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On the stability of viscous, free-surface
flow supported by a rotating cylinder

By R.C. PETERsONDZ, P.K. JiMACK! AND M.A. KELMANSON?{

L School of Computing/? Department of Applied Mathematics,
Unwersity of Leeds, Leeds LS2 9JT, UK

Using an adaptive finite-element (FE) scheme developed recently by the authors,
we shed new light on the long-standing fundamental problem of the unsteady free-
surface Stokes flow exterior to a circular cylinder rotating about its horizontal axis
in a vertical gravitational field. For supportable loads, we observe that the steady
state 1s more readily attained for near-maximal fluid loads on the cylinder than for
significantly sub-maximal loads. For the latter, we investigate large-time dynam-
ics by means of a finite-difference (FD) approximation to the thin-film equations,
which is also used to validate the adaptive finite element simulations (applied to
the full Stokes equations) for these significantly sub-maximal loads. Conversely, by
comparing results of the two methods, we assess the validity of the thin-film ap-
proximation as either the load is increased or the rotation rate of the cylinder is
decreased. Results are presented on the independent effects of gravity, surface ten-
sion and initial film thickness on the decay to steady state. Finally, new numerical
simulations of load shedding are presented.

Keywords: Viscous fluid mechanics, free-surface flow, Stokes approximation,
finite-element methods, adaptive meshing

1. Introduction

The phenomenon of gravity-influenced, free-surface viscous flow exterior to a ro-
tating cylinder — the supported-load problem — has been the subject of numer-
ous investigations of diverse natures, e.g., experimental (Moffatt 1977, Joseph &
Preziosi 1987, Kelmanson 1995), computational (Hansen & Kelmanson 1994), and
theoretical (Pukhnachev 1977, Moffatt 1977, Preziosi & Joseph 1988, Kelmanson
1995, Duffy & Wilson 1999). Campanella & Cerro (1984) consider a related flow
exterior to a rotating cylinder for the case when the cylinder is partially submerged
in a bath of viscous fluid and Weidner et al. (1977) and Oron et al. (1977) consider
gravity-driven flows exterior to a stationary cylinder.

Whilst we presently consider only the “coating-flow” problem, the closely related
“rimming-flow” problem (interior to a rotating cylinder) has also been considered
by many authors, e.g., Preziosi & Joseph (1988), Johnson (1988), Johnson (1990),
Melo (1993), Wilson & Williams (1997) and Hosoi & Mahadevan (1999). Whilst
rimming flows will not be considered further herein, the volume of literature on
such flows bears witness to the fundamental scientific (and industrial) importance
of the general area.
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2 R.C. Peterson, P.K. Jimack and M.A. Kelmanson

In the cited computational and theoretical treatises, the flow is assumed to
be so viscous that the Stokes approximation can be used. Three-dimensional and
time-dependent effects in coating flows are investigated by: Moffatt (1977) (whose
laboratory experiments demonstrate azimuthal variations in the film thickness un-
der certain conditions); Joseph & Preziosi (1987) (who perform experiments on
bicomponent flows of immiscible liquids); Preziosi & Joseph (1988) (who perform
experiments for both coating and rimming flows and consider axial flow variation
theoretically); Weidner et al. (1997) (who solve the thin-film equations using an
alternating-direction-implicit finite-difference algorithm); Oron et al. (1997) (who
reduce the full governing equations to a simplified (set of) evolution equation(s)).

With the exception of Hansen & Kelmanson (1994) in the cited literature, previ-
ous studies of flows exterior to rotating cylinders have invoked a thin-film approxi-
mation at some stage in their analyses. In certain cases (e.g. Kelmanson 1995, Duffy
& Wilson 1999) the free-surface thicknesses considered are of magnitude of the same
order as the cylinder radius but still yield good results beyond their expected range
of validity. To deal with a flow of arbitrary thickness, Weidner et al. (1997) note
that numerical solution of the full set of equations is “difficult to implement and
computationally intensive”. However, in the present work, we use a new adaptive
finite-element method (Peterson et al. 1999; Peterson 2000) in order to investigate
time-dependent coating flows using the full Stokes approximation. As such, we are
able to incorporate radial pressure gradients when the film thickness lies beyond
the validity of thin-film theory. Indeed, investigation of such validity constitutes an
important component of the present study.

Whilst the coating-flow phenomenon is demonstrable via the simplest of exper-
iments — the rotation of a wooden spoon, its axis horizontal, previously dipped
into syrup — the mathematics of the competing aspects of viscosity, surface tension
and gravity precludes an explicit analytical solution except in those cases where the
viscous fluid layer thickness (non-dimensionalized with respect to the cylinder ra-
dius) can be considered sufficiently small for thin-film theory to be invoked. Under
such circumstances, one can estimate (Moffatt 1977; Kelmanson 1995) mazimum-
supportable loads (MSLs) as a function of the angular velocity of the cylinder, based
upon the assumption that the flow is steady, i.e., should the angular velocity fall
below a critical value, no steady solution exists and the fluid drains off. The it-
erative boundary-integral technique of Hansen & Kelmanson (1994) provides both
two-dimensional Stokes-flow solutions and estimates for the MSL well beyond the
thin-film regime — specifically, for film thicknesses of the order of the cylinder ra-
dius. This demonstrates that a full understanding of this simple-to-state problem is
beyond the scope of analysis alone; further, it motivates the development of more
sophisticated numerical approaches.

In § 2 (a) we review past and present assumptions in modelling the problem, and
a Stokes-flow formulation is presented in § 2 (b). For the sake of completeness, we
present in § 3 a brief outline of the authors’ novel numerical method used throughout
this paper: a time-dependent, adaptive, finite-element technique (Peterson et al.
1998, 1999; Peterson 2000) for solving a wide range of two-dimensional, free-surface,
Stokes-flow problems in which there occurs the possibility of large variations in both
domain geometry and free-surface curvature. Our method is quasi-time-dependent
insofar as it solves the Stokes approximation at each time-step, time dependence
being included via the kinematic boundary condition.
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Stability of viscous, free-surface flow 3

The principal aim of the present work is to investigate unsteady flows using the
full Stokes equations, i.e. free from the potential constraint of any thin-film approx-
imation. These comprise both stable (yet oscillatory) flows decaying to a steady
state and unstable flows portending load shedding. Such stable and unstable flows
are discussed in §§ 4 (a) and 4 (b) respectively. Furthermore, in § 4 (a), we attempt to
quantify, using our full Stokes simulations, the concept of a thin film in the sense of
whether, for particular choices of parameters, the lubrication approximation gives
results which are comparable with those of our new method. A combination of
the Stokes equations and Pukhnachev’s (1977) lubrication approximation are then
used to investigate the transient behaviour of stable films over a wide range of time
scales. In §4 (b) we present illustrations of the phenomena of lobe formation and
load shedding which ensue when the MSL is exceeded. Although the present mod-
el considers only two-dimensional flow, these lobes bear striking similarity to the
profiles of the three-dimensional lobes photographed in Moffatt’s (1977) laboratory
experiments over two decades ago. Brief conclusions are presented in § 5.

2. Formulation
a) Preliminary assumptions
Y P

We consider the flow within a layer of incompressible viscous fluid of density p
and dynamic viscosity p exterior to an infinite circular cylinder of radius a rotating
anticlockwise about its horizontal axis with angular velocity w in a gravitational
field g = —gj, where 7 is a unit vector aligned with the positive y—axis and g is
the acceleration due to gravity. Two-dimensional Cartesian coordinates z, y and
(radial/transverse) polar coordinates r, # centred on the cylinder axis are employed,
and r = (z,y) denotes the position vector of a fluid particle.

The solutions computed herein indicate that the pattern of flow observed shows
signs of rigid-body rotation, significant differences arising only in the case of large
supported loads. Thus the present full Stokes approximation is consistent with both
the numerics of Hansen & Kelmanson (1994) and theories of Preziosi & Joseph
(1988) and Kelmanson (1995). In a rigid-body flow the velocity field takes the form

xl%:—wyi—i—wmj,

=

U = —w

where k = 7 x 7, © and j being respectively unit vectors in the positive z- and
y-directions. In the absence of gravity, and provided the pressure is everywhere
constant, any rigid-body motion (translation and/or rotation) is a solution of the
Stokes equations. When surface tension is present the free surface will have mini-
mal surface energy only when it is circular in profile; then, any configuration with
circular cross-section (not necessarily concentric with the enclosed cylinder) rotat-
ing with uniform angular velocity will be an exact solution of the Stokes equations
(but only in the absence of gravity). In these circumstances the everywhere-constant
pressure p is that required to satisfy the condition of continuity of normal stress at
the free surface. In the presence of gravity g, the assumption of a rigid-body motion
of the fluid results in the governing equations being reduced to

Vp = pg,

Article submitted to Royal Society



4 R.C. Peterson, P.K. Jimack and M.A. Kelmanson

the solution of which is simply p = pg + pgy so that p cannot be constant and the
conclusion must be drawn that an exact rigid-body rotation in Stokes flow is not
possible in the presence of a gravitational field.

After Hansen & Kelmanson (1994), we non-dimensionalize the Navier-Stokes
equations using velocity, time and stress scales aw, w™! and uw respectively to
obtain

ou*

R
“ ot

+ (u* -V )u*| = A%u* — V*p* — 3, (2.1)

where the Reynolds number Re is given by

2

Re="1 w’
I
the Stokes number v — the dimensionless acceleration due to gravity — is given
by
_ pge
wp’

and the superscripts (*) denote dimensionless physical variables. The inertial terms
in equation (2.1) are therefore dominated by the gravitational term if the Galileo
number g/aw? > 1. Hansen & Kelmanson (1994) calculate Re ~ O(107!) for an
apparatus similar to that described by Moffatt (1977) and a value of v ~ 1: accord-
ingly, g/aw? ~ O(10) and the validity of the Stokes approximation is confirmed.

(b) Stokes-flow model

The simplest initial condition, and the one adopted here, is the enforcement of
a circular free-surface profile coaxial with the rotating cylinder. Thus the initial
condition is specified by a single parameter, the mean film thickness h* = h/a.
Alternatively, one may specify the non-dimensional cross-sectional area or load A*,
given by

In the limit Re — 0, (2.1) reduces to
A*u* —V*p* —~v5=0, (2.2)
which must be solved together with the continuity equation
V*-u* =0. (2.3)
The boundary condition on the cylinder is
u* = —sinf 2+ cosfj (2.4)
and the free-surface stress is

f=—cki (2.5)
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Stability of viscous, free-surface flow 5

where k is the curvature of the free surface, s is the outward free-surface normal,
and o is the coefficient of surface tension. On non-dimensionalization equation (2.5)
becomes

f =—"aq (2.6)

apiw

is the inverse capillary number (a dimensionless measure of surface tension). The
kinematic boundary condition at the free surface is

f-u* =8, (2.7)
where 8* is the location of a point on the free surface and a superior dot indicates
a temporal derivative.

The calculations of Hansen & Kelmanson (1994) demonstrate that the free-
surface profiles are only very weakly dependent upon the surface tension: e.g., an
experiment is reported in which, for v = 1 and a flux of ¥}, = 0.9 (see equation-
s (2.8) and (2.9) below), the maximum steady-state non-dimensional free-surface
elevation (at § = 0) reduces from 0.608 to 0.599 when « is increased from 0 to
(an unrealistically large) 100. Furthermore, they prove that, when a = 0, perfect
symmetry in geometry is expected about y = 0 however great the (supportable)
load in the steady flow; Moffatt (1977) discovered this symmetry theoretically in
the thin-film case. Near-symmetry of the free surface is apparent even when the
surface tension is (unrealistically) large, e.g. when a = 100; & = 2 might be a more
appropriate value for the experiments in Moffatt (1977). Bearing these observations
in mind, a value of & = 1 was used throughout the current investigations, unless
otherwise stated. The formulation is completed by specification of both A* and ~.

Hansen & Kelmanson (1994) employ a stream-function formulation in which
the dimensionless steady-state flux ¥%, (independent of f) is prescribed, whereafter
a non-gradient optimization procedure is used to locate the steady free surface for
which the flux is 9% . In the time-dependent case, however, the flux will vary with
both # and ¢ according to

Pt =14h* (8,t)

Pr(0,t) = —/ u*(0,t) - (—sinf 2+ cosb ) dr, (2.8)
r*=1

where h*(f,t) is the dimensionless film thickness and the integral is evaluated along

the extension of a radius of the cylinder. Then clearly

Tim 47(6,) = 2. (2.9)

Our finite-element method requires specification of an initial condition of the form
h*(#,0) = h}(0), a known function of f. Therefore, if we wish to compare our
large-time results with those of Hansen & Kelmanson (1994) we are faced with the
problem of specifying a priori the precise hf(#) which develops into the h*(6,1)
in (2.8) which in turn yields a ¥*(6,t) in (2.8) which, as ¢ — oo, tends to the
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6 R.C. Peterson, P.K. Jimack and M.A. Kelmanson

prescribed value of ¥7, on the right-hand side of (2.9). Thus, in the absence of a
highly (indeed, excessively) computationally intensive search, results from our time-
dependent scheme do not admit direct comparison with those arising from specific
parameter values used in Hansen & Kelmanson (1994).

In the present iterative approach, the initial free-surface profile need be specified
only approximately. As such, gravity can be neglected in specifying the approximate
dimensionless initial flux, from which a dimensionless initial mean film-thickness A*
can be specified. Hereafter all superscripts will be dropped, and the symbols u, p, f,

h, h, A and t will subsequently refer to the corresponding dimensionless quantities.

3. Adaptive numerical method

The numerical scheme used here is an Eulerian primitive-variable finite-element
method, applied on a continuously deforming grid which follows the evolution of
the domain in which the fluid lies as the free surface evolves. The boundary of
this domain is represented as a fixed part (the surface of the cross-section of the
cylinder) and a free-surface part, the location of which is allowed to change due to
the kinematic boundary condition (2.7). At each time-step the solution of equations
(2.2) to (2.4) and (2.6) provides the corresponding instantaneous flow within this
domain. Full details of the algorithms may be found in Peterson et al. (1999) and
Peterson (2000). It should be noted that the explicit scheme employed to update
the location of the free surface does not enforce mass conservation. Since a primary
aim of this work is to investigate the sensitive free-surface dynamics leading up to
load shedding, we use only the kinematic boundary condition (2.7) to update the
free surface at each time-step. Measurement of any change in the mass of fluid thus
provides an automatic check on the validity of solutions obtained.

For the numerical simulations undertaken in this work the location of the free-
surface is updated explicitly at each time-step using a simple first-order discretiza-
tion of (2.7). The interior mesh is then updated so as to reflect the deformation of
the boundary. For the preliminary investigations we used a linear elasticity model,
as suggested by Lynch (1982); for the later (unstructured-mesh) calculations we al-
so used Jacobi smoothing (Peterson et al. 1999; Peterson 2000). For the generation
of the initial mesh use is made of the mesh generator Triangle (Shewchuk 1996),
which is able to generate a Delaunay triangulation of a region given a discretization
of the boundary. Before the start of each time-step the quality of the existing mesh
i1s assessed and, when necessary, the boundary discretization is either refined or
coarsened and the interior mesh regenerated (again using Triangle).

Once the update of the boundary and interior mesh has taken place it is then
necessary to compute the values of the flow variables w and p on the new mesh.
In order to allow the natural stress boundary condition (2.6) to be imposed within
the finite element model it is necessary to rewrite the Stokes equation (2.2) in
stress-divergence form

The corresponding weak form is then such that the free-surface stress f is explicitly
present in the boundary integrals that arise when the Galerkin method is employed
(Gresho 1991; Peterson et al. 1999; Peterson 2000). In order to ensure a stable dis-
cretization of this weak form we use the Galerkin method with a piecewise-quadratic
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Mesh | Ng | N, | Elements | Unknowns
I 32 5 256 1184
11 64 5 512 2368
111 128 5 1024 4736
v 64 3 256 1216
\% 64 9 1024 4672
VI 64 7 768 3520

Table 1. Mesh statistics used in simulations of stable flows.

representation of each velocity component and a piecewise-linear representation of
the pressure (Gunzburger 1989). The use of isoparametric mappings for the ele-
ments adjacent to the free surface allows a piecewise-quadratic representation of
the free surface to be maintained (Strang & Fix 1973; Ciarlet 1978; Peterson 2000).

Having updated the boundary and the mesh, and formed the mixed finite ele-
ment equations at each time-step, it now remains to solve these simultaneous linear
equations in order to determine approximations to uw and p. These equations are
sparse, symmetric and indefinite and so it is appropriate to use an iterative tech-
nique such as the Conjugate Residual method (Ramage & Wathen 1994; Ashby et
al. 1990). For improved efficiency this is preconditioned using an incomplete LU
(TLU) factorization of the system matrix (Saad 1996). Since the ILU factorization
is used only as a preconditioner then, even though the system matrix will change
at each time-step, the factorization can be reused for a number of steps without a
significant deterioration in its performance as a preconditioner.

In the investigations which follow in §4 (a) the evolution of the free-surface
profile is such that boundary refinement or coarsening is unnecessary. Hence the
connectivity of the initial mesh remains unaltered throughout the entire simulation
(although the mesh itself evolves with time). In order to demonstrate the mesh
independence of our solutions, a number of different meshes of fixed connectivity
were employed. These meshes contained Ny elements in the circumferential direction
and N, elements in the radial direction: see table 1 for details.

For all experiments in §4 (a), a fixed time-step of length 62 = 0.005 was em-
ployed. That such a relatively large time-step could be used appears to reflect the
fact that the normal component of the free-surface velocity is here typically small.
The ILU preconditioner, recomputed every ten time-steps, yielded an incomplete
factorization with 2—4 times the number of entries as the original sparse system ma-
trix; consequently, it is relatively cheap to apply. All linear systems were solved to
an absolute tolerance of 1071% and convergence of numerical results with decreas-
ing mesh size (in both the radial and transverse direction) and decreasing time-step
was established by performing calculations using a variety of meshes selected from
table 1.

Finally, we note that the present primitive-variable FE method i1s more ver-
satile than that of the boundary-integral method (BIM) of Hansen & Kelman-
son (1994) which employs an optimization/biharmonic-stream-function formulation
which is ideally suited to the consideration of steady-state problems. Not only is our
FE method time-dependent, but it can also be readily modified to accommodate
(extreme) changes in geometry (Peterson et al. 1999; Peterson 2000) whereas the
Green’s functions used in the BIM are applicable only to a specific geometry. More-
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8 R.C. Peterson, P.K. Jimack and M.A. Kelmanson

over, the FE method is more robust for problems involving disparate magnitudes
of free-surface curvatures, such as those which arise in §4 (b).

4. Results and discussion

Leading-order thin-film theory (Moffatt 1977), the boundary-integral technique
(Hansen & Kelmanson 1994) and leading-and-first-order thin-film theory (Kelman-
son 1995) independently establish that the maximum-supportable load decreases
monotonically with the Stokes number 5. Hansen & Kelmanson (1994) report that
their (steady-state) solver invariably located a steady-state solution for loads less
than the maximum supportable. For loads greater than this they found no steady
solution. In those cases where steady states were found, their method gives no
means of determining the rate at which this might be approached from given initial
conditions.

With these two distinct flow types in mind, we present the results of our
unsteady-flow investigations in two categories: first, in §4 (a), stable solutions, the
large-time properties of which can be compared with steady-state results in the
literature; second, in §4 (b), unstable flows — never before simulated numerically
using the full Stokes approximation — in which load shedding, leading to breakup
of the solution domain, occurs. The dual nature of the solutions discovered in our
numerical experiments is most clearly summarized in figure 1, which is discussed in

more detail in §§4 (a) and (b).

(a) Stable flow: effect of parameters on decay to steady state

At those points denoted by + in figure 1, we computed a free surface for which
the film thickness h(f,1) is an oscillatory function of ¢, the amplitude of the oscilla-
tion displaying an observable decay with ¢ over the first fifty cylinder rotations. Such
behaviour, which arises naturally in the present solution of the Stokes equations,
is consistent with the thin-film computations of Moffatt (1977), who first added
weak diffusion in the # direction, the precise form of which is given by Pukhnachev
(1977). For example, with {A, v} = {1.3,12.5}, the oscillation amplitude decayed
(by ¢ = 300) from approximately 32 to 2 per cent of the mean film thickness of
0.236. Similarly, with {A, v} = {1.2,12.5}, the oscillation amplitude decayed from
approximately 25 to 5 per cent of the mean film thickness of 0.210 over the same
period of time. Since these parameters give sub-maximal-load positions in {A,~}
parameter space, convergence to the steady state was expected, but the observation
that reducing A led to slower convergence was not. Interestingly, the solutions found
to be the most stable (in the sense that the oscillations decayed the most rapidly)
were those which were closest (in {A, v} parameter space) to the mazimal support-
ed loads found by Hansen & Kelmanson (1994). Further, by reducing A sufficiently,
i.e. at those points denoted by < in figure 1, no observable decay of the amplitude
of the oscillations in h(f,t) could be detected within the first fifty rotations of the
cylinder, ¢t ~ 300.

To investigate ¢ > O(1000) large-time behaviour it is apparent that the compu-
tational cost of the finite-element method for the full Stokes problem is prohibitive.
Pursuing detailed suggestions from Hinch (2000, personal communication) we there-
fore considered the lubrication approximation. Specifically, a fourth-order central
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Lambda

<&
1

0 5 10 15 20 25
Gamma

Figure 1. Solution types in {A, v} parameter space, relative to least-squares fit (solid line)
to maximum-supportable load data of Hansen & Kelmanson (1994): + stable, decay to
steady state evident at { = 300; < stable, no sign of decay to steady state at ¢ = 300; O
unstable. @ = 1 in all cases.

difference scheme with explicit time-stepping was applied to the equation for h(6,?)
given by Pukhnachev (1977),

v a
he + ( — §h3 cos 9) + 3 (h3 (heo + h)g)g =0, (4.1)

6
using the initial condition h(6,0) = hg, a constant. We note in passing that the
steady-state asymptotic solution as hg — 0%, hey(6), of this initial-value problem,

2
heo(8) = ho + %hg’ cos 0 + %hg cos 20 + O(hT, ahd),

is the solution about which our observed time-dependent numerical solutions oscil-
late in this thin-film limit.

We investigated the extent to which (4.1) is applicable, employing our finite-
element solutions as a guide. As can be seen from figure 2, which shows a comparison
between results of the lubrication approximation (4.1) and the Stokes equation (2.2)
for increasing hg, there is a noticeable deviation for an initial film thickness which
is approximately 15% of the cylinder radius when v = 12.5 and a = 1. Figure 3
reveals that, when ~ is reduced to unity, the lubrication approximation appears to
be acceptable for an initial film thickness of at least 40% of the cylinder radius.

Article submatted to Royal Society



10 R.C. Peterson, P.K. Jimack and M.A. Kelmanson

Thus, the physical characteristics of the fluid and roller remaining fixed, we infer
that either reducing the gravitational field or increasing the rotation rate gives rise
to a situation where the thin-film approximation is increasingly vindicated, despite
the increasingly thick layer of fluid that is supportable.

0081 T T T T T T 0195 T T
y ambda=0.50 FE' — "Lambda=1.00 FE' —
/-~ gmbda=0.50 FD' -~

‘Lambda=1.00 FD' ----

0.0805 -

008 [

0.0795

0079 -

0.0785 -

0078 -

0.0775 |

0077 -

0.0765 L L L L L L 0.145
0 0

‘Lambda=1.25 FE' — ‘Lambda=135 FE' —
‘Lambda=125 FD' ---- ‘Lambda=135 FD' ----

Figure 2. h(0, t) as calculated by the FE solution of Eq. (2.2) (solid line) and FD solution
of Eq. (4.1) (dashed line). @ = 1 and v = 12.5 throughout and, from left to right and top
to bottom, A = 0.50, 1.00, 1.25, 1.35 (i.e. ho = 0.077, 0.148, 0.182, 0.195).

Recalling our observation that, as A — 01, the amplitude of the oscillations in
the solution of the Stokes approximation appeared not to decay even by ¢ = 300,
we computed h(0,?) from (4.1) (taking hg = 0.11, ¥ = 12.5, @ = 1). Figure 4 shows
that an intial decline occurs in both the (normalized) maximum and minimum values
of h(0,t) up to ¢t ~ 200. This dual decline implies no reduction in the amplitude
of the oscillations and might reasonably be attributed to numerical dissipation
inherent in the finite-difference scheme. This impression is compounded by the fact
that the magnitude of the dissipative term in (4.1) is comparable to that of the local
truncation error of the fourth-order scheme. However, continuing the integration up
to ¢ = 2000 demonstrates beyond doubt that decay of such oscillations (of the thin-
film approximation) does indeed eventually occur.

We find that this decay occurs for a range of initial film thicknesses hg, and
that the thinner the film, the smaller is the rate of this decay and the longer is the
delay before it occurs: this observation is confirmed in figure 5, which shows the
dependence of h(0,%) on hg for @ = 1 and vy = 12.5. This is a result of significant
physical interest, bearing in mind the importance of roller-coating technology in
industrial processes. From a practical point of view we have demonstrated that, if
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0.1495

0.149

0.1485

‘Lambda=3.0 FE'
Lambda=3.0 FD' ~------

0.148
0

‘Lambda=5.0 FE'
Lambda=5.0 FD' -------

“Lambda=7.0 FE'
Lambda=7.0 FD' -------

Figure 3. h(0,t) as calculated by the FE solution of Eq. (2.2) (solid line) and FD solution
of Eq. (4.1) (dashed line). @ =1 and 7 = 1 throughout and, from left to right and top to
bottom, A = 1, 3, 5, 7 (i.e. ho = 0.148, 0.398, 0.610, 0.797).

L
+
1000

t

L
+
1500

fo¥e)

Figure 4. Maximum and minimum values of h(0,t), with hg = 0.112, from FD solution of
lubrication approximation (4.1). Here @ = 1, ¥ = 12.5 and integration is up to ¢ = 2000.
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12 R.C. Peterson, P.K. Jimack and M.A. Kelmanson

a film of uniform thickness is required in the smallest number of roller revolutions
possible, the rotation rate should be such that the load is as near as is practically
possible to the maximum supportable.

a—
Ea—
U ——
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== . b09008 00000202 7 0
#5833 58sanzaae cos 00020 Sasaadidanon0as
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+ + + +
100 200 300 a00 500

t

Figure 5. h(0,t) as calculated by FD solution of Eq. (4.1), normalized with respect to first
maximum and minimum of oscillation, up to £t = 500. @ = 1 and v = 12.5. h(#,0) = 0.110
(O), 0.115 (4), 0.120 (o) and 0.125 (O).

Figure 6 shows the decay of oscillations to the steady state as a function of the
inverse capillary number a. As expected, the higher the surface tension, the more
rapidly are subdued the surface oscillations, i.e. the greater the decay rate to the
steady state. Note that, when a = 0.1, the amplitude of the oscillation first grows
before decay sets in: this is presumably due to some kind of mode interaction arising
through the non-linear nature of (4.1).

Figure 7 shows the decay of oscillations to steady state as a function of the
Stokes number «. It can be seen that, the higher the value of v, the greater the
decay rate to the steady state. It is also seen that, for both v = 1 and v = 5,
no visible decay occurs over this timescale, i.e. 0 < ¢ < 500. Indeed, for v = 5,
large-time calculations reveal that oscillations show first signs of decay at ¢ = 5000
whereas one has to integrate beyond ¢ = 15000 to see comparable behaviour when
~v=1.

From the results in this section, it is to be inferred that the precise dynamics of
the “delay to decay” are rather intricately dependent upon the initial conditions and
physical parameters, leading to physical phenomena occurring over widely disparate
time scales. The complex analytical investigation of this aspect lies beyond the scope
of the present work.
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Figure 6. h(0,t) as calculated by FD solution of Eq. (4.1), normalized with respect to first
maximum and minimum of oscillation, up to £ = 500. ho = 0.11298 and v = 12.5. « = 0.1
(3@), 1.0 (+) and 10.0 (o).

(b) Unstable flow: load shedding and domain breakup

Finally, we return to the full Stokes approximation, and our new finite-element
method, in order to consider the evolution of unsupportable loads; such flows are
characterized by points marked O in figure 1. Meshes of fixed connectivity, as are
used to investigate stable flows, were unsuitable for unstable flows in which, typical-
ly, a bulge develops (see Moffatt 1977) on the free surface during the first rotation
of the cylinder which, as it grows, increases the curvature of the free surface con-
siderably until, at some point, the 1soparametric discretization fails.

As an example, an initial, unstructured mesh with 64 equally-spaced vertices
on each of the free surface and the cylinder was employed, the mesh comprising
520 elements and 2404 unknowns. Parameter values A = 5.7 — a large load — and
~ = 1.7 were selected; figure 8 shows the initial mesh configuration.

Figure 9 shows a series of snapshots leading up to load shedding. Unlike stable
flows, there is never symmetry about the line y = 0 and a gravity-induced bulge
is clearly apparent at ¢ = 1.95 which, by ¢ = 3.95, has assumed a lobe shape
reminiscent of those in the (three-dimensional) experiments of Moffatt (1977): see,
in particular, his figure 7. By ¢ = 10.00 a curtain, which is clearly going to break
from the flow, has started to form. As the simulation continues, the curtain rapidly
accelerates in the j direction.

In table 2 the increase in the cross-sectional area of the fluid with increasing
t is presented. It is readily apparent that, as the simulation of the load shedding
evolves, the accuracy — as quantified by the non-mass-conservation error indicator

Article submitted to Royal Society



14 R.C. Peterson, P.K. Jimack and M.A.

Kelmanson

OOOOOOOOOOOOOOO ooocoooooo00o
coccocococo

o.8+

ooooooooooooooooooooooooooooooooooooo

e e e e e e e e o R e e R R T
1{ecoco

cocoocoocooo000

©00000000000 4 0000oo00cos

aaaaaaaaaaaaaaaaaaaaaaaaaa
©0000000000000000°°°CCC99°9

L
+
a00 500

Figure 7. h(0,t) as calculated by FD solution of Eq. (4.1), normalized with respect to first
maximum and minimum of oscillation, up to ¢ = 500. hg = 0.11298 and o« = 1. v = 1.0

(9), 5.0 (+), 10.0 (o) and 20.0 (<).

v,
<wA'A'AV N
S 4 ggégi

X
N
o
<>

X
XK
=
aay
>
N

AV'
%VA
1

NI
SRR

X
7
/|

{

' TN 2> N
PRE RNA

<5 N
Eﬂ"'& VeV
S N
Ak LS

4

Figure 8. Initial mesh for unstable load-shedding flow; A = 5.7, y = 1.7

discussed in § 3 — deteriorates more rapidly in the later stages, and there is therefore
little value in extending the calculations any further. The final free-surface profile,

at ¢+ = 14.85, corresponds to the mesh with 839 elements

shown in figure 10. This

evolution of flow is typical of that observed whenever A exceeds the MSL by a

moderate amount, irrespective of y (Peterson 2000).

Two phases of the development of this unstable flow merit discussion in greater
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Figure 9. Free surface evolution preceding load shedding; A = 5.7, y = 1.7

detail, the first being the development of the lobe. In figure 11, which shows veloc-
ity and pressure fields within the lobe at ¢ = 3.00, the flow is clearly dominated
by viscosity and surface tension effects. By contrast, in figure 12, which shows the
velocity and pressure fields within the lobe at ¢ = 6.95, we see the first sign of a
stagnation point in the lobe, at whose lower end the velocity field is clearly domi-
nated more by the influence of gravity than by the rotating cylinder. Moreover, the
pressure field includes a new saddle point where it is attached to the still-rotating
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Dimensionless time ¢ | % increase in mesh area
0.00 0.0000
8.00 0.0138
10.00 0.0250
12.80 0.0460
14.46 0.1080
14.74 0.5647
14.86 0.5877

Table 2. Increase in mesh area during final stages of integration
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Figure 10. Final mesh (¢ = 14.85) for load-shedding unstable flow; A = 5.7, y = 1.7

part of the film. Note that the scalings of the velocity vectors differs between figure
11 and figure 12.

The next interesting phase of the flow occurs around the time the curvature of
the downstream side of the lobe changes sign. This phase is illustrated in figures 13
and 14 (in which the different scalings of the velocity field should again be noted),
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Figure 11. Load-shedding unstable flow, breakdown of near-rigid-body flow, A = 5.7,
v = 1.7. Velocity and pressure at £ = 3.00.

Figure 12. Load-shedding unstable flow, breakdown of near-rigid-body flow, A = 5.7,
v = 1.7. Velocity and pressure at { = 6.95.

in which we note that the near-parallel (with ) pressure contours within the lobe
reflect the fact that the flow therein is dominated by the gravity force —g7.

From ¢ = 12.80 onwards the curtain evolves increasingly rapidly under the now-
dominant influence of gravity and, as it begins to fall downwards, an elongated
neck develops. As this happens, fluid continues to be drawn off from the rotating
cylinder and observation suggests that approximately half the initial load will be
lost from the cylinder.
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7,

Figure 13. Load shedding problem 2, droplet formation (a) A = 5.7, v = 1.7.
Velocity and pressure at t = 11.00.

Figure 14. Load shedding problem 2, droplet formation (b) A = 5.7, v = 1.7.
Velocity and pressure at t = 12.80.

5. Conclusions

The time-dependent behaviour of films of viscous fluid supported on a rotating
cylinder has been investigated using a Stokes-flow model. While broadly confirm-
ing the predictions of the maximum-supportable load made by Moffatt (1977),
Hansen & Kelmanson (1994) and Kelmanson (1995), the computations reported
here suggest that, even for those regions of the {A, v} parameter space in which
convergence (from an arbitrary initial configuration) towards a stable, steady state
is expected, the rate of convergence decreases with the initial mean film height, the
surface tension and the gravitational force. Indeed, a complex dependence of solu-
tions — occurring over widely disparate time scales — upon these parameters has
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been demonstrated, and this is the subject of ongoing asymptotic analyses which
lie outside the scope of this paper.

Our adaptive-finite-element Stokes solver has enabled preliminary studies to be
undertaken regarding the range of validity of the thin-film approximation for a va-
riety of flow parameters; it would appear that the lubrication approximation can be
made increasingly more valid, as the film thickness increases, by either decreasing
the gravitational field or increasing the rate of rotation of the cylinder. Finally,
new results illustrating the phenomenon of load shedding — whose dynamics lie
beyond the demonstrated range of validity of the lubrication approximation — are
presented.

The authors wish to express their sincere gratitude to Professor E J Hinch, FRS, for sug-
gesting numerous and diverse improvements to the first draft of this paper; in particular,
for detailed considerations regarding the numerical investigation of decay rates using a
lubrication approximation. Comments of a second referee are also acknowledged. RCP
gratefully acknowledges receipt of joint financial support from the School of Computing
and Department of Applied Mathematics of the University of Leeds.
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