and consider for k ∈ N ∪ {0} the
Banach algebras Bk consisting of functions F ∈ Ck(S1 ×∆′) with the
property that F (·, z) ∈ Λ+(gl(n,C)) for all z ∈ ∆′, endowed with the
natural norm inherited from Ck(S1 ×∆′).
The assumption (iii) in the statement together with the fact that ∆′ ⊆
U imply that Dψ ∈ Bk for all k. From the second equality in (3.13)
it follows easily that C∆ defines a bounded operator on each of these
algebras (Banach spaces).
Our first claim is that for all k ≥ 0, C∆|Bk is compact. To this end,
notice that it will be sufficient to prove the assertion when k = 0,
since the general case follows by a repeated application of this result
using the second equality in (3.13). Now observe that, for any h ∈
L1({|z − z0| < 4r}), the operator Ch, defined on B0 by

ChF =
1

π

∫

C

(χrDψF (t))h(t− z) dm(t),

maps B0 into itself with

‖ChF‖B0 ≤
1

π
‖h‖1‖Dψ‖B0‖F‖B0 .

Let (hj) be a sequence of polynomials in z, z̄ converging in L1({|z−z0| <
4r}) to the function z 7→ z−1. Obviously, hj(t− z) can be written as a
finite sum

hj(t− z) =
∑

k

pjk(t)q
j
k(z),

with pjk(s), q
n
k (s) polynomials in s, s, which shows that the operators

Chj are of finite rank and converge in operator norm to C∆ on B0, hence
C∆ is compact.
Thus, C∆|Bk is compact, and by (3.15), IB0 +C∆|B0 is invertible. This
implies that IBk + C∆|Bk is invertible on Bk for every k ≥ 0. Indeed,
from the inclusion Bk ⊆ B0, k > 0, it follows that IBk + C∆|Bk is
injective for all k ∈ N ∪ {0}. Then, by the spectral theory of compact
operators [22, p. 238], we have that IBk + C∆|Bk is invertible for all
k ≥ 0. Thus, for each k ∈ N ∪ {0}, (3.14) has a unique solution
Fk ∈ Bk. Using again the inclusion Bk ⊆ B0, k > 0, we conclude that
Fk = F0, for all k ≥ 0, i.e. F = F0 is a smooth solution of (3.14), such
that F (z, ·) belongs to Λ+(gl(n,C)).



HARMONIC MAPS AND SHIFT-INVARIANT SUBSPACES 13

2) Assume that G0 = ICn , and let F be the smooth solution of (3.14)
given above. We want to show that then F (λ, z) ∈ GL(n,C). Recall
that, if k = 0, the operator norm of C∆|B0 is less than 1

3
, by (3.15).

Our solution F is given by F =
∑∞

j=0(−1)jCj
∆ICn , hence

‖F‖B0 ≤
∞∑

j=0

‖C∆ICn‖jB0
≤

∞∑

j=0

3−j =
3

2
.

Since the norm on B0 is the supremum norm, it follows from the above
that the gl(n,C)-norm of C∆F (λ, z) is less than 1

2
. From (3.14) we

conclude that F (λ, z) ∈ GL(n,C), and the proof is complete. �

Remark 3.4. (a) The approach used for the proof of the second part
of the statement is similar to the one in [10, Appendix, p. 665]. In fact,
using those ideas one can apply a theorem of Grauert [18] to show that,
if (iii) holds on a non-compact Riemann surface M , then V is a trivial
holomorphic subbundle of H.

(b) If V = ΦH+, where Φ is an extended solution associated to a U(n)-
valued harmonic map ϕ, the argument in the second part of Theorem
3.3 actually shows that Φ is real analytic on M . Indeed, any harmonic
map ϕ is real analytic on M [30], hence, so is Φ−1∂zΦ. Then one can
replace the Banach algebras Bk in the proof of the second statement
by suitably chosen Banach algebras consisting of functions which are
holomorphic in the second variable in the interior of ∆′ ×∆′ with Ck-
extensions to the boundary. The argument produces a locally defined
GL(n,C)-valued function w, real analytic in z and smooth in λ, such
that Φw is holomorphic in z, hence Φ is real analytic in z ∈ M . As
pointed out above, it follows from [30, Thm 2.2] that, if z0 ∈ M is
fixed, then for every z ∈M , Φ−1(·, z0)Φ(·, z) extends to a holomorphic
function in C \ {0}.
(c) The converse of the first part is clearly true, that is, if there exists a
smooth U(n)-valued function ψ on S1×M such that V (z) = ψ(·, z)H+

then conditions (i) and (ii) hold.

(d) An extended solution ψ satisfies the finite uniton number condition
(2.9) for some r, s ∈ N if and only if W = ψH+ satisfies a similar
equation:

λsH+ ⊆ W ⊆ λ−rH+.

If W satisfies this equation for some r, s ∈ N, then it automatically
satisfies conditions (i) and (ii) of the theorem.

3.2. The Gauss sequence. Let ϕ : M → U(n) be a harmonic map
with associated smooth extended solution Φ, and setW (z) = Φ(·, z)H+.
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We are interested in the structure of the nested sequence

W(i) := W + ∂zW + · · ·+ ∂izW.

The sequence is defined inductively, so we start our discussion with the
first step W(1). A direct calculation using the definition of Aϕz shows
that

W(1) = Φ(λ−1 ImAϕz +H+),

which immediately shows that W(1)(z) is a closed, shift-invariant sub-
space of L2(S1,Cn) which also satisfies (2.7). However, due to the fact
that the rank of Aϕz may vary, W(1)(z) may not have the structure of
a bundle, and the representation W(1) = Φ1H+ with Φ1 smooth on
S1 ×M might fail. On the other hand, as we shall see in §4.3, Aϕz is
holomorphic with respect to a certain complex structure on a trivial
bundle over M . In particular, the set of points where its rank is not
maximal is discrete in M and, furthermore, due to the technique of
filling out zeros developed in [7], it follows that ImAϕz has a unique
extension to a smooth subbundle α1 of the trivial bundle M ×C

n. For
this reason, we define

W(1) = Φ(λ−1α1 +H+).

Note that, by continuity, W(1) satisfies (2.7) at all points of M .

Now let ϕ : M → U(n) be a harmonic map with associated smooth
extended solution Φ, and set W (z) = Φ(·, z)H+. Then W(1) is an ex-
tended solution which obviously satisfies conditions (i) and (ii) of The-
orem 3.3. Indeed, from λW(1) ⊆ W , we conclude that

⋂
k∈N S

kW(1) =
{0}, and by definition

dimW(1) ⊖ λW(1) = dim{λ−1α1 + α⊥
1 } = n.

Thus, W(1) has the form Φ1H+ and is a holomorphic subbundle of
H = M × L2(S1,Cn). Therefore we can proceed to define inductively
a nested sequence (W(i)) of extended solutions by setting W(0) = W ,
and

W(i+1) = (W(i))(1).

W(i) will be called the ith osculating subbundle of W , and (W(i)) will
be called the Gauss sequence of W . Clearly, off a discrete set Di ⊆M
we have

(3.16) W(i) = ∂zW(i−1) +W(i−1) = ∂izW + ∂i−1
z W + · · · ∂zW +W,

and eachW(i) is an extended solution as well as a holomorphic subbun-
dle of H =M × L2(S1,Cn).
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It is interesting to note thatW(i) = ΦiH+, where Φ0 = Φ and Φi, i ≥ 1,
is the extended solution obtained from Φi−1 by adding a uniton:

(3.17) Φi = Φi−1(παi + λ−1π⊥
αi
), equivalently, Φi−1 = Φi(παi + λπ⊥

αi
);

in fact, α⊥
i = ImA

ϕi−1
z , where ϕi−1 is a harmonic map with associated

extended solution Φi−1, see, for example, [28, Example 4.7].

3.3. The criterion. In the sequel, we shall consider harmonic maps
ϕ :M → U(n) whose extended solutions W = ΦH+ are represented in
the general form

(3.18) W = ψH+

where ψ : S1 ×M → GL(n,C) is a smooth map. To do calculations
cleanly, we will choose a local complex coordinate z; however, as pre-
viously mentioned, our results will not depend on that choice.

Recall from §2 that ψ−1(λ, z)∂zψ(λ, z) extends to a meromorphic func-
tion of λ in the punctured unit disc, with a simple pole at the origin,
i.e.,

(3.19) Aψ(λ, z) := ψ−1(λ, z)∂zψ(λ, z) =
∞∑

j=−1

aj(z)λ
j, λ ∈ S1,

where the aj are smooth matrix-valued functions on M , and the series
together with its derivatives converges uniformly on compact subsets
of S1 ×M .

The construction of the Gauss sequence of W given in the previous
subsection is related to the action of a family of differential operators
induced by ψ on C∞(M,Cn), which will play a crucial role in what
follows (see Remark 4.7 for an interpretation in terms of D-modules).

More precisely, for λ ∈ S1, let T = Tψ(λ) : C
∞(M,Cn) → C∞(M,Cn)

be defined by

(3.20) Tψ(λ)u = ∂zu+ ψ−1∂zψ(λ, ·)u.

Given any nonnegative integer power r of this operator and u ∈ C∞(M,Cn),
we shall regard throughout T rψ(λ)u(z) as a smooth function on S1×M .
It follows from (3.19) that T rψ(·)u(z) ∈ λ−rH+, z ∈M .

Lemma 3.5. LetW = ψH+ be an extended solution with ψ−1∂zψ given
by (3.19).
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Then off a discrete set Di ⊆M we have
(3.21)

W(i) = ψ(λ, z)
{ i∑

r=1

T rψ(λ)hr+v(·, z) : hr ∈ C∞(M,Cn), v(·, z) ∈ H+

}
.

Proof. This follows easily by induction. For i = 0, (3.21) is obvious
and for i ≥ 1, by (3.16) there exists Di ⊆M discrete such that

W(i) = ∂zW(i−1) +W(i−1)

off Di. �

Our criterion for finiteness of the uniton number can be formulated as
follows.

Theorem 3.6. Let W = ψH+ be an extended solution with ψ−1∂zψ
given by (3.19). Then the following are equivalent:

(i) W is of finite uniton number ;

(ii) there exists a smooth map Φ̂ : S1 → U(n) (independent of z ∈
M) such that W ⊆ Φ̂H+;

(iii) the Gauss sequence of W stabilizes, i.e., there exists i ≥ 0 such
that W(i+1) = W(i);

(iv) if T = Tψ(λ), 0 < |λ| < 1, denotes the operator defined in
(3.20), then the maximum power of λ−1 in T r stays bounded
when r ∈ N, i.e., there exists k0 ∈ N such that
∫ 2π

0

eiktT rψ(e
it)u dt = 0, k ≥ k0, u ∈ C∞(M,Cn), r ∈ N.

Proof. (i) ⇒ (ii) is obvious by definition, since if (i) holds, all extended
solutions have the form vΦ0, with v constant in z ∈ M , and Φ0 a
trigonometric polynomial in λ.

(ii) ⇔ (iii). If (ii) holds, on writing the bundles (W(i))i≥0 as

W(i) = Φi(·, z)H+

with the Φi extended solutions, then Φ̂−1Φi(·, z), i ≥ 0, are the bound-
ary values of bounded analytic matrix-valued functions in the unit disc,
and by (3.17) there exist projection-valued smooth functions πi, i ≥ 1
on M such that

Φ̂−1(λ)Φ0(λ, z) = Φ̂−1(λ)Φi(λ, z)
i∏

l=1

(
πl(z) + λπ⊥

l (z)
)
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for all i ≥ 1 and all λ in the unit disc. This implies that the order
of the zero at the origin of det

∏i
l=1

(
πl(z) + λπ⊥

l (z)
)
cannot exceed

the order of the zero at the origin of det Φ̂−1(λ)Φ0(λ, z), for all i ≥ 1,
hence there is an i0 ∈ N such that πi(z) = I for i ≥ i0, and thus
W(i) = W(i0), i ≥ i0. Conversely, if ϕi = Φi(−1, ·), it follows from
the formula (3.17) for the uniton that W(i+1) = W(i) is equivalent to
Aϕiz = 0, and this implies that Φi is constant in z ∈ M , i.e., (ii) holds

with Φ̂ = Φi.

(iii) ⇔ (iv) follows immediately from Lemma 3.5. Finally if (iii) holds,
then as above, we deduce that the extended solution Φi corresponding
to W(i) is constant and (i) follows. �

Remark 3.7. By real analyticity, our criteria are local, i.e., if any of
the above criteria holds on an open set, it holds on the whole of M .

3.4. Direct applications. Our first observation extends a result in
[29, Example 4.2] to the case of arbitrary potentials.

Corollary 3.8. Let W = ψH+ be an extended solution with ψ−1∂zψ
given by (3.19). If W is of finite uniton number then a−1 is nilpotent.

Proof. This is just an application of Theorem 3.6(iv) since
∫ 2π

0

eirtT r(eit)u dt = ar−1u, u ∈ C∞(M,Cn), r ∈ N.

�

Note that, if ψ is an extended solution, then a−1 = Aϕz . The condition
is far from sufficient, as follows from the results and examples below.
In general, the powers of the differential operators Tψ(λ) are difficult to
control, but there are at least two extreme situations when the problem
becomes more tractable. Throughout in what follows we shall use the
fact that the W(i) are holomorphic subbundles of H =M ×L2(S1,Cn).

Proposition 3.9. Let W = ψH+ be an extended solution with ψ−1∂zψ
given by (3.19).

(i) Assume that a2−1 = 0, and

Im
(
a0(z)a−1(z) + ∂za−1(z)

)
+ Im a−1(z) = C

n

for all z on an open non-void subset U ⊆ M . Then for i ≥ 0,
W(2i) = λ−iψH+ = λ−iW . In particular, W is not of finite
uniton number.
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(ii) Assume that

Im
(
aj(z)a−1(z) + ∂za−1(z)

)
⊆ Im a−1(z), j ≥ −1,

for all z on an open non-void subset U ⊆ M . Then for all
i ≥ 0,

W(i)(z) ⊆ ψ(·, z)
( i∑

r=1

Im ar−1(z) +H+

)
.

In this case, W is of finite uniton number if and only if a−1 is
nilpotent.

Proof. (i) Note that the second part of the statement follows from the
first part together with Theorem 3.6(iii). By Lemma 3.5 we have

W(2)(z) = ψ(·, z){T 2
ψ(·)h2(z)+Tψ(·)h1(z)+v : h1, h2 ∈ C∞(M,Cn), v ∈ H+},

on U \D2, where D2 ⊆M is discrete. Using the notation in (3.19), we
obtain after a direct computation,

T 2
ψ(λ)h2(z) + Tψ(λ)h1(z) =

λ−1
(
a0(z)a−1(z)h2(z) + ∂za−1(z)

)
h2(z) + a−1(z)

(
a0(z)h2(z) + 2∂zh2(z) + h1(z)

)

+ λ−2a2−1h2(z) + v1(λ, z),

with v1(·, z) ∈ H+. Thus, by assumption,

W(2) =ψ
{
λ−1

(
(a0a−1 + ∂za−1)h2 + a−1h3

)
: h2, h3 ∈ C∞(M,Cn)

}
+ ψH+

=λ−1ψH+ = λ−1W,

on U \D2. This immediately implies that the first part of the statement
holds for each i ≥ 0 on U \ Di with Di discrete, and so by analytic
continuation, on the whole of M .

(ii) Again working on U , set

Vi(z) = ψ(λ, z)
({ i∑

r=1

λ−rar−1(z)hr(z) : hr ∈ C∞(M,Cn), 1 ≤ r ≤ i
}
+H+

)
.

Using the identity

∂za
r
−1 = (∂za−1)a

r−1
−1 +

∑

k+l=r−1

ak−1(∂za−1)a
l
−1, r ≥ 1,

together with the assumption, it follows easily that

∂Vi + Vi−1 ⊆ Vi+1.

Moreover, V1 = W(1) on U \ D1, hence we derive by induction that
W(i) ⊆ Vi on U \ Di, for all i ≥ 1, where the Di ⊆ M are discrete.
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If a−1 is nilpotent, we see that the Gauss sequence of W stabilizes on
some open set U ′, and so, by analytic continuation, on M , hence W is
of finite uniton number by Theorem 3.6(iii). The converse is given by
Corollary 3.8. �

By allowing the occurrence of singularities, it was shown in [10] that
any extended solution, and so harmonic map, arises from a solution to
ψ−1∂zψ = λ−1a−1(z), with a−1 a meromorphic function on M ; such a
λ−1a−1(z) is called a meromorphic potential.

Corollary 3.10. Let W = ψH+ be an extended solution with mero-
morphic potential ψ−1∂zψ = λ−1a−1(z) with a−1 not identically zero.

(i) Assume that a2−1 = 0, and

(3.22) Im ∂za−1(z) + Im a−1(z) = C
n

for all z on an open non-void subset U ⊆ M . Then n is even
and W is not of finite uniton number.

(ii) Assume that

Im ∂za−1(z) ⊆ Im a−1(z)

for all z on an open non-void subset U ⊆ M . Then W is of
finite uniton number if and only if a−1 is nilpotent.

Proof. (i) We work on the open subset V of U on which a−1 has max-
imal rank; call this rank m. From a2−1 = 0, we have Im a−1 ⊆ ker a−1.
But, as always, dim Im a−1 + dimker a−1 = n so that 2m ≤ n. On the
other hand, the left-hand side of (3.22) has dimension at most 2m so
that n ≤ 2m. The rest is immediate from part (i) of the proposition.

(ii) This is a direct consequence of Proposition 3.9(ii). �

4. Applications to harmonic maps

4.1. Applications of Theorem 3.6. We now apply our criterion for
finiteness of the uniton number to harmonic maps from a Riemann
surface M . Although these have extended solutions locally, they may
not have extended solutions defined on the whole ofM ; this means that
Remark 3.7 does not immediately apply to harmonic maps. However,
we have the following result, which we were unable to find elsewhere;
it is proved using our criterion.

Proposition 4.1. LetM and M̃ be Riemann surfaces and Π : M̃ →M
a non-constant holomorphic map. Let ϕ : M → U(n) be a harmonic
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map. Then ϕ is of finite uniton number if and only if ϕ ◦Π is of finite
uniton number.

Proof. ‘Only if’ follows by noting that, if Φ is a polynomial extended
solution associated to ϕ (i.e. Φ(·, z) is a polynomial), then Φ ◦ Π is a
polynomial extended solution associated to ϕ ◦ Π.
Conversely, suppose that ϕ̃0 := ϕ ◦ Π is of finite uniton number. Let

Φ̃0 be an extended solution on M̃ with Φ̃0(−1, ·) = ϕ̃0. Then, from

(3.17), its Gauss sequence W̃(i) = Φ̃iH+ on M̃ is given inductively by

Φ̃i = Φ̃i−1(πα̃i + λ−1π⊥
α̃i
), and so ϕ̃i = ϕ̃i−1(πα̃i − π⊥

α̃i
),

where ϕ̃i = Φ̃i(−1, ·) and α̃⊥
i = ImA

ϕ̃i−1

z̃ for any local complex coordi-
nate z̃. Since ϕ̃0 is of finite uniton number, this terminates, i.e. there

is an r ∈ N and γ : S1 → U(n) such that Φ̃r(·, z) = γ for all z ∈ M ,
equivalently, ϕ̃r is constant; so

Φ̃0 = γ(πα̃r + λπ⊥
α̃r) · · · (πα̃1 + λπ⊥

α̃1
).

Now, from ϕ :M → U(n) we can define a sequence of maps ϕi :M →
U(n) by ϕ0 = ϕ and ϕi = ϕi−1(παi − π⊥

αi
), where α⊥

i = ImA
ϕi−1
z for

any local complex coordinate z. We claim that, for i = 1, 2, . . . , r, (i)
ϕ̃i−1 = ϕi−1◦Π and (ii) α̃i = αi◦Π. By construction, (i) holds for i = 1.
Assume that (i) holds for some i, then, away from the branch points
of the holomorphic map Π, working with local complex coordinates z̃

and z = Π(z̃) of M̃ andM , respectively, and filling out zeros at branch

points, we have α̃⊥
i = ImA

ϕ̃i−1

z̃ = ImA
ϕi−1
z ◦ Π = α⊥

i ◦ Π so that, from
ϕi = ϕi−1(παi − π⊥

αi
) we have ϕ̃i = ϕi ◦ Π, completing the induction

step.

In particular, since ϕ̃r is constant, so is ϕr on the open set Π(M̃) and
so, by analytic continuation, on the whole of M . Hence, ϕ is of finite

uniton number. In fact, Φ̃0 = Φ0 ◦ Π, where
Φ0 = γ(παr + λπ⊥

αr) · · · (πα1 + λπ⊥
α1
);

Φ0 is an extended solution of ϕ on the open set Π(M̃) and so, by
analytic continuation, on the whole of M . �

Recall that any Riemann surface M has a simply connected covering

space M̃ with holomorphic projection Π : M̃ →M . Since any harmonic
map on a simply connected Riemann surface has an extended solution,
we obtain the following non-trivial extension to Remark 3.7.
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Corollary 4.2. Let ϕ : M → U(n) be a harmonic map, and let Π :

M̃ →M be a simply connected covering space. Then the following are
equivalent:

(i) ϕ is of finite uniton number ;
(ii) ϕ|U is of finite uniton number for some open set U of M ;

(iii) ϕ ◦ Π : M̃ → U(n) is of finite uniton number.

Proof. The equivalences follow by applying Proposition 4.1 to the cov-

ering map Π : M̃ →M and the inclusion map of U in M . �

In order to apply the criteria of Theorem 3.6, we can choose ψ to be
a local extended solution of ϕ. Note that any two extended solutions
differ by premultiplication by a constant loop, which does not affect any
of the criteria. In particular, Aψ(λ, ·) = (1 − λ−1)Aϕz so that Tψ = Tϕ
where we define Tϕ = ∂z+(1−λ−1)Aϕz . Using Corollary 4.2, we deduce
the following from Theorem 3.6, which shows that we can use Tϕ to
test a harmonic map for finite uniton number without assuming that it
has an extended solution on the whole of its domain.

Corollary 4.3. Let ϕ : M → U(n) be a harmonic map. Then ϕ is of
finite uniton number if and only if the maximum power of λ−1 in T rϕ
stays bounded on some open subset of M when r ∈ N. �

The sufficient condition for the uniton number to be finite provided by
Proposition 3.9(ii) is then useful as the potential Aψ is a polynomial of
degree one in λ−1:

Corollary 4.4. Let ϕ :M → U(n) be a harmonic map. If Im ∂zA
ϕ
z ⊆

ImAϕz for all z on an open non-void subset U ⊆ M , then ϕ has finite
uniton number if and only if Aϕz is nilpotent.

Proof. On some open subset of U , ϕ has an extended solution ψ. Then,
as above, Aψ(λ, ·) = −λ−1Aϕz+A

ϕ
z , and the result is a direct application

of Proposition 3.9(ii) and Corollary 4.2. �

In the case when n = 2, Proposition 3.9 leads to a dichotomy and,
in particular, provides a complete characterization of harmonic maps
with finite uniton number:

Corollary 4.5. Let ϕ : M → U(2) be harmonic and non-constant.
Then, either

(i) at points where Aϕz is non-zero, Im ∂zA
ϕ
z ⊆ ImAϕz . Then ϕ has

finite uniton number if and only if (Aϕz )
2 = 0; or
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(ii) Im ∂zA
ϕ
z + ImAϕz = C

2 on an open subset of M . Then ϕ does
not have finite uniton number; indeed, for any extended solution
on any open subset of M , the corresponding Gauss sequence
satisfies W(2i) = λ−iW .

Proof. Clearly, Aϕz is nilpotent if and only if (Aϕz )
2 = 0. The set where

Im ∂zA
ϕ
z + ImAϕz = C

2 is open in M . If this set is void, we have
Im ∂zA

ϕ
z ⊆ ImAϕz at points where Aϕz is non-zero and (i) follows from

the previous corollary. Otherwise, we obtain (ii) by part (i) of Propo-
sition 3.9. �

The condition for finiteness of the uniton number is easy to understand
in this particular case. If Aϕz is nilpotent then, since (Aϕz )

2 = 0, Aϕz has
zero eigenvalues and so zero trace and determinant. Hence, it has the
form

Aϕz =

(
a b
c −a

)
,

with a2+bc = 0. A straightforward computation reveals that Im ∂zA
ϕ
z ⊆

ImAϕz holds if and only if ∂za = 0 whenever a = 0, and on the open
set where a 6= 0, both functions b/a, c/a = −a/b are antiholomorphic.

To interpret this, let g : M → CP 1 be the map into complex pro-
jective 1-space given by the image of Aϕz , thus g(z) = [a(z), c(z)] =
[b(z),−a(z)] in homogeneous coordinates; note that g is antiholomor-
phic. Let f :M → CP 1 be the holomorphic map orthogonal to it, i.e.,
f(z) = [−c(z), a(z)] = [a(z), b(z)]. Then Afz has image and kernel given
by g, i.e., the same image and kernel as Aϕz . In fact, Aϕz = Afz . To see

this, set s =
(
1, b(z)/a(z)

)
, a section of f . By matrix multiplication,

Aϕz (s) = (a + bb/a, c − ab/a). On the other hand, adding equations
(2.2) and (2.3) gives ∂z̄A

ϕ
z = [Aϕz , A

ϕ
z̄ ]. Now Aϕz̄ is minus the adjoint of

Aϕz , thus A
ϕ
z̄ =

(
−a −c
−b a

)
so that the last equation gives ∂za = cc− bb

and ∂zb = 2(ab − ac). Using these equations and a2 + bc = 0, it can
be checked that Afz (s) := πg(∂zs) = Aϕz (s). It follows that Afz = Aϕz
so that, up to premultiplication by a constant unitary matrix, ϕ is the
holomorphic map f . That ϕ is holomorphic also follows from Uhlen-
beck’s work [30].

4.2. Constant potentials. Here we consider an interesting particular
case of the Dorfmeister–Pedit–Wu construction [10]. We shall be con-
cerned with extended solutionsW (z) = ψ(·, z)H+ where ψ : S1×M →
GL(n,C) is a smooth map as in (3.18), but now we assume that the



HARMONIC MAPS AND SHIFT-INVARIANT SUBSPACES 23

potential Aψ = ψ−1(λ, z)∂zψ(λ, z) is constant in z ∈ M , i.e., there
exists a smooth gl(n,C)-valued map p on S1, constant in z ∈M , such
that the negative Fourier coefficients of λp(λ) vanish, and

(4.23) Aψ(λ, z) = p(λ), λ ∈ S1;

here we take M to be an open subset of C so that we have a global co-
ordinate z. The simplest examples are the so-called vacuum solutions,
see Example 4.15; they are given by setting τ(z) equal to z, or a linear
polynomial in z, in the formula

Φ(λ, z) = exp
(
2i Im {τ(z)(1− λ−1)A}

)
(4.24)

= exp
(
τ(z)(1− λ−1)A− τ(z)(1− λ)A∗

)
,

where A is a non-zero constant matrix which is normal (AA∗ = A∗A).
More generally, any non-compact Riemann surface M admits non-
constant holomorphic functions τ : M → C, see, for example, [14,
Ch. 3], and so we obtain vacuum solutions on M . Such extended solu-
tions are not of finite uniton number by Corollary 3.8, since a non-zero
normal matrix cannot be nilpotent. In particular, this shows that on
any non-compact Riemann surface M there are harmonic maps into
U(n) which are not of finite uniton number.

We now extend to U(n) a result proved for SU(2) in [6, Proposition
A.4].

Theorem 4.6. Let W = ψH+ be an extended solution with Aψ =
ψ−1∂zψ given by (4.23). Then W has finite uniton number if and only
if det(µI − ψ−1∂zψ) is holomorphic in {(λ, µ) ∈ C

2 : |λ| < 1}.

Proof. If p = ψ−1∂zψ is constant in z ∈M , then

T rψ(λ)h =
r∑

j=0

(
r

j

)
pj∂r−jz h, h ∈ C∞(M,Cn);

hence by Lemma 3.5 it follows immediately that
(4.25)

W(i)(z) = ψ(·, z)
{ i∑

j=0

pjhj(z)+v : hj ∈ C∞(M,Cn), 0 ≤ j ≤ i, v ∈ H+

}
.

If W has finite uniton number it follows from Theorem 3.6(iv) that
there exists a nonnegative integer m such that given any polynomial
Q, the function Q(p) is holomorphic in {|λ| < 1} \ {0} with a pole of
order at most m at the origin. In particular, for µ ∈ C and all positive
integers k, the function det

(
(µI − p)k

)
= detk(µI − p) is holomorphic

in {|λ| < 1} \ {0} with a pole of order at most mn at the origin. This
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clearly implies that det(µI − p) actually extends analytically at the
origin.
Conversely, assume that det(µI − p) is holomorphic in {|λ| < 1} × C.
Note that, for fixed λ ∈ S1, the polynomial Qλ(µ) = det(µI − p(λ))
is the characteristic polynomial of p(λ) and has dominant coefficient
equal to 1. Therefore, it follows easily by induction that for k ≥ n
we have pk(λ) = Rk(λ, p(λ)), where Rk(λ, ·) is a polynomial of degree
strictly less than n whose coefficients extend analytically to the unit
disc. In fact,

Rn(λ, µ) = µn −Qλ(µ), Rk+1(λ, µ) = µRk(λ, µ)−Qλ(µ).

Then for i > n, and hj ∈ C∞(M,Cn), 0 ≤ j ≤ i,

i∑

j=0

pj(λ)hj(z) =
n−1∑

j=0

pj(λ)hj(z) +
i∑

j=n

Rj(λ, p(λ))hj(z);

hence the maximum power of λ−1 in these sums stays bounded when
i > n. Then by (4.25) and Theorem 3.6(iv), W is of finite uniton
number. �

4.3. Further applications and examples. In this section we shall
interpret the bounded powers criterion, Theorem 3.6, and give some
applications to harmonic maps into Grassmannians. Our treatment
will be more geometrical than previous sections, and will use some
constructions of harmonic maps found in the literature. Let W =
ΦH+, with Φ an extended solution associated to some harmonic map
ϕ :M → U(n) from a Riemann surface. We think ofW as a subbundle
of the trivial bundle H = M × L2(S1,Cn) whose fibre at z ∈ M is
W (z) = Φ(z)H+. We shall also need the trivial bundle H+ :=M×H+;
this is a subbundle of H. Setting ψ = Φ, as mentioned in §4.1 the
differential operator T = Tϕ = Tψ defined by (3.20) can be written:

(4.26) T = ∂ + (1− λ−1)Aϕz = −λ−1Aϕz +Dϕ
z .

Here Aϕz is defined by (2.1) and Dϕ
z is the derivation given by Dϕ

z =
∂z+A

ϕ
z ; similarly, we set Dϕ

z̄ = ∂z̄+A
ϕ
z̄ . The 1-form Dϕ

z dz+D
ϕ
z̄ dz̄ may

be interpreted as a unitary connection giving a covariant derivative
on the trivial bundle C

n := M × C
n. As in the proof of Corollary

4.5, adding the harmonic equation (2.2) and the integrability equation
(2.3) gives ∂z̄A

ϕ
z = [Aϕz , A

ϕ
z̄ ]. This can be written as Dϕ

z̄A
ϕ
z = AϕzD

ϕ
z̄

[30, §1], which can be interpreted as saying that Aϕz is a holomorphic
endomorphism of C

n with respect to the holomorphic structure on C
n

with ∂-operator given by Dϕ
z̄ , see, for example, [32, §3.1]. We extend

these operators to (local) sections σ of H , thought of as mappings
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S1 ×M → C
n, by applying them to σ(λ, ·) for each λ, for example,(

Dϕ
z (σ)

)
(λ, ·) = Dϕ

z

(
σ(λ, ·)

)
.

By [28, Proposition 3.9], there is a commutative diagram:

(4.27)

Γ(W )

Φ−1

��

∂z // Γ(W(1))

Φ−1

��

∂z // Γ(W(2))

Φ−1

��

∂z // · · ·

Γ(H+) T
// Γ(λ−1H+) T

// Γ(λ−2H+) T
// · · ·

thus Φ−1 intertwines ∂z and T . Similarly, Φ−1 intertwines ∂z̄ and T :=
∂z̄ + (1− λ)Aϕz̄ so that T is holomorphic in the sense that it commutes
with T — this can also be checked directly from the harmonic equation.

Remark 4.7. The commutativity of diagram (4.27) reflects the fact
that Γ(W ) and Γ(H+) are isomorphic as D-modules (see [16, §8.2]).
In view of the harmonicity conditions (2.7), the appropriate structure of
D-module to be considered on Γ(W ) is that induced by the differential
operators λ∂z and ∂z̄ (see [16, Example 8.5]). The gauge transfor-
mation Φ−1 converts these differential operators acting on Γ(W ) into
the operators λT and T , respectively, acting on Γ(H+), thus exhibiting
Γ(W ) and Γ(H+) as isomorphic D-modules.

In (4.27), W(i) denotes the ith osculating subbundle of W defined in-
ductively by (3.16). Note that, although the rank may drop at isolated
points, W(i) can be extended to a subbundle of H as explained in §3.2.
In similar fashion to (3.16), define Si = Si(T ) inductively by S0 = H+,
Si = T (Si−1)+Si−1, i = 1, 2, . . .. By the commutativity of the diagram
(4.27), Si = Φ−1W(i) so that W(i) = ΦSi, cf. Lemma 3.5. Then, if we
extend W(i) to a subbundle, we can correspondingly extend Si to the
subbundle Φ−1W(i), so that W(i) = ΦSi as smooth subbundles.

Hence, Corollary 4.3 becomes the following:

Corollary 4.8. Let ϕ : M → U(n) be a harmonic map, Then the
following are equivalent:

(i) ϕ has finite uniton number ;
(ii) Si(T ) stabilizes, i.e., there exists i ∈ N such that Si(T ) =

Si+1(T );
(iii) the maximum power of λ−1 occurring in Si(T ) is bounded for

i ∈ N.

We now discuss harmonic maps into Grassmannians and geometrical
methods for studying them. For k ∈ {0, 1, . . . , n}, let Gk(C

n) denote
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the Grassmannian of k-dimensional subspaces of Cn. This can be em-
bedded in U(n) by the Cartan embedding [8, Proposition 3.42], which
is given, up to left-multiplication by a constant, by α 7→ πα − π⊥

α .
Since the Cartan embedding is totally geodesic, by the composition
law [12, §5] it preserves harmonicity, i.e., a smooth map into Gk(C

n) is
harmonic if and only if its composition with the Cartan embedding is
harmonic into U(n).

For smooth maps ϕ :M → Gk(C
n) into a Grassmannian, the operators

above are particularly easy to understand. Note that we can consider
such a map as a subbundle, still denoted by ϕ, of the trivial bundle Cn,
namely that with fibre at z ∈ M given by the k-dimensional subspace
ϕ(z). Then a short calculation shows that

(4.28)

{
Aϕz (s) = −π⊥

ϕ ∂zs and Dϕ
z (s) = πϕ∂zs, s ∈ Γ(ϕ),

Aϕz (s) = −πϕ∂zs and Dϕ
z (s) = π⊥

ϕ ∂zs, s ∈ Γ(ϕ⊥).

Note that Aϕz is tensorial (i.e., Aϕz (fs) = fAϕz (s) for any smooth func-
tion f on M), and it maps the subbundle ϕ to its orthogonal comple-
ment ϕ⊥ and vice-versa. In contrast, Dϕ

z acts on sections of ϕ and ϕ⊥

as a derivation. We can give similar formulae for Aϕz̄ and Dϕ
z̄ .

Given a harmonic map ϕ : M → Gk(C
n), we define its (∂′-)Gauss

bundle or Gauss transform G′(ϕ) :M → Gt(C
n) by G′(ϕ) = Im(Aϕz |ϕ).

The right-hand side is of some constant rank t ∈ {0, 1, . . . , k} except at
some isolated points of M : holomorphicity of Aϕz again allows us to fill
out zeros giving a rank t subbundle of Cn, equivalently, a map G′(ϕ) :
M → Gt(C

n). Then G′(ϕ) is also harmonic, in fact G′(ϕ) is obtained
from ϕ by adding the uniton ϕ + G′(ϕ) (cf. (3.17)), see [7, §2B]. We
iterate this construction to obtain higher (∂′-)Gauss bundles G(i)(ϕ)
(i = 0, 1, . . .) by setting G(0)(ϕ) = ϕ, G(1)(ϕ) = G′(ϕ), G(i+1)(ϕ) =
G′(G(i)(ϕ)). See [9] for a moving frames approach.

Similarly, we define the ∂′′-Gauss bundle of ϕ by G′′(ϕ) = Im(Aϕz̄ |ϕ),
and iterate this to obtainG(−1)(ϕ) = G′′(ϕ), G(−i−1)(ϕ) = G′′(G(−i)(ϕ))
(i = 0, 1, . . .), so that G(i)(ϕ) is defined for all i ∈ Z. Note that
G′(G′′(ϕ) ⊆ ϕ and G′′(G′(ϕ)) ⊆ ϕ, often with equality, see [7, Proposi-
tion 2.3]. The sequence of Gauss bundles G(i)(ϕ) (i ∈ Z) is called the
harmonic sequence of ϕ.

We define the isotropy order of a harmonic map ϕ : M → Gk(C
n) to

be the greatest value of t ∈ {1, 2, . . . ,∞} such that ϕ is orthogonal to
G(i)(ϕ) for all i with 1 ≤ i ≤ t; since G(1)(ϕ) is orthogonal to ϕ, there
is always such a t. Equivalently [7, Lemma 3.1], the isotropy order is
the greatest value of t such that G(i)(ϕ) and G(j)(ϕ) are orthogonal
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for i, j ∈ Z, 1 ≤ |i − j| ≤ t. This divides the harmonic maps into
two classes: if t is finite, we say that ϕ is of finite isotropy order. If
t is infinite, i.e., all the Gauss bundles G(i)(ϕ) (i ∈ N) are mutually
orthogonal, we say that ϕ has infinite isotropy order or is strongly
isotropic; this is a particularly nice class of harmonic maps as the
following result shows, which also follows from [13].

Proposition 4.9. All strongly isotropic harmonic maps ϕ : M →
Gk(C

n) are of finite uniton number.

Proof. Since they are mutually orthogonal, from dimension considera-
tions the Gauss bundles G(i)(ϕ) must be zero for large enough i. Thus,
after adding a finite number α1, . . . , αm of unitons, we get a constant
harmonic map, i.e., ϕ(α1 −α⊥

1 ) . . . (αm−α⊥
m) is constant. This implies

that ϕ has finite uniton number; indeed, it has associated extended
solution

(4.29) Φ = (α⊥
m + λαm) . . . (α

⊥
1 + λα1).

�

Here, note that (4.29) is a uniton factorization. In general, it is easy
to see that the inverse of adding a uniton α is adding the uniton α⊥.

Note that the converse of this proposition holds for k = 1, see Theorem
4.12, but is false for k > 1, see Example 4.20.

We now turn to the other case, that of finite isotropy order. We need
some notation from [7]: for two mutually orthogonal subbundles ϕ and
ψ of Cn, we define the (∂′-)second fundamental form of ϕ in ϕ⊕ ψ by
A′
ϕ,ψ(s) = πψ ◦ ∂zs, s ∈ Γ(ϕ); note that this is tensorial. As a special

case, we write A′
ϕ = A′

ϕ,ϕ⊥ , then (4.28) shows that Aϕz |ϕ = −A′
ϕ and

Aϕz |ϕ⊥ = −A′
ϕ⊥ .

For a harmonic map ϕ : M → Gk(C
n) of finite isotropy order t, we

define the first return map c(ϕ) = c′t(ϕ) [3] by

c(ϕ) = A′
G(t)(ϕ),ϕ ◦ A′

G(t−1)(ϕ) ◦ · · · ◦ A′
G(1)(ϕ) ◦ A′

ϕ

= πϕ ◦ A′
G(t)(ϕ) ◦ A′

G(t−1)(ϕ) ◦ · · · ◦ A′
G(1)(ϕ) ◦ A′

ϕ.

We see that the first return map is the composition of the second fun-

damental forms in the following diagram where R :=
(∑t−1

i=0G
(i)(ϕ)

)⊥
and the curved arrow represents A′

R,ϕ.
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(4.30)

ϕ
A′
ϕ

// G′(ϕ)
A′

G(1)(ϕ)

// · · ·
A′

G(t−2)(ϕ)

// G(t−1)(ϕ)
A′

G(t−1)(ϕ)

// Rrr

Further, the mapsA′
ϕ, A

′
G(1)(ϕ)

, . . . , A′
G(t−2)(ϕ)

are surjective andA′
G(t−1)(ϕ)

has image G(t)(ϕ), which lies in R. Note that (4.30) is a diagram in the
sense of [7], i.e., a directed graph whose vertices (nodes) are mutually
orthogonal subbundles ψi with sum C

n; for each ordered pair (i, j), the
arrow (i.e., directed edge) from ψi to ψj represents the second funda-
mental form A′

ψi,ψj
; the absence of that arrow indicates that the second

fundamental form A′
ψi,ψj

is known to vanish.

Then we have the following necessary condition for a harmonic map to
be of finite uniton number which was previously known for harmonic
maps from the Riemann sphere S2, cf. [7, Proposition 1.9], by using
vanishing theorems only applicable in that case.

Theorem 4.10. Let ϕ : M → Gk(C
n) be a harmonic map of finite

uniton number. Then, either ϕ is strongly isotropic, or its first return
map is nilpotent, i.e., c(ϕ)k = 0 for some k ∈ N.

Proof. Suppose that ϕ is of finite isotropy order t. Write ψi = G(i)(ϕ)
for i = 0, 1, . . . , t− 1 and ψt = R so we have a diagram

(4.31) ψ0
A′

ψ0

// ψ1
A′

ψ1

// · · ·
A′

ψt−2

// ψt−1
A′

ψt−1

// ψt
rr

Since ψ0 = ϕ but the other ψi are in ϕ⊥, Aϕz has components A′
ψ0

=
A′
ψ0,ψ1

and A′
ψt

= A′
ψt,ψ0

. Further, for 0 < i < t, Dϕ
z (ψi) = A′

ψi,ψi+1
(ψi)

mod ψi. Hence, from the second formula for T in (4.26), the highest
power of λ−1 in πϕSt+1(T ) is λ

−2 which is only achieved by the com-
position of all the second fundamental forms which make up c = c(ϕ),
thus πϕSt+1(T ) = λ−2 Im c mod λ−1H+. Similarly, for any k ∈ N,
πϕSk(t+1)(T ) = λ−2k Im ck mod λ−2k+1H+. If ϕ has finite uniton num-
ber, by Corollary 4.8, the powers of λ−1 in Si(T ) are bounded for i ∈ N;
it follows that Im ck must be zero for k large enough. �

Remark 4.11. Given any diagram (4.31) of at least three subbundles,
by [7, Proposition 1.6], all the ψi are automatically harmonic maps
into Grassmannians. For each i, set ci equal to the composition of
second fundamental forms in the cycle ψi → ψi+1 → · · · → ψt → ψ0 →
ψ1 → · · · → ψi. Clearly, either all ci are nilpotent or none of the ci is
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nilpotent. Thus, if any ci is not nilpotent, then none of the ψi is of
finite uniton number.

As a first application we show that the converse of Proposition 4.9
holds for k = 1; this is well known for M = S2 [27].

Theorem 4.12. Let ϕ :M → CP n−1 be of finite uniton number. Then
ϕ is strongly isotropic. In fact, ϕ = G(i)(f) for some holomorphic map
f :M → CP n−1 and some i ∈ {0, 1, . . . , n− 1}.

Proof. Suppose that ϕ is not strongly isotropic. Then it has finite
isotropy order, say t and we have a diagram (4.31) in which each sub-
bundle ψi is of rank 1 and equals G(i)(ϕ). By Theorem 4.10 the first
return map is nilpotent, but this means one of the homomorphisms
A′
ψi

must be zero. Hence, ϕ must be strongly isotropic. It follows
that its harmonic sequence must terminate in both directions, i.e.,
G(−i−1)(ϕ) = G(j)(ϕ) = 0 for some i, j ∈ N. Taking the least such i, set
f = G(−i)(ϕ). Then [7, Proposition 2.3] ϕ = G(i)(f). Since the Gauss
bundles are mutually orthogonal, for dimension reasons, i ≤ n− 1. �

We next apply our results to an interesting class of maps related to the
Toda equations [4, 5].

Definition 4.13. [4] A harmonic map ϕ : M → CP n−1 is called su-
perconformal if has the maximum possible finite isotropy order.

Note that, for dimension reasons as in the last proof, the maximum
possible finite isotropy order for a harmonic map to CP n−1 is n −
1. It follows that a superconformal harmonic map ϕ : M → CP n−1

has a harmonic sequence which is cyclic of order n in the sense that
G(n+k)(ϕ) = G(k)(ϕ) for all k ∈ Z; in particular G(n)(ϕ) = ϕ.

We have the following:

Proposition 4.14. A superconformal harmonic map ϕ :M → CP n−1

is never of finite uniton number. In fact, Sjn(T ) = λ−2jH+, equiva-
lently, Wjn = λ−2jW , for all j ∈ N.

Proof. The first part follows from Theorem 4.12.

For the second part, note that we have diagram 4.30 withR = G(n−1)(ϕ)
and all second fundamental forms isomorphisms almost everywhere.
From the second formula for T in (4.26) we have T (ϕ) = λ−1G(1)(ϕ)
mod ϕ and T (G(n)(ϕ)) = λ−1ϕ mod G(n)(ϕ) but T (G(i)(ϕ)) = G(i+1)(ϕ)
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mod G(i)(ϕ) (i = 1, . . . , n− 1). Thus,

S0 = H+,

S1 = λ−1ϕ+ λ−1G(1)(ϕ) +H+,

Sj = λ−2

j−1∑

i=1

G(i)(ϕ) + λ−1

j∑

i=0

G(i)(ϕ) +H+ j = 2, . . . , n− 1,

Sn = λ−2

n∑

i=1

G(i)(ϕ) + λ−2ϕ+ λ−1H+ +H+ = λ−2H+.

The formula for Sjn(T ) follows. �

The following is a famous example of a superconformal map.

Example 4.15. For any n = 1, 2, . . ., consider the smooth map ϕ :
C → CP n−1 called the Clifford solution defined in homogeneous co-
ordinates by ϕ = [F ] where F = (F0, . . . , Fn−1) : C → C

n is given

by Fi(z) = (1/
√
n) eω

iz−ωiz with ω = e2πi/n. Note that this map is har-
monic as in Remark 4.11; it is also isometric, and so defines a minimal
immersion, see [20].

A simple calculation shows that the jth ∂′-Gauss bundle, j ∈ Z, is

G(j)(ϕ) = [F (j)] where F
(j)
i (z) = (1/

√
n)ωijeω

iz−ωiz; we see that these
are orthogonal to ϕ for j = 1, . . . , n − 1. However G(n)(ϕ) = ϕ so
that ϕ is superconformal with harmonic sequence cyclic of order n.
Consequently, by Proposition 4.14, the Clifford solution is not of finite
uniton number.

When n = 3, 4 or 6, the Clifford solution factors to an isometric min-
imal immersion of a torus into CP n−1 called a Clifford torus. When
n = 4 this torus lies in RP 3 ⊆ CP 3 and is double-covered by a minimal
torus in S3, again called a Clifford torus, given, up to isometry, by the
formula

R
2 ∋ (x, y) 7→ (1/

√
2)(cos 2x, sin 2x, cos 2y, sin 2y) ∈ S3

which factors to the torus R
2/{lattice generated by (π, 0), (0, π)}.

Given a Clifford solution ϕ = [F ] : C → CP n−1, let g(z) be the n ×
n matrix whose (j + 1)st column is F (j)(z); this defines a map g :
C → U(n). Then, by direct calculation, Agz (= 1

2
g−1gz) is the constant

normal matrix A whose only non-zero entries are aij = 1/2 when i−j =
1 mod n; further Agz̄ = −(Agz)

∗. Define an extended solution Φ by
(4.24) with this A and τ(z) = z. Then Φ is a vacuum solution as in
§4.2. Note that the composition of g with the natural projection U(n) →
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U(n)/U(1)×U(n−1) = CP n−1 is the Clifford solution ϕ = [F ]; for this
reason the Clifford solution is sometimes also called a vacuum solution.

We remark that Φ is not an extended solution for the Clifford solution.
In fact, in [1], we show that the Clifford solution has extended solution
W = ψH+ with constant potential ψ−1∂zψ = p(λ) := λ−1Am + Ak,
where Ak is the part of A in the block diagonal U(1) × U(n − 1) and
Am = A− Ak; for example, when n = 3,

p(λ) =
1

2




0 0 λ−1

λ−1 0 0
0 1 0


 .

This gives W = exp
(
(λ−1Am + Ak)z

)
H+ = G(λ, z)H+ where G : S1 ×

C → U(n) is given by

G(λ, z) = exp
(
(λ−1Am + Ak)z − (λA ∗

m + A ∗
k )z̄

)
.

This map is an ‘extended framing’ of ϕ and Φ̃(λ, ·) = G(λ, ·)G(1, ·)−1 :

M → U(n) is an extended solution for ϕ with Φ̃(−1, ·) = (the Cartan
embedding of) ϕ. Note that it follows from Theorem 4.6 that harmonic

maps associated to Φ and Φ̃ are not of finite uniton number; the second
of these confirming that the Clifford solution is not of finite uniton
number.

Note that Theorem 4.10 implies, as in [29, Example 4.2], that for a
harmonic map of finite uniton number, Aϕz is nilpotent, cf. Corollary
3.8. Indeed, for a harmonic map of isotropy order 1, this is equivalent
to nilpotency of c(ϕ); for a harmonic map of isotropy order greater
than 1, Aϕz is trivially always nilpotent.

The concept of superconformality can be extended to harmonic maps
into spheres Sn−1. Indeed, let π : Sn−1 → RP n−1 be the standard
double cover of real projective (n − 1)-space by the standard round
sphere and let i : RP n−1 → CP n−1 be the standard inclusion. Since
the composition i ◦ π is totally geodesic and isometric, a smooth map
ϕ : M → Sn−1 is harmonic if and only if i ◦ π ◦ ϕ : M → CP n−1 is
harmonic. We define the Gauss bundles of ϕ to be those of i◦π ◦ϕ and
thus define the isotropy order of ϕ, note that this is always odd, see
[4]. We call a harmonic map ϕ : M → Sn−1 superconformal if it is of
maximal finite isotropy order for a harmonic map into Sn−1. There are
two cases [4, 5]: (i) If n is even, then, as for CP n−1, the maximum finite
isotropy order is n− 1 and such a map has a cyclic harmonic sequence
with ith vertex G(i)(ϕ) (i ∈ N); the Clifford torus in S3 above is of this
type. (ii) If n is odd, then the maximum finite isotropy order is n− 2
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and diagram (4.30) has one vertex of dimension 2 but the first return
map is still an isomorphism; this case includes non-full harmonic maps
into an equatorial Sn−2 in Sn−1, described as in case (i).

In particular, again Theorem 4.10 provides a simple proof of the fol-
lowing.

Corollary 4.16. A superconformal harmonic map from a Riemann
surface to a sphere is never of finite uniton number.

The following example shows that the converse to Theorem 4.10 is false.

Example 4.17. Let ψ : M → CP n−1 be a superconformal map with
n ≥ 5; write ψi = G(i)(ψ) and set ϕ = ψ0⊕ψ2. Then ϕ :M → G2(C

n)
is a harmonic map: indeed the harmonicity equation (2.2) is easily seen
to be the sum of those for ψ0 and ψ2.

(Two other ways to see this are that A′
ϕ consists of the second funda-

mental forms A′
ψ0,ψ1

and A′
ψ2,ψ3

which are holomorphic by [7]. Or note
that ϕ has a ‘J2-holomorphic twistor lift’ (ψ0, ψ1, ψ2,

∑n
3 ψi) and so is

harmonic by [28].)

We see that A′
ϕ⊥ ◦ A′

ϕ has image ψ2 so ϕ has isotropy order 1 with

first return map c(ϕ) = A′
ϕ⊥ ◦A′

ϕ = (Aϕz )
2|ϕ. This is nilpotent, in fact

c(ϕ)2 = 0. However, calculating as in the proof of Proposition 4.14, we
see that Sjn(T ) = λ−4jH+, equivalently, Wjn = λ−4jW , so that ϕ has
nilpotent first return map but is not of finite uniton number.

The above works for any domain M , compact or not; by taking ψ to be
the Clifford torus in CP 5, we get an example with compact domain.

We now consider an arbitrary diagram, where a harmonic map ϕ :
M → Gk(C

n) is the sum of the subbundles represented by some of the
vertices. Recall that the second fundamental forms between the various
subbundles are represented by the arrows (directed edges) between the
vertices. Call an arrow external if one of its vertices is in ϕ and the other
is in ϕ⊥. A path is external if it contains at least one external arrow.
A simple cycle of length p for ψ0 is a sequence of arrows ψi → ψi+1,
i = 0, 1, . . . , p− 1, with ψ0 = ψp and ψ0, ψ1, . . . , ψp−1 distinct vertices.
The composition of second fundamental forms making up an external
simple cycle c for a vertex ψi defines a linear endomorphism of ψi which
we also denote by c. We have a test which follows from the bounded
powers criterion:

Theorem 4.18. (i) Suppose that there exist no external cycles.
Then ϕ is of finite uniton number.
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(ii) Suppose that, for some vertex, there is a unique simple exter-
nal cycle with c not nilpotent. Then ϕ is not of finite uniton
number.

Proof. (i) For each path w, let |w|e be the number of external arrows in
w. Since there exist no external cycles, |w|e is bounded for an arbitrary
path w. Hence, the sequence Si(T ) stabilizes, since the increasing of
the power of λ−1 is exclusively due to the contribution of the exter-
nal arrows. We conclude, by Corollary 4.8, that ϕ is of finite uniton
number.

(ii) Suppose that for the vertex ψi there exists a unique simple external
cycle c. Let p be the length of the simple cycle and |c|e be the number
of external arrows in c. Then λ−|c|e Im c ⊆ Sp and, for any k > 0,
λ−|c|ek Im ck ⊆ Spk. Consequently, if c is not nilpotent, the sequence
Si(T ) does not stabilize and ϕ is not of finite uniton number. �

We note that Proposition 4.9 and Theorem 4.10 follow from parts (i)
and (ii) of this result. Here is another application of part (i). Say that
a harmonic map ϕ : M → Gk(C

n) has a J1-holomorphic twistor lift
(ψ0, . . . , ψd) if the ψi form a diagram, the second fundamental forms
A′
ψi,ψj

with j < i are zero, and ϕ =
∑
ψ2i; see, for example, [29]. Since

such a diagram has no external cycles we have:

Corollary 4.19. All harmonic maps ϕ : M → Gk(C
n) with a J1-

holomorphic twistor lift are of finite uniton number. In particular, all
harmonic maps with an S1-invariant extended solution are of finite
uniton number.

The last part follows as such a harmonic map has a J1-holomorphic
twistor lift (ψ0, . . . , ψm) constructed from the unitons αi of (2.11) by
ψi = αi+1 ⊖ αi (where we take α0 to be the zero vector bundle and
αm+1 to be the trivial bundle M × C

n).

We give an example illustrating that (a) part (ii) of the proposition is
false without the word ‘unique’; (b) we cannot, in general, tell whether
the uniton number of a harmonic map into a Grassmannian is finite
just from a diagram.

Example 4.20. (a) As in [29, Example 8.3] (with a slight change of
notation), for any Riemann surface M , set

(4.32) W = span{H + λ2K}+ λh(1) + λ2h(2) + λ3H+

where H,K : M → C
4 are meromorphic maps (equivalently, mero-

morphic sections of the trivial bundle C
4), with H full (i.e., not lying
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in a proper trivial subspace of C
4), and h is the holomorphic map

M → CP 3 (equivalently, the rank 1 holomorphic subbundle of C
4,

given by h = span{H}). For i = 1, 2, . . ., let h(i) denote the ith
osculating subbundle of h, given by the span of H and its deriva-
tives of orders up to i, cf. (3.16); the corresponding holomorphic map
h(i) : M → Gt(C

n) (t ∈ {0, 1, . . . , i + 1}) is called the ith associated

curve — note that the Gauss bundle G(i)(h) equals h⊥(i−1) ∩ h(i). It can
be checked that W satisfies the conditions (2.6); in fact, by the formu-
lae in [28], W = ΦH+ for the extended solution given by the product of
unitons:

(4.33) Φ = (πh(2) + λπ⊥
h(2)

)(πh(1) + λπ⊥
h(1)

)(πψ0 + λπ⊥
ψ0
)

where ψ0 = span{H + π⊥
h(2)

K}. Then ϕ := Φ(−1, ·) is a harmonic

map M → U(n) of finite uniton number. Since W satisfies the sym-
metry condition Wλ = W−λ, this harmonic map actually has values
in a Grassmannian (cf. [28, §5.1]); on putting λ = −1 in (4.33),
we see that ϕ = (the Cartan embedding of) ψ0 ⊕ ψ2 : M → G2(C

4)
where ψ2 = G(2)(h). Set ψ1 := G(1)(h). This is orthogonal to ϕ and
so we have ϕ⊥ = ψ1 ⊕ ψ3 where ψ3 is the orthogonal complement of
ψ0 ⊕ ψ1 ⊕ ψ2 in C

4.

By [29], the only possible non-zero (i.e., not identically zero) second
fundamental forms are those given by the diagram:

(4.34)

ψ0

!!

// ψ1

}}
ψ2

//

OO

ψ3

OO

(In fact, Zi := (Aϕz )
i(C4), i = 0, 1, . . ., gives a filtration of C

4 with
(Aϕz )(Zi) = Zi+1; then ψi = Z⊥

i+1 ∩ Zi, which leads to this diagram.)

Note that W is S1-invariant if and only if K lies in h(2); equivalently,
ψ0 = h. In that case, ψi = h(i), i = 0, 1, 2, 3, and the second funda-
mental forms other than A′

ψi,ψi+1
, i = 0, 1, 2, are zero. Now, whether

W is S1-invariant or not, fullness of h implies that these three second
fundamental forms are non-zero. Further, a simple calculation shows
that, when W is not S1-invariant, i.e., K does not lie in h(2), A

′
ψ2,ψ0

is also non-zero. So we have a cycle of non-zero second fundamental
forms ψ0 → ψ1 → ψ2 → ψ0. Since the first two arrows in this cycle are
external, i.e., components of Aϕz , following that cycle shows that S3(T )
contains a non-zero multiple of λ−2ψ0. However, Φ and so ϕ, is of fi-
nite uniton number by construction. Note that this does not contradict
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Theorem 4.18(ii) as there are other cycles on ψ0 with c not nilpotent,
for example, ψ0 → ψ3 → ψ1 → ψ2 → ψ0.

(b) In contrast, consider a superconformal harmonic map ϕ : M →
CP 3. This has Gauss sequence:

(4.35) ϕ // ϕ1
// ϕ2

// ϕ3
tt

Then, ψ = ϕ2 ⊕ ϕ3 and ψ⊥ = ϕ ⊕ ϕ1 are harmonic (cf. [7, Proposi-
tion 1.6]). Choose a holomorphic line subbundle Rh 6= ϕ of ψ⊥. Its
orthogonal complement Ra in ψ⊥ is antiholomorphic in ψ⊥. For ex-
ample, if we consider the Clifford solution ϕ = [F ] : C → CP 3, as
defined in Example 4.15, then we can choose the holomorphic subbun-
dle Rh = [z̄F+F (1)], whose orthogonal complement is Ra = [F−zF (1)].
The subbundles α = ϕ2 and β = Rh satisfy the forward replacement
conditions cf. [7, Theorem 2.4] with respect to ψ, so that α ⊕ β is a
uniton. Hence, ϕ = ϕ3 ⊕Rh is harmonic. Set

ψ0 = Rh, ψ1 = ϕ2, ψ2 = ϕ3, ψ3 = Ra.

The corresponding diagram coincides with (4.34), with all arrows non-
vanishing, but now the harmonic map ϕ cannot be of finite uniton num-
ber because ψ is not.
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