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Understanding spontaneous dissolution of
crystalline layered carbon nitride for tuneable
photoluminescent solutions and glasses†

Adam J. Clancy, *ad Theo M. Suter, ab Alaric Taylor, b Sayantan Bhattacharya,c

Thomas S. Miller, b Veronika Brázdová,a Abil E. Aliev,a Adrien A. P. Chauvet, c

Furio Corà, a Christopher A. Howard *d and Paul F. McMillan *a

The spontaneous dissolution of 2D polytriazine imide (PTI) carbon nitrides in certain solvents diverges

dramatically from the inherent insolubility of other 2D materials such as graphene. Here, the mechanism

of dissolution and underlying factors which govern PTI solubility are probed, uncovering a complex and

adaptable system. At high concentrations, multi-layered species are co-dissolved, and these solubilised

stacks may be further exfoliated to few- or single-layer species with the addition of water. While the PTI

sheets are fundamentally soluble, the presence of intercalated lithium salts increases yield and improves

the degree of exfoliation, with lithium cations adsorbed on the solvated PTI layers. The tuneable degree

of delamination modifies the solutions' photoluminescent properties, which may be trapped in a solid

phase following vitrification of the solvent.

Introduction

Carbon nitride materials with high N : C ratios and polymeric to

graphitic structures are currently being investigated for incor-

poration in devices for energy conversion and storage, as well as

for optoelectronics and catalysis applications.1,2 Key properties

related to energy and sustainability applications include tune-

able wide bandgaps ranging between 2.2–2.8 eV that can be

harnessed for solar energy capture and photocatalysis.3–5 Their

various nitrogen-centres have Lewis and Brønsted acid–base

properties leading to catalysis,6,7 and they are shown to provide

effective supports for metal and metal oxide nanoparticle

catalysts in fuel cells and electrolyzers.8,9

Many carbon nitride materials are synthesised via thermol-

ysis of nitrogen-rich carbonaceous precursors, forming amor-

phous to nanocrystalline polymer products, incorporating

varying amounts of H and O in their structure. In contrast,

highly crystalline carbon nitride may be created through reac-

tive polymerisation of dicyandiamide in a molten salt bath (a

eutectic mixture of lithium and potassium halides10,11). The

synthetic mechanism is currently the subject of ongoing

debate.12 The resultant product consists of 1,3,5-triazine rings

linked with NH bridges to give slightly buckled 2D sheets of

intrinsic porosity with C6N9H3 unit cells, termed polytriazine

imide (PTI, Fig. 1). The sheets are stacked to form a layered

Fig. 1 Structure of PTI. (a) C6N9H3 monolayer with highlighted 2D unit
cell (green). (b) Structure of one pore with single in-plane Li/H
substitution highlighting triazine nitrogens (blue), imide bridging
nitrogens (red), and anionic bridging nitrogen (green) from Li+ (purple)
replacing an imide-bridge hydrogen. (c and d) Schematic model of
LiBr$PTI bilayer with no in-plane Li/H substitutions, viewed (c) along c

axis, and (d) orthogonal to c axis and between a/b axes for a 3 � 3
supercell, showing AB stacking of PTI layers and idealised 1 : 1 : 1 ratio
of pore/Li/Br, with random occupancy of the 3 possible Li+ sites in
each layer (C grey; N blue; Br brown; Li purple).
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crystal which is intercalated with the lithium salt of the molten

bath (LiX$PTI); the potassium component does not intercalate

the nal product. The halide anion sits between the PTI sheets

(Fig. 1c and d), while the Li+ occupies two types of sites: one

partly replacing H atoms of the imide bridges (Fig. 1b),10 while

the remainder occurs in sites between the layers to achieve

charge balance with the halide anions (Fig. 1c and d). The

precise positions are not yet determined.13–15 The intercalated

salt may be removed through aqueous Soxhlet extraction,

leaving the intercalant free PTI (IF-PTI) which can be subse-

quently reintercalated through treatment with ionic solutions,

or spontaneously intercalated with water molecules if le

exposed to a humid atmosphere,15 which move through the

channels formed by the aligned interlayer pores.16

There has been interest in exfoliating carbon nitride materials

to create suspensions or solutions in order to optimize the active

surface area and create inks for deposition on surfaces and

incorporation into devices. Creating suspensions of

thermolytically-derived carbon nitrides is hindered by the highly

crosslinked nature of their disordered polymeric structures. One

approach to free nanoscale moieties involves the application of

harsh shear forces through sonication, but such mechanical pro-

cessing can signicantly alter the structure, optoelectronic prop-

erties, and surface chemistry.17,18 Alternatively, strong acids may be

used to exploit the Brønsted basic pyridinic functionality to form

cationic carbon nitrides, for example through dispersion in

aqueous nitric acid,19 sulfuric acid,20 or sulfuric acid derivatives

such as methanesulfonic acid.21 These acidic solvents are also

associated with breaking in-layer bonds22,23 through depolymer-

isation to free the polymeric nanocrystaline materials from the

crosslinked bulk. In contrast, the crystalline PTI compounds can

be exfoliated by chimie douce methods, without introducing

damage to the layers.24

The van der Waals forces between the layers in stacks of 2D

crystals (such as graphene sheets in graphite) present a signi-

cant energetic barrier to exfoliation. As a result, much previous

work25 revolves around providing high shear, commonly

through sonication, to cause exfoliation, before kinetically

trapping systems as a (thermodynamically unfavourable)

dispersion, by coating the individual nanomaterials with

surfactants or particular solvents. The approach leads to an

unavoidable trade-off between damage to the structure from

intense shear, versus poor exfoliation from insufficient shear.

Additive-free sonication of the intercalated LiCl$PTI in water

has been shown to lead to stable dispersion of PTI sheets,

accompanied by delithiation of the in-plane substituted lithium

through a Li+/H+ exchange reaction with the aqueous solvent,

leaving metal-free PTI and LiOH in solution.17

Unlike kinetically stable dispersions, thermodynamically

favourable, spontaneous dissolution of 2D materials provides

solutions without introducing any damage to the atomic

framework or diminishing intrinsic properties. Approaches

include reducing the material to form the anion in a nano-

material salt26 or protonating with superacid27 to form the

nanomaterial cation in a solution. In both cases, increased

solvation energy of the ionic layers and the co-dissolution of

a counterion has been proposed as energetic driving forces for

the nanomaterial dissolution. Reductive dissolution has been

applied to PTI materials previously, forming monolayer species

in solution and opening up new organofunctionalisation reac-

tions.28 Further, we have previously shown that spontaneous

exfoliation and dissolution is possible without agitation for

solid intercalated LiBr$PTI when exposed to polar, aprotic (i.e.,

without exchangeable H atoms) solvents such as dimethyl

sulfoxide (DMSO), N,N-dimethyl formamide (DMF) N-methyl-2-

pyrrolidone24 and N,N-dimethyl acetamide.12 Solutions have

been shown to be capable of exfoliation down to monolayer

thicknesses in the solvated state,12,24 and examination of the

nanomaterials formed aer evaporation of the solvent using

high resolution transmission electron microscopy (HRTEM)

and high-speed atomic force microscopy (HS-AFM) revealed

hexagonal nanoparticles with the same (30–165 nm) external

dimensions and crystalline layered structure as the starting PTI

phase, with 2–25 layer thickness maximized at around 9 layers.24

The steady-state photoluminescence (PL) spectra of DMF

solutions of LiBr$PTI exhibited a peak near 380 nm with a width

that broadened slightly towards the blue-green range with

longer wavelength excitation. In contrast, spectra for PTI

nanosheets that had been deposited on a substrate from

dropcasting a solution exhibited a red-shied and broad PL

extending across the entire visible range (i.e., between ca.

320 nm to beyond 700 nm) with maximum intensity between

400–550 nm for all excitation wavelengths. The narrow PL

response observed for the solution phase indicated the pres-

ence of few-layered PTI nanosheets, whereas the broad response

extending across the visible range observed for the precipitate

arose from the wider distribution of layer stacking (supported

by our previous HS-AFM and HRTEM results).

In the present work the factors which impact the dissolution

process of PTI materials are investigated to highlight the intrinsic

solubility of the PTI layers; also tuneable PL behaviour is demon-

strated into the blue-visible range. We examined the PL properties

for different concentrations of PTI dissolved in DMSO and DMSO–

H2O solvent mixtures, and for glasses quenched from the DMSO–

H2O solutions. Comparison of the results from this and previous

studies provides new insight into the dissolution process and

suggests possible future applications for photoexcited catalysis

and luminescence of these crystalline nanomaterials.

Experimental
Materials

Dicyandiamide (99%), lithium bromide (anhydrous $99%),

potassium bromide ($99.0%), DMSO (anhydrous $99.9%),

were supplied by Merck and used without further purication.

Deuterated DMSO (99.9% deuterated) was purchased from

VWR. Quartz tubing was supplied by Robson Scientic.

Nitrogen gas and liquid nitrogen were supplied by BOC. Water

was puried in house by distillation before use.

Synthesis of LiBr$PTI and IF-PTI

LiBr$PTI was prepared from dicyandiamide in a molten eutectic

LiBr/KBr mixture as described previously.24 Lithium bromide

2176 | J. Mater. Chem. A, 2021, 9, 2175–2183 This journal is © The Royal Society of Chemistry 2021
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(5.2 g), potassium bromide (4.8 g), and dicyandiamide (2.0 g)

were mixed in an N2-lled glovebox and pretreated by heating

under vacuum (400 �C, 1 h) before grinding, sealing under

vacuum (�10�7 mbar) in a quartz ampule, and heating (600 �C,

16 h), before washing with deionized water to remove the

bromide salts to give LiBr$PTI powder, with 33.0 wt% LiBr (ESI,

Fig. S1†). Powder X-ray diffraction (XRD) patterns of the syn-

thesised material (ESI, Fig. S2†) are consistent with literature.15

The material consisted of columns of stacked PTI layers

observed by scanning electron microscopy (SEM), that occa-

sionally exhibited a hollow-square cross-sectional meso-

structure (ESI, Fig. S3†). This type of texture has been reported

previously by Wirnhier et al.10 IF-PTI was synthesised by dein-

tercalating LiBr$PTI by Soxhlet extraction with water over 2

days, before heating at 100 �C under dynamic vacuum (�10

mbar) for 1 h in a sealable tube before sealing and transferring

to a N2 glovebox, with full deintercalation conrmed by TGA

and XRD (ESI, Fig. S1 and S2,† respectively).

Formation of PTI in DMSO solutions

In an N2 lled glovebox, dried LiBr$PTI or IF-PTI was placed in

a vial, and anhydrous DMSO was added carefully to avoid

agitation of the powder. The mixture was le for 2 weeks to give

an orange liquid, of which the top �1 mL supernatant was

decanted using a micropipette.

Formation of PTI in DMSO–H2O mixtures

A 32 mgmL�1 loading LiBr$PTI solution was made as described

above, and 500 mL was taken from the top of the solution by

Eppendorf pipette, and diluted with 9.5 mL of fresh DMSO to

give the 100 : 0 DMSO/H2O sample. Outside the glovebox,

aliquots of this solution (1 mL) were further diluted with

deionized water (333 mL and 9 mL, respectively) to provide the

75 : 25 and 10 : 90 (by volume) DMSO/H2O solutions examined

in this study. We note that this procedure differs from direct

exposure of the lithium halide-intercalated PTI solid to H2O,

resulting in Li+/H+ ion exchange between the starting solid and

the aqueous medium during the dissolution process, as studied

by Schwinghammer et al.17 No obvious precipitation was seen

upon dilution of the DMSO/PTI solution with H2O, even aer 2

weeks at room temperature.

Formation and PL studies of PTI/DMSO–H2O glassy solids

PTI solutions in 100 : 0, 75 : 25, and 10 : 90 v/v DMSO : H2O

were quenched with liquid nitrogen (LN2). To ensure rapid

cooling, a 700 mL PL cell (Hella) was submerged in the LN2,

making sure to prevent bubbles becoming trapped within the

cell, before 500 mL of solution was added and the cell held

submerged in LN2 for �60 seconds. To prevent build-up of ice

from atmospheric water on the exterior of the cell, several

precautions were taken for measuring the PL spectra. First,

a beaker of silica desiccant was wrapped in anodised matte

black aluminium foil, heated to 150 �C for 2 h before placing in

the spectrouorophotometer cuvette chamber away from the

light-sample-detector paths, while the chamber was lled with

dry N2 gas and closed. Dry N2 gas was blown over the cell during

transfer from the LN2 bath to the (dry) chamber of the spec-

trouorophotometer before immediately running the PL

spectra.

Characterisation

UV-visible spectra were taken using a Shimadzu UV-2600 spec-

trometer between 200–750 nm (1.0 nm intervals) using 2.0 nm

slit width and 0.1 s accumulation time period, in a 10 mm path

length quartz glass cell.

PL spectra were obtained using a Shimadzu RF-6000 spec-

trouorophotometer with Xe arc lamp illumination, with 5 nm

excitation and emission bandwidth. Excitation–emission

wavelength scans were measured in a 1 mL quartz (4 � 10 mm)

PL cell (Hella) with excitation from 250–800 nm (2 nm resolu-

tion), while measuring emission spectra over the same range

and with the same resolution at 6000 nm min�1. For LN2

quenched samples, PL measurements were taken between 260–

410 nm excitation with 50 nm resolution, and 250–800 nm

emission with 2 nm resolution, at 12 000 nm min�1. These

more limited measurements were performed in lieu of full

mappings to accelerate the measurement time (to 10 s) thus

avoiding condensation ice build-up and limiting heating of the

samples during the experiments.
7Li, 35Cl and 79Br NMR spectra of samples dissolved in

DMSO-d6 were recorded using a Bruker AV III 400 spectrometer

equipped with a broadband multinuclear probe at 298 K.

Lithium and halide NMRmeasurements were performed on the

same samples. 7Li and 35Cl chemical shis are measured rela-

tive to 7Li and 35Cl chemical shis of LiCl dissolved in DMSO-d6.
79Br chemical shis are measured relative to 79Br chemical

shis of LiBr dissolved in DMSO-d6.

ICP-MS was performed on a Varian 720 ICP-AES. Solutions

were diluted 100� and 1000� into 1 M nitric acid for Br and Li

measurements respectively. Measurements were calibrated

against a 40 ppb LiBr/1 M nitric acid standard which was run 3

times prior to sample measurements and aer every 3 samples

to monitor sensitivity dri. Blank 1 M nitric acid was run three

times between each calibration measurement, and once

between each sample. 7Li and 81Br values were used for quan-

tication, with 6Li and 79Br values also measured and provided

in the ESI.†

Thermogravimetric analysis was performed on a Perkin

Elmer Pyris 1 TGA instrument under 60 mL min�1
ow of air,

with an initial 10 min hold at 100 �C to remove adsorbed water,

before heating to 850 �C with a heating rate of 10 �Cmin�1. Data

is normalised to the nal weight before the heating stage.

XRD was performed on a Malvern PANalytical X'pert Pro

using a Cu Ka source between 0–70� 2q.

SEM studies of samples were performed by placing samples

on conducting carbon tape and sputtering with gold. Micro-

graphs were obtained using a JEOL JSM-6700F eld emission

instrument.

Transient absorption (TA) spectroscopy was performed at the

Lord Porter Laser Laboratory, University of Sheffield. A

Ti : Sapphire regenerative amplier (Spitre ACE PA-40, Spec-

traPhysics) which produces 800 nm pulses (40 fs FWHM, 10

This journal is © The Royal Society of Chemistry 2021 J. Mater. Chem. A, 2021, 9, 2175–2183 | 2177
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kHz, 1.2 mJ) was used as main laser source. A 400 nm pump

excitation was generated using second harmonic generation of

the 800 nm output in a b-BBO crystal within a commercially

available higher harmonic generator (TimePlate, Photop Tech-

nologies). Excitation at 350 nm was performed using

a commercial optical parametric amplier (TOPAS-Prime). Only

2% of the amplier output was used to generate white light

super-continuum probe pulses by focusing the 800 nm beam on

a CaF2 crystal (in the range 340–790 nm). Detection was ach-

ieved using a commercial transient absorption spectrometer

(Helios, Ultrafast Systems), which includes a CMOS sensor for

the UV-vis spectral range. The relative polarisation of the pump

and probe pulses was set at themagic angle (54.7�). The residual

800 nm signal from the probe was removed using a hot mirror

(800 nm, 00 deg AOI) before the sample. Temporal resolution of

was on the order of 150 fs, measured from the cross correlation

between pump and probe. Solutions were held in 2 mm path

length quartz cells and were continuously stirred during

experiments using a magnetic stirring system.

DFT calculations

Density functional theory (DFT) calculations were performed

with CRYSTAL17 using the hybrid exchange B3LYP functional

and all-electron split valence plus polarisation basis set for all

atoms.29 A PTI slab composed of three atomic layers and overall

composition C18N27H9 was cleaved from the bulk PTI structure

and described with periodic boundaries along the a and b axes.

Both AA0A and ABA layer stackings of IF-PTI were investigated.

LiBr$PTI was created by including one lithium and one bromine

ion in each slab unit cell, either in the same (LiBr(a)$PTI) or in

adjacent (LiBr(x)$PTI) interlayer galleries. The intercalation of

LiBr to form LiBr(a)$PTI was more favourable than LiBr(x)$PTI

formation (ESI, Fig. S4 & Table S1†). Analogous calculations

using LiCl, KCl, and KBr were also performed and these

demonstrated that it is energetically unfavourable to intercalate

potassium salts regardless of charge-balancing anion or relative

arrangement in the layers, explaining the observation that only

the lithium component of the eutectic salt bath intercalates the

product. LiCl intercalation is also favourable and prefers the

same interlayer gallery to form LiCl(a)$PTI, akin to LiBr. Exfo-

liation energies were calculated as the difference in energy

between the slab cell representing the PTI trilayer, and the sum

of cells representing a separate monolayer and bilayer. Values

are presented in eV per unit cell of the trilayer slab (ESI Table

S1†). In presence of LiBr, the lowest energy conguration for

both trilayer and bilayer slabs has been employed.

Results and discussion
Intrinsic solubility of PTI sheets

While several solvents are known to be suitable for the ther-

modynamically driven dissolution of PTI, use of DMSO leads to

the highest solute concentrations at room temperature,24 so was

selected as the solvent for this study. Dissolving LiBr$PTI in

DMSO with a range of initial loadings (i.e., mass of initially

added material per volume added solvent) shows a linear

dependence, with higher loadings increasing the optical

absorbance (Fig. 2). Measurements are complicated by features

overlapping with solvent absorbance, but the concentration can

be seen to rise through the increase of the peak tail absorption

(ESI, Fig. S5,† ca. 350–500 nm). Total yields of dissolution are

known to be low (evident through a signicant undissolved

solid fraction) and the DMSO is difficult to remove completely,

complicating quantication of concentrations. The co-

dissolution of intercalated LiBr during the dissolution of

LiBr$PTI provides a window into the behaviour of the dissolved

system. Through inductively coupled plasma mass spectrom-

etry (ICP-MS, ESI, Fig. S6 & Table S2†), the concentrations of

dissolved lithium and bromine were monitored. Both Li and Br

concentrations increase linearly with LiBr$PTI loading,

accounting for �3% of the total initial LiBr mass present in the

LiBr$PTI. The ions in solution must be freed from the solid

LiBr$PTI during sheet exfoliation to exist either as free ions in

solution or associated with the dissolved sheets, both of which

are measured simultaneously in ICP-MS. As not all LiBr in the

system is seen in solution, and concentrations are signicantly

below saturation in DMSO30 (�3.1 M), it can be assumed the

ions are not derived from deintercalation of the salts from the

solid material to give solid IF-PTI and solvated Li/Br ions, as

seen for aqueous Soxhlet extraction.15 Instead, Li and Br in

solution (regardless of whether the ions are PTI-associated/

freely solvated) are likely to be due to being initially next to

a PTI layer which is exfoliated into solution. The percentage of

dissolved PTI is therefore assumed to match that of dissolved

LiBr (i.e. 3%), allowing an indirect quantication of dissolution.

The properties of the PTI in solution were probed in more

depth using TA spectroscopy (Fig. 3a) of the solution from 1 mg

mL�1 loading LiBr$PTI. These spectra exhibit negative differ-

ential absorbance at 400–450 nm attributed to stimulated

emission and ground state bleaching. Between 450–700 nm, the

differential absorbance is positive (with two broad peaks cen-

tred around �535 nm and 641 nm) representative of excited

Fig. 2 UV-vis absorbance at 350 nm for LiBr$PTI and IF-PTI in DMSO
with 1 cm pathlength, corrected for 20� dilution. Full UV-vis data and
trends of absorbance versus weight of PTI component provided in the
ESI (Fig. S5†).
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state absorption. The normalised probe kinetics (Fig. 3b) obey

stretched exponential decay (eqn (1)) with a lifetime (s) of 0.21�

0.02 ps and heterogeneity function (b) of 0.12. This behaviour

differs signicantly from thermolytic carbon nitrides which

exhibit signature power law decay31 kinetics.

STAðtÞ ¼ Ae
�ð
t

s

Þ
b

þ STAð0Þ (1)

As b is less than unity, the system must possess multiple

relaxation pathways.32 As the kinetics are independent of pulse

energy (Fig. 3b), the additional pathways cannot be attributed to

supplementary bi-molecular recombination,33 and insteadmust

indicate that the sample is intrinsically heterogeneous. Sample

heterogeneity is affirmed by modication of the TA spectral

shape using 350 nm excitation (ESI, Fig. S7a†), although eluci-

dation of the actual physical relaxation mechanisms and the

nature of quasiparticles involved will require further

investigations.

Support for heterogeneity of the solutions and dispersions as

a function of concentration can be seen in two-dimensional

(2D) photoexcitation-photoluminescence (PE-PL) maps of the

LiBr$PTI solutions (Fig. 4). Interestingly, the PL properties of

LiBr$PTI in DMSO vary with the concentration of the solution.

At low concentration (1 mg mL�1 loading) we observe a result

similar to that reported previously for the PTI nanosheets dis-

solved in DMF,24 with a narrow emission band 350–440 nm

(maximized at 380 nm) excited by radiation between 250–

270 nm. However, the result obtained for more concentrated

samples (16mgmL�1 loading) resembles that observed for solid

PTI lms deposited from DMF solution,24 with broad band

emission extending between 350–550 nm maximized between

420–490 nm excited by wavelengths from 270–420 nm. Although

the broad PL response dominates the 2D PE-PLmap, the narrow

signal excited by UV wavelengths remains visible as a separate

contribution with its intensity unchanged between the different

concentrations (Fig. 4b). Our conclusion is that at high

concentrations, the solution contains a broad distribution of

multiply-stacked PTI sheets, whereas at low concentrations the

dissolved PTI nanomaterials consist of only very few-layer (e.g.,

1–5) nanosheets.24 The few-layer nanosheets persist within the

more concentrated liquid samples, where the PL intensity

becomes dominated by the distribution of thicker nanolayered

materials that appears to constitute a separate component that

Fig. 3 (a) TA spectra of 1 mgmL�1 loading LiBr$PTI solution at 400 nm
excitation and 0.9 mJ average pulse energy. (b) Normalized probe
kinetics at 505 nm (400 nm excitation) at various pump powers, with
fitted stretched exponential.

Fig. 4 PE-PL maps for LiBr$PTI and IF-PTI at 1 mg mL�1 and 16 mg
mL�1 loading, with visible spectrum of emission/exciting wavelengths
shown top/right respectively. Data normalised (a) to highest non-
elastic scatter in each sample and (b) to most intense peak in LiBr$PTI
16 mg mL�1 to give universal z-scale.

This journal is © The Royal Society of Chemistry 2021 J. Mater. Chem. A, 2021, 9, 2175–2183 | 2179
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emerges as the solution becomes more concentrated. This

behaviour contrasts with other spontaneously soluble 2D

materials which delaminate in solution to give purely mono-

layer species.26,34

The nature of the solvated PTI sheets is dependent on the

state of the Li and Br ions, which may be associated to the PTI

sheets. In particular, excess lithium from the initial synthesis

reaction, found at deprotonated imide bridges may either be

associated to the PTI as neutral C6N9H(3�x)Lix units, or disso-

ciated [C6N9H(3�x)]
x� species to give rise to anionic PTI sheets.

Nuclear magnetic resonance (NMR) spectroscopy of dissolved

LiBr$PTI provides a route tomonitor the presence of dissociated

solvated ions (ions that remain bound to PTI layers will produce

signals that are broadened beyond instrumental resolution by

dipolar coupling, quadrupolar interactions, and chemical shi

anisotropy effects). The LiBr$PTI solutions show distinct sharp

signals (ESI, Fig. S8,† 7Li 0.08 ppm, 79Br 3.42 ppm) with negli-

gible shis from pure LiBr dissolved in the same solvent (7Li

�0.09 ppm, 79Br 0.00 ppm) conrming the presence of solvated

Li+ and Br� ions. The Li : Br ratio could not be calculated

precisely due to the low signal to noise ratio in the 79Br NMR

experiments; however, 35Cl/7Li NMR intensities of the analo-

gous LiCl$PTI system (versus LiCl salt) allowed an estimate of

solvated Cl�/Li+ ratio of �1.4 : 1 (ESI, Fig. S9†) indicating that

an excess of chlorine is present in solution. This indicates that

not only in-plane substituted lithium, but a fraction of the

intercalated lithium (charge balanced by cointercalated Cl� in

the initial solid) remains associated with the PTI sheets to give

cationic [C6N9H(3�x)Li(x+y)]
y+ solvated species with zLi+ and (y +

z)Cl� in solution. With this new understanding, PTI solubility

may be attributable to either contribution of the positive charge,

akin to negatively charged graphene,35 or intrinsic neutral PTI

(C6N9H3) solubility. Here, recent results on deintercalation to

intercalant-free (IF-)PTI materials provide an ideal mono-

component control to test PTI solubility. During dein-

tercalation, both intercalated Li/Br components and in-plane

lithium substitutions are entirely removed to give a pure

C6N9H3 layered PTI system.15

For these studies, LiBr$PTI was deintercalated and dried to

form IF-PTI and placed in anhydrous DMSO while maintaining

the samples in a dry environment. Rigorously dry conditions are

required to maintain the intercalant-free nature, as exposure of

IF-PTI to ambient atmosphere leads to uptake and subsequent

intercalation of water from the atmosphere, as seen in XRD

(ESI, Fig. S2a†). In all cases, the IF-PTI could be seen to dissolve

spontaneously by observation of a yellow dissolution front

extending above the solid phase in the absence of any agitation,

indicating that PTI layers are intrinsically soluble. UV-vis spec-

troscopy showed a similar linear trend of loading with

concentration to LiBr$PTI dissolution, again indicating that

neutral IF-PTI has intrinsic solubility in DMSO, but at lower

concentrations across all loadings. The PE-PL maps of IF-PTI at

similar loadings likewise show similar trends to LiBr$PTI

(Fig. 4), with the intense sharp signal due to few-stacked layers

dominating at low loading (1 mg mL�1). However, in this case

the redshied bands attributed to more-stacked species are

more clearly visible, implying a less efficient exfoliation process.

Similarly, for the 16 mg mL�1 loading of the IF-PTI sample, the

most highly red-shied emitting signal (centred at �480 nm)

dominate with the lowest wavelength features being most

prominent. The more dramatic red-shiing features also indi-

cate that IF-PTI does not exfoliate into few-layered sheet units as

readily as LiBr$PTI and so more highly stacked materials are

present in the liquid phase, supporting the observation of less

efficient overall dissolution of IF-PTI than LiBr$PTI in DMSO.

The absolute intensity of these IF-PTI PL signals is also lower

than for LiBr$PTI solutions (Fig. 4b) supporting the lower

concentrations indicated by UV-vis spectroscopy (Fig. 2). Thus,

while the presence of LiBr is not essential for spontaneous

exfoliation and solvation of highly ordered PTI layers, it

certainly appears to facilitate these processes.

The intrinsic optoelectronic properties of the IF-PTI were

probed by TA spectroscopy (ESI, Fig. S7b–d†). The general

behaviour with 400 nm excitation (ESI Fig. S7b†) showed over-

lap with the behaviour of the LiBr$PTI, with an initial negative

differential behaviour at shorter wavelengths and two broad

peaks indicative of excited state absorption at longer wave-

lengths. The subtleties of the features vary between the samples

however, with better dened constituent peaks within the broad

positive differential features seen for the IF-PTI, more similar to

LiBr$PTI pumped with 350 nm excitation. Additionally, the

isosbestic points for both 400 nm excited IF-PTI and 350 nm

excited LiBr$PTI redshi with increasing time, an effect attrib-

uted in graphene/graphene oxide to a reduction of sub-Fermi

level occupation due to the heating of electron plasma with

increased pump pulse energy.36,37 However, for 400 nm excited

LiBr$PTI (Fig. 3a), this shi is absent with the isosbestic point

remaining constant at ca. 450 nm during decay. More detailed

studies are required to identify the originating quasiparticle

behaviour and mechanistic differences between the systems.

The kinetics of the TA decay for IF-PTI (ESI, Fig. S7c and d†)

show the clear stretched exponential decay, akin to LiBr$PTI,

albeit with slower decay behaviour (s ¼ 1.32 ps). Heterogeneity

of the IF-PTI is still evident (b ¼ 0.21 with pump power-

independent kinetics) but is less dispersed than the LiBr$PTI.

It is unclear if the lessened heterogeneity is due to a more

monodisperse distribution of stacking, or the presence of

a broad distribution of many-layered species which behave the

same optically.

To further investigate the origin of the preferential exfolia-

tion of LiBr$PTI versus IF-PTI, exfoliation energies were calcu-

lated for both species using DFT methods. The exfoliation

energy of IF-PTI was not signicantly affected by stacking order

(AA0 0.22 eV, AB 0.19 eV). The LiBr$PTI constitutes a more stable

conformation than isolated PTI and LiBr crystals (by �0.52 eV,

ESI Table S1†), and the intercalation of LiBr effectively pins the

adjacent layers, increasing the exfoliation energy (0.41 eV).

However, this pinning effect is localised, as shown by exfolia-

tion of an unintercalated PTI layer adjacent to LiBr-containing

layers requiring similar energy (0.23 eV) to the IF-PTI. This

localisation prevents long-range electrostatics of a bulk

LiBr$PTI crystal hindering exfoliation of the top layer into

solution, and the solvation energy38 of LiBr into DMSO (�9.03

eV) is signicantly higher than the increased cost of the
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pinning. Because the direct exfoliation energy of LiBr$PTI is

greater than that of IF-PTI, the exfoliation process does not

likely involve a parallel separation of PTI sheets, but must

involve gradual exposure of the LiBr-containing galleries, e.g. by

parallel slipping or peeling away of successive layer(s), accom-

panied by gradual dissolution of the newly exposed Li/Br ions,

which remain far below the LiBr solubility limit in DMSO.30

Exfoliation and dissolution of PTI in DMSO/water mixtures

The dissolution experiments in DMSO described here were

performed under stringently dry conditions, to avoid compli-

cations from the extremely hygroscopic character of this

solvent. The presence of water in a solvent has been shown to

prevent effective LiCl$PTI exfoliation in DMAc solutions previ-

ously.12 To monitor the impact of water on solvated PTI, water

was added to a pre-exfoliated LiBr$PTI DMSO solution to give

a 75 : 25 DMSO/water mixture. The PL signature changed

immediately and dramatically (Fig. 5), leaving only a single

narrow emission band between ca. 340–430 nm (maximum at

360–380 nm). We interpret this result as demonstrating that

addition of H2O to the DMSO solvent results in a dramatic

alteration to the nature of the multi-layer PTI nanosheets

present in the higher concentrated solution, with the aqueous

component causing further exfoliation to result in the few-

layered nanosheets observed in the initial phase to give rise to

low solvated concentrations. We propose that the H2O plays

a key chemical role in separating the PTI nanosheets when it is

placed in contact with the LiBr$PTI solid. Schwinghammer

et al.17 have shown that when the related LiCl$PTI compound is

exposed to pure H2O they observed an increase in pH and

a negative PTI surface potential during the dissolution process,

indicating exchange of Li+ and H+ ions between the PTI material

and the aqueous solvent, causing an increase in the OH�

concentration. In our case, LiBr$PTI was initially placed in

contact with anhydrous DMSO, which is aprotic and therefore

does not permit such Brønsted acid–base reactions. The addi-

tion of water to the liquid solution must facilitate this ionic

exchange process with the predissolved PTI, with the resultant

basic solution likely further driving deprotonation of imide

bridges to increase PTI surface anionic charge and aid

exfoliation.

While it is unclear if the PTI in DMSO/water mixture leads to

a thermodynamically stable solution or a kinetically trapped

dispersion, the PTI remained in the liquid phase without

precipitation for over a month. The intrinsic stability of PTI in

water/DMSO mixtures opens a route to trapping these PL active

species in the amorphous solid state based on the well-known

glass-forming ability of DMSO–H2O liquid compositions.

Previously, casting PTI-bearing lms has resulted in restacking

of PTI sheets, altering the optical properties.24 DMSO-water

mixtures are known to vitrify39 within a window of 20–60

weight percent (22–62 vol%) following quenching from room

temperature into liquid nitrogen (LN2). Aer quenching solu-

tions in LN2, the 75 : 25 PTI solution produced an optically

transparent pale yellow glass, while solutions in pure DMSO

(100 : 0) and a water-rich 10 : 90 control mixture gave rise to

polycrystalline material (ESI, Fig. S10†). The glass formed from

the 75 : 25 solution showed a PL signature at LN2 temperature

that was nearly identical to that for the solution phase recorded

at ambient (Fig. 5). Unlike the 75 : 25 glass, the polycrystalline

100 : 0 and 10 : 90 quenched solids only exhibited a weak PL

signal at low wavelength (260 nm). This result demonstrates

that rapid quenching in LN2 to form an optically homogeneous

glass preserves the PTI layer distribution, while avoiding

signicant loss of the PL signal due to scattering effects. The

importance of the glassy matrix was conrmed by allowing the

75 : 25 glass to warm for ca. 2 min, leading to a cold crystal-

lisation and loss of the PL signal (Fig. 5). Upon completion of

melting for all three samples, the PL emission prole returned

to that of the initial solution phase, demonstrating that no re-

Fig. 5 (Top) PE-PL maps normalised to highest (non-elastic scatter)
peak for PTI solutions in (from left to right) pure DMSO, 75 : 25, and
10 : 90 DMSO/H2O. Visible spectrum representations of excitation/
emission wavelengths provided right/top, respectively. White dashed
lines used to indicate excitation wavelengths used in glass-forming
quenching experiments (260, 310, 360, and 460 nm). (Bottom) Fluo-
rescence spectra with 310 and 410 nm excitation, normalised to the
elastic scatter peak. (From top to bottom) 100 : 0, 75 : 25, 10 : 90
DMSO/H2O v/v PTI solutions. Samples measured at room temperature
(solid) and immediately after liquid nitrogen quenching (dashed), and
after 2 min ambient warming of the cooled glass for 75 : 25 DMSO/
water (dotted). Data including 260 and 360 nm excitation provided in
the ESI (Fig. S11†).
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stacking and no precipitation of the PTI nanosheets had

occurred during the rapid solvent crystallization/vitrication

processes.

Conclusions

The dissolution of 2D PTI nanosheets can be seen to be

a complex process. The sheets disperse with a range of stack-

ings, with higher concentrations leading to a greater degree of

stacking in solution. While the PTI sheets are intrinsically

soluble in DMSO, the presence of intercalating LiBr leads to

both a higher yield of dissolution and a higher fraction of

monolayer species in solution (despite increasing inter-layer

adhesion). The improved exfoliation is thought to be due to

the added thermodynamic benet from the salt solvation, and

potentially opens the way to tailoring the degree of exfoliation

through introducing new intercalants. Alternatively, the mate-

rial may be exfoliated further by addition of water to the existing

solution which promotes exfoliation of solvated multi-layer

species.

The modication of the distribution of stackings in solution

dramatically alters the photoluminescent properties of the PTI

solutions. The quasiparticle mechanics underlying the photo-

luminescence are complex owing to the heterogeneous nature

of the solutions but are notably distinct from thermolysis-

derived, polymeric carbon nitride materials studied in most

previous investigations. Further, the PL properties may be

maintained through vitrication of the solvent, allowing access

to photoluminescent solids with PL behaviour consistent with

the parent solution, in contrast to typical lm-casting experi-

ments which lead to restacking of the sheets.
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