
ACCEPTED MANUSCRIPT • OPEN ACCESS

Multiple environmental factors regulate the large-scale patterns of plant
water use efficiency and nitrogen availability across China’s forests
To cite this article before publication: Songbo Tang et al 2021 Environ. Res. Lett. in press https://doi.org/10.1088/1748-9326/abe3bb

Manuscript version: Accepted Manuscript

Accepted Manuscript is “the version of the article accepted for publication including all changes made as a result of the peer review process,
and which may also include the addition to the article by IOP Publishing of a header, an article ID, a cover sheet and/or an ‘Accepted
Manuscript’ watermark, but excluding any other editing, typesetting or other changes made by IOP Publishing and/or its licensors”

This Accepted Manuscript is © 2021 The Author(s). Published by IOP Publishing Ltd.

 

As the Version of Record of this article is going to be / has been published on a gold open access basis under a CC BY 3.0 licence, this Accepted
Manuscript is available for reuse under a CC BY 3.0 licence immediately.

Everyone is permitted to use all or part of the original content in this article, provided that they adhere to all the terms of the licence
https://creativecommons.org/licences/by/3.0

Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content
within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this
article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions may be required.
All third party content is fully copyright protected and is not published on a gold open access basis under a CC BY licence, unless that is
specifically stated in the figure caption in the Version of Record.

View the article online for updates and enhancements.

This content was downloaded from IP address 2.221.9.240 on 19/02/2021 at 12:21

https://doi.org/10.1088/1748-9326/abe3bb
https://creativecommons.org/licences/by/3.0
https://doi.org/10.1088/1748-9326/abe3bb


 1 / 31

1 Multiple environmental factors regulate the large-scale patterns of plant water use 

2 efficiency and nitrogen availability across China’s forests

3 Songbo Tang1, 2, 3, 4, Yuan Lai1, 2, 3, 4, Xuli Tang1, 3, Oliver L. Phillips5, Jianfeng Liu6, Dexiang 

4 Chen7, Dazhi Wen1, 2, 3, Silong Wang8, Longchi Chen8, Xingjun Tian9, Yuanwen Kuang1, 2, 3*

5 1. Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, 

6 South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, 

7 Guangzhou 510650, China 

8 2. Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, 

9 China

10 3. Heshan National Field Research Station of Forest Ecosystem, South China Botanical 

11 Garden, Guangzhou 510650, China

12 4. College of Resources and Environment, University of Chinese Academy of Sciences, 

13 Beijing 100049, China

14 5. School of Geography, University of Leeds, LS2 9JT

15 6. Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, 

16 Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China

17 7. Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 

18 510520, China

Page 1 of 31 AUTHOR SUBMITTED MANUSCRIPT - ERL-110434.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



 2 / 31

19 8. Key Laboratory of Forest Ecology and Management, Huitong Experimental Station of 

20 Forest Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 

21 110016, China.

22 9. School of Life Science, Nanjing University, Nanjing 210023, China

23 *Author for correspondence: Yuanwen Kuang, Email: kuangyw@scbg.ac.cn, Tel: 86-20-

24 37082092, ORCID id: orcid.org/0000-0003-0627-9519

25
26

Page 2 of 31AUTHOR SUBMITTED MANUSCRIPT - ERL-110434.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



 3 / 31

27 Abstract

28 Global changes, e.g., global warming, elevated nitrogen deposition, and shifts of precipitation 

29 regime, exert a major influence on forests via affecting plant water use efficiency (WUE) and 

30 plant nitrogen (N) availability. Large-scale ecological sampling can help us to better 

31 understand variation across regions and provide opportunities to investigate the potential 

32 impacts of multiple aspects of global change on forest ecosystem responses. Here, we 

33 determine the geographical patterns of key isotopic measures of ecosystem function –plant 

34 WUE (calculated from foliar δ13C values) and plant N availability (assessed by foliar δ15N 

35 values) – across China’s forests covering ~ 21 latitude (~22–43˚ N) and ~28 longitude (~93–

36 121˚ E) degree, and investigate how a suite of soil, plant, and atmospheric factors regulate 

37 them. We found that plant WUE increased but N availability decreased with latitude, while 

38 plant WUE and N availability did not vary with longitudinal gradient. Different factors 

39 regulate the large-scale patterns in WUE and N availability. The mean annual temperature, 

40 atmospheric N deposition, and soil water content exhibit considerable effects on plant WUE 

41 over both the north-to-south and east-to-west transects, while the mean annual precipitation, 

42 soil potassium content, foliar N, and precipitation seasonality considerably affect the 

43 latitudinal patterns of plant N availability. In addition, the east-to-west spatial pattern in plant 

44 N availability is associated with the variation in solar radiation. Our results suggest that key 

45 forest ecological functions respond to an array of environmental factors, and imply that 

46 changes in many different environmental attributes need to be considered in order to 

47 successfully assess plant WUE and N availability responses to global changes this century.
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48 Keywords 

49 Broad-leaved forest, Geographical transect, Foliar carbon and nitrogen isotopes, Nitrogen 

50 availability, Precipitation seasonality, Water use efficiency 
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51 Introduction

52 Geographical transects such as latitudinal and longitudinal gradients provide opportunities to 

53 explore not only the current controls on ecosystem function, but also to assess how 

54 environmental changes in the future might impact ecosystems. Over such spatial gradients, 

55 environmental factors e.g., precipitation, nitrogen (N) deposition, and climatic variability 

56 substantially vary with longitude and altitude in China (Li et al 2015, Ma et al 2019, Willig et 

57 al 2003,Yu et al 2019). Such spatial-environmental changes provide the possibility to explore 

58 how ecosystem variables might respond to global or regional change in the future (Niu et al 

59 2018). 

60 Plant water use efficiency (WUE) and forest N availability are key measures of how water, 

61 carbon, and N are processed (Birami et al 2020, Craine et al 2018, Elmore et al 2016, 

62 Hatfield and Dold 2019, Yanni et al 2011), which are subject to great geographical and 

63 temporal variation in environmental factors (Birami et al 2020, Huang et al 2016, Liang et al 

64 2020). Nitrogen availability is typically assessed by foliar δ15N values, with high δ15N values 

65 always indicating high N availability in forest ecosystems (Craine et al 2009, 2015, 2018, 

66 Elmore et al 2016, Garten 1993, Hogberg 1997). Atmospheric CO2 exihbit substantial effects 

67 on both plant WUE and N avialibity (Adams et al 2020, Craine et al 2018, Dusenge et al 

68 2020, McLauchlan et al 2017, Soh et al 2019). Increases in mean annual temperature (MAT) 

69 and precipitation (MAP) can lead to decline of plant WUE for increasing stomatal 

70 conductance (Kimm et al 2020, Matthews and Lawson 2019, Reynolds-Henne et al 2010). 

71 Increasing N deposition may either increase or decrease plant WUE due to impacts on plant 
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72 photosynthesis and stomatal conductance (Brook and Coulombe 2009, Huang et al 2016, 

73 Liang et al 2020). Forest N availability is negatively correlated with MAP (Craine et al 2018, 

74 Ma et al 2019), but positively correalted with MAT (Craine et al 2018) and N deposition 

75 (Hietz et al 2011), caused by differences between plant N absorption rate, plant growth rate, 

76 or soil organic mineralization (Elmore et al 2016, Hung Dinh et al 2013, Lambers and Poorter 

77 1992). In addition, the climatic variability, e.g., precipitation and temperature seasonality (PS 

78 and TS, respectively), are also likely to affect plant WUE and N availability (Li et al 2016, 

79 Stevens 1989). A number of other climatic factors, such as precipitation regime (Liu et al 

80 2013a), wind speed (Cornwell et al 2018, Hatfield and Dold 2019; Schymanski and Or 2016), 

81 and vapor pressure deficit (VPD, Grossiord et al 2020, Shi et al 2019, Zhang et al 2014) can 

82 have individually small but cumulatively substantial impacts on plant WUE and N 

83 availability. Furthermore, soil factors and plant traits also affect plant WUE and N availability 

84 (Grzebisz et al 2013, Maxwell et al 2018), e.g., soil pH may affect plant WUE via changing 

85 plant photosynthesis (Cornwell et al 2018, Hung Dinh et al 2013, Koehler et al 2016, 

86 Niwayanma and Higuchi 2018). However, more comprehensive assessments of different 

87 factors across the soil-atmosphere interface (i.e., spanning ‘traditional’ and other climate 

88 variables, soil factors, and plant traits) on plant WUE and N availability are especially 

89 lacking.  

90 In this study we take a large-scale approach aiming to determine the latitudinal and 

91 longitudinal patterns of dominant plant species’ WUE and forest N availability (indicated by 

92 foliar δ15N values) across China, and the important environmental factors contributing to 
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93 these patterns. Together, quantifying the large-scale responses of forest WUE and N 

94 availability to multiple different environmental factors provides an opportunity to predict the 

95 potential changes in forests as they function, which is closely related to water, C, and N 

96 cycles of forest ecosystems facing ongoing global changes.

97 Materials and methods

98 Sampling and measurement

99 The sites in this study are conserved locations included in the program “Forest Ecosystem 

100 Carbon Project in China” (Tang et al 2018), in which the main land of China was divided into 

101 35,800 grid cells based on vegetation diversity, and 4.5% grid cells were selected for 

102 investigation (Tang et al 2018). From these a total of 2,234 different forest sites has been 

103 sampled from across China, from which foliar of dominant forest plants were sampled. Foliar 

104 of the several dominant broad–leaved woody species in these broad–leaved forests were 

105 collected in 2011-2012. For each dominant species in each forest, at least 10 mature, current-

106 year, fully expanded, and healthy sunlit leaves from mature individuals (breast height greater 

107 than 5 cm) were collected per dominant species per forest site. Species were considered 

108 dominant based on the criteria described by Tang et al (2018).

109 For this study, we collected foliar samples from 244 sites located in both a latitudinal and a 

110 longitudinal transects, including 92 dominant tree or shrub species (Figure S1) over the 

111 latitudinal and longitudinal gradients. Sampling sites in our study were distributed extensively 

112 over the Chinese mainland from within the tropics (22°N) to the cool temperate forest zone at 

113 43°N, and from 93°E to 121°E (Figure 1). All foliar samples were dried to a constant weight 
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114 (65℃ for 72 h) and ground for analyses. Foliar N concentrations were determined with an 

115 elemental analyzer (Isoprime 100, Elementar Isoprime, UK). Foliar δ13C and δ15N values 

116 were determined using a mass spectrometer (Thermo Finnigan, North Pod Waltham, 

117 Massachusetts, USA). 

118 Water use efficiency was calculated from foliar δ13C values according to Farquhar et al 

119 (1982) and Ehleringer and Cerling (1995): 

∆13C =  
(δa ― δp)

(1 +
δp

1000)
(1)

∆13C =  a + (b ― a) 
Ci

Ca
(2)

WUE =  
(Ca ― Ci)

1.6
(3)

120 where: Δ13C (‰) is carbon (C) isotope discrimination, δa and δp are δ13C values for source 

121 atmospheric CO2 and foliar, respectively, δ13C values of atmospheric CO2 are about -8.4‰ 

122 during 2011-2012; a is the discrimination due to slower diffusion of 13CO2 through stomata, 

123 and b is fractionation discrimination by Rubisco against 13CO2 (b = 27‰, a = 4.4‰) 

124 (Farquhar et al 1982); Ci is intracellular CO2 concentration in leaf cells; Ca is atmospheric 

125 CO2 concentration (391.98 ppm); and 1.6 is the ratio of gaseous diffusivity of CO2 to water 

126 vapor (Ehleringer and Cerling 1995).

127 Nitrogen availability is indicated by foliar δ15N values, with high δ15N values showing high 

128 N availability in forest ecosystems (Hogberg 1997). The indications of foliar δ15N values on 

129 N availability are now confident (Craine et al 2009, 2015, 2018, Elmore et al 2016, Garten 

130 1993).
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131

132 Figure 1. Locations of the 244 sample sites (broad-leaved forests) in the current study. Dark-

133 green sites collectively provide a longitudinal forest transect spanning nearly 3,000 km; red 

134 sites provide a latitudinal forest transect of 2,500 km; blue sites are included in both the 

135 latitudinal and the longitudinal transects.  

136

137 Variables related to soil-atmosphere interface

138 Mean annual temperature, MAP, TS, and PS were directly extracted from the standard (19) 

139 WorldClim Bioclimatic variables for WorldClim version 2 (1 km2), and mean annual solar 
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140 radiation (Solar), wind speed (Wind), and water vapor pressure (VAP) were indirectly 

141 calculated by monthly data (1 km2) extracted from WorldClim version 2 (Fick and Hijmans 

142 2017). The VPD was calculated from temperature and VAP (Grossiord et al 2020). Data for 

143 monthly potential evapotranspiration (PET) were extracted from Trabucco and Zomer 

144 (2019a). The monthly soil water content (SWC) and actual evapotranspiration (AET) were 

145 extracted from Trabucco and Zomer (2019b). Total N deposition (Ndep) was estimated based 

146 on Jia et al (2019), and soil pH, cation exchange capacity of soil (CEC), clay content (Clay), 

147 silt content (Silt), organic carbon (SOC) for 0-300 mm depth was derived from 

148 SoilGrids250m (Hengl et al 2017). Soil N, phosphorus (P, soil P), and potassium (K, soil K) 

149 contents (~30 cm in depth, g/100g) were extracted from the global soil dataset 

150 (globalchange.bnu.edu.cn) with 30-second resolution (Shangguan et al 2013), according to 

151 the geographic locations of the sampling sites using ArcGIS 10.3 for Desktop (v.10.3.0.4322). 

152 The unit of each environmental factor see Table S1.

153

154 Data analysis

155 All environmental factors were standardized via Equation (4) to a mean of 0 and standard 

156 deviation of 1 to reduce the magnitude and multicollinearity (Du et al 2020) by function scale 

157 in R base package (R Core Team 2019). 

Standardized value =  
Original value ― mean value

standard deviation
(4)

158 In order to detect the influence of phylogenetic development on foliar δ13C and δ15N values 

159 of the dominant species in this study, an ultrametric phylogenetic tree was pruned using 
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160 phylo.maker function in V.PhyloMaker R package (Figure S1, Jin and Qian 2019). We tested 

161 phylogenetic signals of plant WUE and foliar δ15N values based on Pagel’s lambda (λ) and 

162 Bolmberg’s K statistic (K) calculated by phylosig function in phytools R package (Table S3). 

163 A value of λ and K closing to 1 (P < 0.05) suggests strong phylogenetic signal (Hao et al 

164 2014).

165 Linear mixed effects models (LMEM) were used to determine the patterns of plant WUE 

166 and foliar δ15N values along geographical transects, with geographical gradient as fixed effect 

167 and with altitude as random effect (Crawley 2007). We determined variance explained of tree 

168 species, geographical gradients, altitude, and sampling site by calcVarPart function in 

169 variancePartition R package after creating models with formual as Variable ~ 1 + Latitude + 

170 Altitude + (1|Species) + (1|Site) and Variable ~ 1 + Longitude + Altitude + (1|Species) + 

171 (1|Site), because linear mixed effect model is more accurately in estimation variance 

172 component than ANOVA due to set a Gaussian prior on variables modeled as random effects 

173 (Hoffman and Schadt 2016, Nakagawa and Schielzeth 2013). 

174 We used step and lmer function in lmerTest R package to select and established best fit 

175 models based AICc of each model to find out which and how environmental factors and foliar 

176 N control the geographical patterns of plant WUE and foliar δ15N values, with species, and 

177 sample sites as random effects. The collinearity of fit models was assessed through variance 

178 inflation factors (VIF) (Marchand et al 2020), and VIF of each variable lower than 5 indicated 

179 negligible collinearity (Hovenden et al 2019). 

180 We used structural equation models (SEM) to test the causes that plant WUE and foliar 
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181 δ15N values varied with geographical gradient from the perspective of environmental factors. 

182 We added the correlations between latitude or longitude and environmental factors on the 

183 basis of best models mentioned above and built an a priori model. We ran the a priori model, 

184 then removed all non-significant paths, and reran the new model. A goodness-of-fit of model 

185 was assessed by the ratio of χ2 to degrees of freedom (χ2/df ≤ 2, P > 0.05), and comparative fit 

186 index (CFI ≥ 0.95) (Schermelleh-Engel et al 2003). Significance was set at P < 0.05. All 

187 statistical analyses were performed using the R software platform (R Core Team 2019).

188

189 Results and discussion

190 Latitudinal and longitudinal patterns of plant WUE and foliar δ15N values

191 Plant WUE and foliar δ15N values significantly varied along latitudinal, while did not vary 

192 along longitudinal gradient, with WUE and foliar δ15N values increased and decreased, 

193 respectively, with latitude (Figure 2a, b; 3, Table S2). Overall, ~ 32.2% and 2.0% of the 

194 variance for plant WUE and foliar δ15N values, respectively, could be explained by latitude, 

195 but 0.1% and 1.2% of the variance, respectively, by longitude (P > 0.05, Figure 2, 3). In 

196 addition, 0.7~9.4% and 1.0~8.5% of the variance for plant WUE and foliar δ15N values, 

197 respectively, were explained by altitude, and 26.3 ~ 51.2% and 38.0 ~ 64.9% of variance for 

198 plant WUE and foliar δ15N values, respectively, were explained by sampling site in this study 

199 (Figure 3). 
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200

201 Figure 2. Patterns of plant water use efficiency (WUE, a, c) and foliar N isotope (δ15N values, 

202 b, d) along latitudinal and longitudinal gradients tested by the linear mixed effects model, 

203 with longitude or latitude as fixed effect, and with species and altitude as random effects 

204 (Table S2). Solid and dashed lines indicate plant WUE and foliar δ15N values varied with 

205 geographical gradients significantly or non-significantly, respectively, at P < 0.05 level.
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206

207 Figure 3. Variance explained of plant water use efficiency (WUE) and foliar nitrogen 

208 isotopes values (δ15N values), explained by geographical gradients, species, sampling site, and 

209 altitude. Variance derived from calcVarPart function in variancePartition R package with 

210 formula as Variable ~ Latitude + Altitude + (1|Species) + (1|Site) and Variable ~ Longitude + 

211 Altitude + (1|Species) + (1|Site), respectively, for latitude and longitude. “Gradient” indicates 

212 latitude and longitude, respectively, in left and right panel.

213

214 It is already known that both plant WUE and foliar δ15N values can differ significantly 

215 among tree species, functional types, and environmental gradients (Ma et al 2019, Soh et al 

216 2019, Soolanayakanahally et al 2009, Tang et al 2014). In this study, plant species exhibit 

217 effects on plant WUE (8.0~9.1%) and foliar δ15N values (10.1-18.5%) (Figure 3), however, 
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218 significant phylogenetic signals were not found (λ< 1, P > 0.05, Table S3). Thus, the 

219 interpretation of geographical gradients and in particular sampling site on the variation of 

220 plant WUE and foliar δ15N values imply that both plant WUE and N availability are 

221 associated with the environmental factors, in particular along the latitude (Figure 2) where 

222 environmental factors, e.g., temperature, vary significantly from the south to the north of 

223 China (Li et al 2016). Our findings differ from Wei et al (2019) who found instead that plant 

224 WUE decreased with increasing latitude. The pattern of plant WUE decreased but not 

225 significantly with increasing longitude is also inconsistent with Li et al (2016) who found the 

226 WUE of invasive herbs declines toward the east in China.The differences between previous 

227 studies and our study might result from the different ecosystems (broad-leaved forest 

228 ecosystems in this study vs arid shrub ecosystems in Wei et al 2019), vegetation types (shrubs 

229 and trees in this study vs herbs and shrubs in Li et al 2016 and Wei et al 2019), and 

230 geographical regions (covering 22–43°N, 93–121°E in this study vs 35–55°N, 47–85°E in 

231 Wei et al 2019). These findings suggest that exhibiting of high WUE for tree species growing 

232 at high latitudes (north) may be one of adaptive strategies to the dry and cold conditions. 

233 Our results also showed that foliar δ15N values decreased with increasing latitude 

234 although the foliar samples at higher latitude is relatively less than at lower latitude, but were 

235 invariant with longitude (Figure 2b, d). Numerous studies have revealed that plant growth is 

236 more likely to be limited by soil N at higher latitudes (e.g., Du et al 2020). Based on the 

237 efficiency of foliar δ15N values indicating plant N availability (Craine et al 2018, Elmore et al 

238 2016), the broad-scale patterns of foliar δ15N values shown in this study support the inference 

Page 15 of 31 AUTHOR SUBMITTED MANUSCRIPT - ERL-110434.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



 16 / 31

239 that low N availability characterizes high-latitude forests due to low rate of mineralization 

240 (Liu et al 2016). However, it is bear noted that there are relatively higher foliar δ15N values in 

241 37~45°N than those in 30~35°N, which might result from high N deposition (Yu et al 2019) 

242 but lower net primary production of temperature forest than (sub)tropical forests (Zhuang et 

243 al 2009), leading to less consumption of soil available N.

244 Factors regulating the variation of plant WUE and foliar δ15N values

245 Two models were established to determine which and how environmental factors and foliar N 

246 affect plant WUE and foliar δ15N values along the geographical gradients (Table 1, Figure 

247 S2). Mean annual temperature, Ndep, and SWC explained 37% variations of plant WUE, with 

248 significantly negative correlations between MAT, SWC and plant WUE, while positive ones 

249 between Ndep and plant WUE (Table 1). Foliar δ15N values were positively correlated with 

250 MAP, PS, solar radiation, soil K, and foliar N, but negatively with TS (Table 1). 21% 

251 variance of foliar δ15N values could be explained by the above factors (Table 1).

252  

253
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254 Table 1 Summary of the best-fitted models for determining the relationships between 

255 independent variables and plant WUE and foliar δ15N values. All independent variables were 

256 standardized. The abbreviations of each variable can be found in Table S1. R2
m: R2 of fixed 

257 effects only; R2
c: R2 of both fixed and random effects. All VIF of variables in each model are 

258 lower than 5 (Table S4).

Variable

Dependence Independence
Estimate SE df t value P (>|t|) R2

WUE Intercept 46.25 1.48 97.52 31.21 <0.001 R2c = 0.74

MAT -8.84 1.47 146.42 -6.02 <0.001 R2m = 0.37

Ndep 4.63 1.48 115.36 3.13 0.002

SWC -8.09 1.43 139.46 -5.67 <0.001

δ15N Intercept -2.81 0.19 106.82 -15.01 <0.001 R2c = 0.76

MAP 0.71 0.27 141.65 2.66 0.009 R2m = 0.21

TS -0.63 0.23 128.43 -2.76 0.007

PS 0.61 0.22 124.32 2.73 0.007

Solar radiation 0.47 0.18 133.34 2.59 0.011

Foliar N 0.62 0.10 278.37 6.51 <0.001

Soil K 0.47 0.17 186.72 2.72 0.007

259 Apparently, plant WUE and foliar δ15N values in this study were affected by different 

260 variables as shown by the best-fitted models. The correlations between environmental factors 

261 and plant WUE are consistent with previous studies (Cornwell et al 2018, Matthews and 

262 Lawson 2019). The adverse impacts of temperature on stomatal regulation (Liu et al 2018, 

263 Matthews and Lawson 2019, Urban et al 2017) and photosynthesis (Hebbar et al 2020) of 

264 plants explained the significantly negative relationships between MAT and plant WUE. The 
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265 result implies that WUE of forest plants might be declined under future global warming. High 

266 SWC could increase evapotranspiration, transpiration (Matthews and Lawson 2019, Xue et al 

267 2016, Schymanski and Or, 2016, Zhang et al 2019) and leaf water potential (Liu et al 2013b), 

268 leading to low WUE. The relationship between SWC and WUE contribute to the changes in 

269 plant WUE in this study. The enhancement of plant photosynthesis caused by increasing N 

270 deposition (Brooks and Coulombe 2009) might explain the positive relationships between N 

271 deposition and WUE in this study. This result supports that increasing N deposition can 

272 enhance WUE of forest plants (Lu et al 2014). 

273 The effects of plant (traits) on foliar δ15N values suggest that the floristic composition of 

274 the community itself may be a critical factor when considering how changing N availability 

275 will impact forest ecosystems (Craine et al 2018). We found that foliar δ15N values were 

276 significantly correlated with foliar N, which is consistent with Craine et al (2018), indicating 

277 that high N availability enhances plant N absorption. We also found that TS, PS, MAP, soil 

278 K, and solar radiation substantially affected foliar δ15N values, showing their substantial 

279 impacts on N availability. Frequent and high precipitation may shorten plant photosynthesis, 

280 decrease N absorb, resulting high N availability in forest with high MAP and PS as shown in 

281 this study, which are inconsistent with previous studies showing N declines with MAP 

282 (Craine et al 2018, McLauchlan et al 2017). Temperature variability (i.e., TS) exhibits 

283 considerable influence on leaf senescence and N input (Asseng et al 2011), soil microbial 

284 activities, and litter decomposition (Gremer et al 2018; Schimel et al 1999), which lead to the 

285 negative relationships between TS and foliar δ15N values in this study. In addition, increases 
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286 of solar radiation at lower level may benefit to plant growth and increases plant N storage (Pu 

287 et al 2020), but can also enhance soil N mineralization due to increase soil temperature 

288 (Grzebisz et al 2013, Guntiñas et al 2012, Xue et al 2016), resulting in high N availability. 

289 Possible mechanisms for latitudinal and longitudinal patterns of WUE and foliar δ15N 

290 values

291 Considering the effects of factors on plant WUE and foliar δ15N values (Figure 4, S3-S5), we 

292 identified that MAT, SWC (negatively, -), and atmospheric N deposition (positively, +) drove 

293 the patterns of plant WUE (Figure 4a, Figure S3), while MAP (-), PS (+), foliar N (+) and 

294 soil K (+) drove the ones of foliar δ15N values, over the latitude (Figure 4b, Figure S3). 

295 Along the longitudinal gradient, changes in plant WUE were attributed to MAT, N 

296 deposition, and SWC (+) (Figure 4c, Figure S4), while changes in foliar δ15N values were 

297 associated with MAP (+), solar (+), and foliar N (+), and soil K (-) (Figure 4d, Figure S4). 
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298

299 Figure 4. Pathways of the effects of longitude and latitude on plant WUE and foliar δ15N 

300 values assessed by structural equation models. Arcs between independent variables indicate 

301 the covariance between relevant two variables. Line width corresponds to parameter size. The 

302 red and black lines indicate significantly negative and positive effects (P < 0.05) respectively

303 Given the significant variations of plant WUE and foliar δ15N values with latitude but not 

304 with longitude, there were extremely complicated influences for environmental factors and 

305 foliar N on plant WUE and foliar δ15N values in longitude as shown by the SEM (Figure 4). 

306 The possible reasons for the latitudinal pattern of plant WUE are the declines of MAT and 
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307 SWC but increases of N deposition along the latitude. The decline of N availability along 

308 latitude is likely caused by the decline of MAP, but most of declines can be offset by the 

309 effects of PS, foliar N, and soil K on N availability. In contrast, the longitudinal patterns of 

310 plant WUE and N availability might be contributed to the offsets between the negative and 

311 positive effects, e.g., the negative effects of MAT and SWC but the positive effects of N 

312 deposition on plant WUE. In addition, the lower variations of climate, e.g., MAT and MAP, 

313 (Figure 4), but larger difference of N deposition, along longitude than along altitude (Yu et al 

314 2019) led to the differences in the controlling factors to WUE and foliar δ15N values. Our 

315 results suggest that the effects of longitude on plant WUE and N availability are also 

316 important to reveal how environmental factors control the functions and processes of forest 

317 ecosystems. The large-scale geographical patterns and the driving factors of plant WUE and 

318 N availability in the forests across China address our second aim, concerning which 

319 environmental factors contribute to the spatial gradients in plant WUE and N availability and 

320 how their influence may differ depending on the environmental context. Our results suggest 

321 that more environmental factors including solar radiation and climate seasonality should be 

322 taken into consideration in predicting the status of plant WUE and N availability under global 

323 changes.

324 Conclusions

325 We analyzed an extensive gradient of Chinese broad-leaved forests, and found that the water 

326 use efficiency of dominant tree species increased from south to north, while N availability 

327 declined over latitudinal gradients. Neither plant WUE nor N availability varied with 
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328 longitude. Multiple factors and leaf traits regulate the geographical patterns of WUE and N 

329 availability. Specifically, mean annual temperature, N deposition, and soil water content drive 

330 the north-south variation in plant WUE, instead there are more factors - mean annual 

331 precipitation, precipitation seasonality, soil K content, and foliar N concentration – which 

332 drive N availability over longitudinal gradients. Overall, this large-scale analysis of 

333 contemporary variations in isotopic C and N indicators of Chinese forests’ ecological 

334 functions reveal not only that a wide range of environmental factors are influential, but also 

335 that the impact of each is highly context-dependent. This suggests that through this century, 

336 changes in multiple aspects of the soil-plant-atmosphere system are likely to have significant, 

337 but regionally differing, impact on forest ecological functions.

338
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