
This is a repository copy of Determination of time-dependent coefficients in moving 
boundary problems under nonlocal and heat moment observations.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/171263/

Version: Accepted Version

Article:

Adil, Z, Hussein, MS and Lesnic, D orcid.org/0000-0003-3025-2770 (2021) Determination 
of time-dependent coefficients in moving boundary problems under nonlocal and heat 
moment observations. International Journal of Computational Engineering Science, 22 (6).
pp. 500-513. ISSN 1550-2287 

https://doi.org/10.1080/15502287.2021.1892870

© 2021 Taylor & Francis Group, LLC. This is an author produced version of an article 
published in International Journal for Computational Methods in Engineering Science and 
Mechanics. Uploaded in accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Determination of time-dependent coefficients in
moving boundary problems under nonlocal and heat

moment observations

Z. Adil1, M.S. Hussein1 and D. Lesnic2
1Department of Mathematics, College of Science, University of Baghdad, Baghdad, Al-
Jaderia, Iraq
2 Department of Applied Mathematics, University of Leeds, Leeds , LS2 9JT, UK
E-mails: (Z. Adil: zahraaadel49@gmail.com), (M.S. Hussein: mmmsh@sc.uobaghdad.edu.iq),
(D. Lesnic: amt5ld@maths.leeds.ac.uk).

Abstract
This paper investigates the reconstruction of time-dependent coefficients in the transient
heat equation in a moving boundary domain with unknown free boundaries. This problem
is considered under Stefan/heat moments overdetermination conditions also dependent of
time. This inverse problem is nonlinear. Moreover, although local existence and unique-
ness of solution hold, the problem is still ill-posed since small errors into the input data
lead to large errors in the reconstructed coefficients. In order to obtain a stable solution,
the nonlinear Tikhonov regularization method is employed. This recasts as minimizing
a regularization functional subject to simple bounds on variables. Numerically, this is
accomplished using the Matlab toolbox optimization routine lsqnonlin. Numerical results
illustrate that stable and accurate solutions are obtained.

Keywords: Moving boundary problem; inverse problem; coefficient identification prob-
lem; nonlinear optimization, reaction-diffusion equation.

1 Introduction

Inverse geometry problems, e.g. inverse Stefan problems, arise in many technological pro-
cesses related to phase change [5]. In [4, 7, 9], the authors produced numerical solutions
to various moving boundary inverse problems under Stefan/heat moments overdetermina-
tion conditions. In [12], the author investigated the unique solvability of inverse coefficient
identification problems with free boundaries (two-sided Stefan problem). In the present
paper, we advance on these related studies and investigate the possibility of reconstruct-
ing numerically both moving boundaries of a one-dimensional finite slab along with the
time-dependent raection coefficient from initial and boundary conditions, supplemented
by nonlocal and integral observations that may contain errors.

The organization of this paper is as follows. Section 2 presents the mathematical
formulation of the inverse problem with Stefan condition as overspeciefied data, while
Section 3 presents another formulation of the problem with heat moments. The numerical
procedure for solving inverse problems is described in Section 4 and the obtained results
are presented and discussed in Section 5. Finally, conclusions are highlighted in Section
6.
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2 Statements of the inverse problems

In the moving domain ΩT := {(x, t) : h1(t) < x < h2(t), 0 < t < T}, where h1(t) < h2(t),
we consider the inverse problem consisting in the determination of the free boundaries
h1(t) and h2(t), along with the temperature u(x, t) and the intensity of reaction (or
heat transfer, perfusion or radiative) coefficient c(t) satifying the one-dimensional time-
dependent parabolic equation

ut = a(x, t)uxx + b(x, t)ux + c(t)u+ f(x, t), (x, t) ∈ ΩT , (1)

where a > 0 and b are a given functions and f is a given heat source, subject to the initial
condition

u(x, 0) = φ(x), x ∈ [h1(0), h2(0)], (2)

where h1(0) = h01 and h2(0) = h02 are given numbers satisfying h01 < h02, the Dirichlet
boundary conditions

u(h1(t), t) = µ1(t), u(h2(t), t) = µ2(t), t ∈ [0, T ], (3)

and the over-determination conditions

h′

1(t)− ux(h1(t), t) = µ3(t), t ∈ [0, T ], (4)

h′

2(t) + ux(h2(t), t) = µ4(t), t ∈ [0, T ], (5)
∫ h2(t)

h1(t)

u(x, t)dx = µ5(t), t ∈ [0, T ], (6)

where φ(x) and µi(t) for i = 1, 5 are given functions satisfying the compatibility conditions

φ(h01) = µ1(0), φ(h02) = µ2(0). (7)

Note that the equations (4) and (5) represent Stefan conditions of melting between a solid
and liquid. Also, equation (6) represents the mass (energy) specification [2]. The leading
part of the right-hand side of equation (1) could be written in the usual divergence form
by remarking that a(x, t)uxx + b(x, t)ux = (a(x, t)ux)x + (b(x, t)− ax(x, t))ux.

The inverse problem is concerned with the invertibility of the map (µ3, µ4, µ5) 7→
(h1(t), h2(t), c(t)). Introducing the Landau’s transformation y = (x − h1(t))/(h2(t) −
h1(t)), we recast the problem (1)-(6) into the following inverse problem for the unknowns
(h1(t), h3(t), c(t), v(y, t)), where h3(t) := h2(t) − h1(t) and v(yh3(t) + h1(t), t) = u(x, t),
[12]:

vt =
a(yh3(t) + h1(t), t)

h2
3(t)

vyy +
b(yh3(t) + h1(t), t) + yh′

3(t) + h′

1(t)

h3(t)
vy

+ c(t)v + f(yh3(t) + h1(t), t), (y, t) ∈ QT , (8)
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in the fixed domain QT := {(y, t) : 0 < y < 1, 0 < t < T} = (0, 1)× (0, T ),

v(y, 0) = φ(yh3(0) + h1(0)), y ∈ [0, 1], (9)

v(0, t) = µ1(t), v(1, t) = µ2(t), t ∈ [0, t], (10)

h′

1(t)−
vy(0, t)

h3(t)
= µ3(t), t ∈ [0, T ], (11)

h′

3(t) +
vy(0, t) + vy(1, t)

h3(t)
+ µ3(t) = µ4(t), t ∈ [0, T ], (12)

h3(t)

∫ 1

0

v(y, t)dy = µ5(t), t ∈ [0, T ], (13)

Definition 1. As a solution of the inverse problem (8)–(13), we define the quadruplet
(h1(t), h3(t), c(t), v(y, t)) ∈ ((C1[0, T ])2 × C[0, T ]× (C2,1(QT ) ∩ C1,0(QT ))), h3(t) > 0 for
t ∈ [0, T ], that satisfies equations (8)–(13).

The local existence and uniqueness of the solution of problem (8)–(13) (and, via the
transformations h2(t) = h1(t)+h3(t) and u(x, t) = v(yh3(t)+h1(t), t), also of the problem
(1)-(6)) were established in [12], and read as follows.

Theorem 1 (local existence of solution). Assume that the following conditions are satis-
fied:

1. b, f ∈ C1,0(R× [0, T ]), φ ∈ C1[h01,∞), µi ∈ C1[0, T ], i = 1, 2, 3;

2. a ∈ C1,0(R × [0, T ]), ax(x, t) is Holder continuous with exponent α ∈ (0, 1), and
µj ∈ C[0, T ], j = 3, 4;

3. 0 < a0 ≤ a(x, t) ≤ a1, |ax(x, t)| ≤ a2, |b(x, t)| ≤ b0, 0 < f(x, t) ≤ f0, |fx(x, t)| ≤ f1
for (x, t) ∈ R × [0, T ], 0 < φ0 ≤ φ(x) ≤ φ1 for x ∈ [h01,∞), µi(t) > 0, i = 1, 2, 3,
for t ∈ [0, T ]; where a0, a1, a2, b0, f0, f1, φ0 and φ1 are given positive constants.

4. The compatibility conditions (7).

Then, it is possible to specify a time T0 ∈ (0, T ], which is determined by the input data,
such that there exists a (local) solution to the inverse problem (8)-(13) for (y, t) ∈ QT0

.

The initial value of c(0) can be calculated as follows. Using Leibniz’s rule for differentiation
under the integral sign, differentiate equation (6) to obtain

d

dt

(

∫ h2(t)

h1(t)

u(x, t)dx

)

= u(h2(t), t)h
′

2(t)− u(h1(t), t)h
′

1(t) +

∫ h2(t)

h1(t)

ut(x, t)dx

= µ2(t)h
′

2(t)− µ1(t)h
′

1(t) +

∫ h2(t)

h1(t)

ut(x, t)dx = µ′

5(t), t ∈ [0, T ]. (14)

By using the overdetermination conditions (4) and (5), equation (14) becomes

∫ h2(t)

h1(t)

ut(x, t)dx = µ′

5(t) + µ1(t)ux(h1(t), t) + µ1(t)µ3(t) + µ2(t)ux(h2(t), t)− µ2(t)µ4(t).

(15)
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On the other hand, integrating equation (1) with respect to x over the interval [h1(t), h2(t)],
we obtain
∫ h2(t)

h1(t)

ut(x, t)dx =

∫ h2(t)

h1(t)

[a(x, t)uxx(x, t) + b(x, t)ux(x, t) + f(x, t)] dx+ c(t)µ5(t). (16)

By equating (15) and (16) we obtain
∫ h2(t)

h1(t)

[a(x, t)uxx(x, t) + b(x, t)ux(x, t) + f(x, t)] dx+ c(t)µ5(t)

= µ′

5(t) + µ1(t)ux(h1(t), t) + µ1(t)µ3(t) + µ2(t)ux(h2(t), t)− µ2(t)µ4(t),

from which

c(t) =
1

µ5(t)

[

µ′

5(t) + µ1(t)ux(h1(t), t) + µ1(t)µ3(t) + µ2(t)ux(h2(t), t)− µ2(t)µ4(t)

−

∫ h2(t)

h1(t)

[a(x, t)uxx(x, t) + b(x, t)ux(x, t) + f(x, t)] dx

]

.

Now evaluating the last equation at the initial time t = 0, we obtain

c(0) =
1

µ5(0)

[

µ′

5(0) + µ1(0)φ
′(h01) + µ1(0)µ3(0) + µ2(0)φ

′(h02)− µ2(0)µ4(0)

−

∫ h20

h01

[a(x, 0)φ′′(x) + b(x, 0)φ′(x) + f(x, 0)] dx

]

, (17)

where all the quantities are known. The values of h′

1(0) and h′

2(0) can also be obtained
from the compatibility between (2), (4) and (5), as given by:

h′

1(0) = µ3(0) + φ′(h01), h′

2(0) = µ4(0)− φ′(h02). (18)

Theorem 2 (uniqueness of the solution). Assume that the following conditions are sat-
isfied:

1. a ∈ C2,0(R× [0, T ]), b, f ∈ C1,0(R× [0, T ])

2. a(x, t) > 0 for (x, t) ∈ R× [0, T ]

3. φ(x) ≥ φ0 > 0 for x ∈ [h01,∞)

4. µ5(t) > 0 for t ∈ [0, T ].

Then, the inverse problem (8)–(13) cannot have more than one solution.

3 Another related inverse problem formulation

It was pointed out in [12] that the Stefan conditions (4) and (5) or, (11) and (12), can be
replaced by the heat moments of first- and second-order

∫ h2(t)

h1(t)

xu(x, t)dx = µ6(t), t ∈ [0, T ], (19)

∫ h2(t)

h1(t)

x2u(x, t)dx = µ7(t), t ∈ [0, T ], (20)
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or, in terms of transformation y = x−h1(t)
h2(t)−h1(t)

, by

h2
3(t)

∫ 1

0

yv(y, t)dy + h1(t)µ5(t) = µ6(t), t ∈ [0, T ], (21)

h3
3(t)

∫ 1

0

y2v(y, t)dy − h2
1(t)µ5(t) + 2h1(t)µ6(t) = µ7(t), t ∈ [0, T ]. (22)

respectively. Definition 1 is still valid for the solution of the inverse problem (8)-(10), (13),
(21), (22), which is concerned with the possible invertibility of the map (µ5, µ6, µ7) 7→
(h1, h2, c). The local existence and global uniqueness of solution to this problem were
established in [12], and are stated as follows.

Theorem 3 (local existence of solution). Assume that the following conditions are satis-
fied:

1. b, f ∈ C1,0(R× [0, T ]), φ ∈ C1[h01,∞), µi ∈ C1[0, T ], i = 1, 2, 5;

2. a ∈ C2,0(R× [0, T ]), µj ∈ C1[0, T ], j = 6, 7;

3. 0 < a0 ≤ a(x, t) ≤ a1, |ax(x, t)| ≤ a2, |b(x, t)| ≤ b0, 0 < f(x, t) ≤ f0, |fx(x, t)| ≤ f1
for (x, t) ∈ R × [0, T ], where a0, a1, a2, b0, f0 and f1 are given constants. Also,
0 < φ0 ≤ φ(x) ≤ φ1 for x ∈ [h01,∞), µi(t) > 0, i = 1, 2, 5, for t ∈ [0, T ].

4. The compatibility conditions (7) and

∫ h02

h01

xφ(x)dx = µ6(0),

∫ h02

h01

x2φ(x)dx = µ7(0). (23)

Then, we can specify a time T1 ∈ (0, T ], which can be determined by the input data, such
that there exists a (local) solution to the inverse problem (8)-(10), (13), (21)-(22) for
(y, t) ∈ QT1

.

Theorem 4 (uniqueness of the solution). Assume that the conditions of Theorem 2 hold.
Then, the inverse problem (8)-(10), (13), (21)-(22) cannot have more than one solution.

As in the previous inverse problem, we can also find the value of c(0), h′

1(0) and h′

2(0),
as follows. Differentiating equations (6), (19) and (20) we obtain:

µ′

5(t)−

∫ h2(t)

h1(t)

[a(x, t)uxx + b(x, t)ux + f(x, t)]dx = µ2(t)h
′

2(t)− µ1(t)h
′

1(t) + c(t)µ5(t),

(24)

µ′

6(t)−

∫ h2(t)

h1(t)

x[a(x, t)uxx + b(x, t)ux + f(x, t)]dx = h2(t)h
′

2(t)u(h2(t), t)

− h1(t)h
′

1(t)u(h1(t), t) + c(t)µ6(t), (25)

µ′

7(t)−

∫ h2(t)

h1(t)

x2[a(x, t)uxx + b(x, t)ux + f(x, t)]dx = h2
2(t)h

′

2(t)u(h2(t), t)

− h2
1(t)h

′

1(t)u(h1(t), t) + c(t)µ7(t). (26)
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Now, evaluating equations (24)–(26) at t = 0, we obtain

µ2(0)h
′

2(0)− µ1(0)h
′

1(0) + c(0)µ5(0)

= µ′

5(0)−

∫ h02

h01

[a(x, 0)φ′′(x) + b(x, 0)φ′(x) + f(x, 0)]dx =: d1,

µ2(0)h02h
′

2(0)− µ1(0)h01h
′

1(0) + c(0)µ6(0)

= µ′

6(0)−

∫ h20

h01

x[a(x, 0)φ′′(x) + b(x, 0)φ′(x) + f(x, 0)]dx =: d2,

µ2(0)h
2
02h

′

2(0)− µ1(0)h
2
01h

′

1(0) + c(0)µ7(0)

= µ′

7(0)−

∫ h02

h01

x2[a(x, 0)φ′′(x) + b(x, 0)φ′(x) + f(x, 0)]dx =: d3.

We can summarise these equations as follows:




−µ1(0) µ2(0) µ5(0)
−µ1(0)h01 µ2(0)h02 µ6(0)
−µ1(0)h

2
01 µ2(0)h

2
02 µ7(0)









h′

1(0)
h′

2(0)
c(0)



 =





d1
d2
d3



 . (27)

Solving this system of equations for h′

1(0), h
′

2(0) and c(0) we obtain the solution

h′

1(0) =
d3(−h02µ5(0) + µ6(0)) + d2 (h

2
02µ5(0)− µ7(0)) + d1h02(−h02µ6(0) + µ7(0))

(h01 − h02)µ1(0)(h01h02µ5(0)− h01µ6(0)− h02µ6(0) + µ7(0))
,

(28)

h′

2(0) =
d3(−h01µ5(0) + µ6(0)) + d2 (h

2
01µ5(0)− µ7(0)) + d1h01(−h01µ6(0) + µ7(0))

(h01 − h02)µ2(0)(h01h02µ5(0)− h01µ6(0)− h02µ6(0) + µ7(0))
,

(29)

c(0) =
d3 + d1h01h02 − d2(h01 + h02)

h01h02µ5(0)− h01µ6(0)− h02µ6(0) + µ7(0)
. (30)

4 Numerical solution of inverse problems

For the inverse problems described in Sections 2 and 3, our aim is the simultaneous
stable reconstructions of the time-dependent unknown coefficient c(t), together with the
unknown moving boundaries h1(t) and h3(t), and the transformed temperature v(y, t),
satisfying the equations (8)-(13) or, (8)-(10), (13), (19) and (20). This is accomplished
by minimizing the following nonlinear least-squares Tikhonov regularization functionals:

F1(h1, h3, c) =

∥

∥

∥

∥

h′

1(t)−
vy(0, t)

h3(t)
− µ3(t)

∥

∥

∥

∥

2

+

∥

∥

∥

∥

h′

3(t)−
vy(0, t) + vy(1, t)

h3(t)
+ µ3(t)− µ4(t)

∥

∥

∥

∥

2

+

∥

∥

∥

∥

h3(t)

∫ 1

0

v(y, t)dy − µ5(t)

∥

∥

∥

∥

2

+ β‖c(t)‖2, (31)

F2(h1, h3, c) =

∥

∥

∥

∥

h3(t)

∫ 1

0

v(y, t)dy − µ5(t)

∥

∥

∥

∥

2

+

∥

∥

∥

∥

h2
3(t)

∫ 1

0

yv(y, t)dy + h1(t)µ5(t)− µ6(t)

∥

∥

∥

∥

2

+

∥

∥

∥

∥

h3
3(t)

∫ 1

0

y2v(y, t)dy − h2
1(t)µ5(t) + 2h1(t)µ6(t)− µ7(t)

∥

∥

∥

∥

2

+ β‖c(t)‖2,

(32)
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where β ≥ 0 is a regularization parameter penalising the coefficient c(t), the norm is in the
space L2[0, T ], and v solves the direct problem (8)–(10) for given (h1, h3, c). We have also
investigated penalising the free boundaries h1(t) and h3(t) with positive regularization
parameters, but the results obtained with no regularization were obtained already stable,
indicating that the inverse problem is ill-posed (unstable) in the components c(t), but not
in the other component h1(t), h3(t) and v(y, t).

The discretised form of equations (31) and (32) are

F1(h1, h3, c) =
N
∑

j=1

[

h′

1(tj)−
vy(0, tj)

h3(tj)
− µ3(tj)

]2

+
N
∑

j=1

[

h′

3(tj)−
vy(0, tj) + vy(1, tj)

h3(tj)
+ µ3(tj)− µ4(tj)

]2

+
N
∑

j=1

[

h3(tj)

∫ 1

0

v(y, tj)dy − µ5(tj)

]2

+ β

N
∑

j=1

c2(tj), (33)

F2(h1, h3, c) =
N
∑

j=1

[

h3(tj)

∫ 1

0

v(y, tj)dy − µ5(tj)

]2

+
N
∑

j=1

[

h2
3(tj)

∫ 1

0

yv(y, tj)dy + h1(tj)µ5(tj)− µ6(tj)

]2

+
N
∑

j=1

[

h3
3(tj)

∫ 1

0

y2v(y, tj)dy − h2
1(tj)µ5(tj) + 2h1(tj)µ6(tj)− µ7(tj)

]2

+ β

N
∑

j=1

c2(tj), (34)

respectively, where tj = jT/N for j = 1, N . The minimization of F1, or F2 is performed
using the MATLAB optimization toolbox routine lsqnonlin, which does not require the
user to supply the gradient of the objective function, [10]. This routine attempts to find
the minimum of a sum of squares by starting from an arbitrary initial guesses, subject to
the physical constraint h3(t) > 0. Thus, we take the lower and upper simple bounds for
h3(t) to be 10−8 and 103 and the lower and upper bounds for h1(t) and c(t) to be −103

and 103, respectively. Furthermore, within lsqnonlin, we use the Trust Region Reflective
(TRR) algorithm [11], which is based on the interior-reflective Newton method. We also
take the parameters of the routine as follows:

• Maximum number of iterations, (MaxIter) = 10× (number of variables).

• Maximum number of objective function evaluations, (MaxFunEvals) = 105× (num-
ber of variables).

• Termination tolerance on the function value, (TolFun) = 10−15.

• Solution tolerance, (XTol) = 10−15.
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The expressions (21) and (22) can be approximated using the following finite difference
approximation formulas and trapezoidal rule for integrals:

µ3(tj) =
h1j − h1j−1

∆t
−

4v1,j − v2,j − 3v0,j
2(∆y)h3j

, j = 1, N, (35)

µ4(tj) =
h3j − h3j−1

∆t
−

(

4v1,j − v2,j − 3v0,j
2(∆y)h3j

−
4vM−1,j − vM−2,j − 3vM,j

2(∆y)h3j

)

+ µ3(tj), j = 1, N, (36)

µℓ+4(tj) =
hℓ
3j

2N

(

yℓ−1
0 v0,j + yℓ−1

M vM,j + 2
M−1
∑

i=1

yℓ−1
i vi,j

)

, j = 1, N, ℓ = 1, 2, 3, (37)

where ∆t = T/N and ∆y = 1/M .

Remark. The direct problem (8)-(13) was solved in detail in [1]. The numerical solution
for the transformed temperature v(y, t) was obtained in excellent agreement with the ex-
act solution (45) and hence it is not presented here.

In order to model the errors in the measured data, we replace µℓ+2(tj) for ℓ = 1, 5, in
equations (11)-(13) or, (21)-(22) by µǫℓ

ℓ+2(tj), by

µǫℓ
ℓ+2(tj) = µℓ+2(tj) + ǫℓj, ℓ = 1, 5, j = 1, N, (38)

where ǫℓj are random variables generated from a Gaussian normal distribution using the
MATLAB function normrnd as:

ǫℓ = normrnd(0, σℓ, N), ℓ = 1, 5, (39)

with mean zero and standard deviation σℓ = p × max
t∈[0,T ]

∣

∣µℓ+2(t)
∣

∣ for ℓ = 1, 5, where p

represents the percentage of noise.

5 Numerical results and discussion

In this section, we present a couple of benchmark numerical test examples to illustrate
the accuracy and stability of the numerical methods based on the finite-difference method
(FDM) based on the Crank-Nicolson scheme (mesh size ∆y = 1/M , ∆t = T/N with
M = N = 40 and taking T = 2) combined with the minimization of the objective function
F1 or F2, as described in Section 4. Furthermore, we add noise to the input measurement
data (11)-(13) and (21)-(22) to simulate the real situation of errors in measurements, by
using equations (38) and (39). To examine the accuracy of the numerical solution, we use
the root mean squares error (rmse) defined by

rmse(h1) =

[

T

N

N
∑

j=1

(hNumerical
1 (tj)− hExact

1 (tj))
2

]1/2

, (40)

and similar expessions exist for h3 and c. All numerical computations have been carried
out on a Laptop with CPU 2.70 Hertz and RAM 16GB on MATLAB @2017a.
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5.1 Example 1 (for inverse problem (8)–(13))

Consider the inverse problem (8)–(13) with unknown coefficients h1(t), h2(t) and c(t), and
the following input data:

a(x, t) = 1, b(x, t) = t(1 + x), φ(x) = π + tan−1(x),

µ1(t) = (1 + t)

(

π + tan−1

(

5 + t

10

))

, µ2(t) = (1 + t)

(

π + tan−1

(

15 + 2t

10

))

,

f(x, t) = π +
2(1 + t)

(1 + x2)2
−

t(1 + t)(1 + x)

1 + x2
+ tan−1(x) + (1 + t)2(π + tan−1(x)),

µ3(t) =
1

10
−

100(1 + t)

125 + 10t+ t2
, µ4(t) =

825 + 560t+ 4t2

1625 + 300t+ 20t2
(41)

µ5(t) =
1 + t

10

(

10π + πt+ (15 + 2t) tan−1

(

15 + 2t

10

)

− (5 + t) tan−1

(

5 + t

10

)

+ 5 ln

(

125 + 10t+ t2

325 + 60t+ 4t2

))

, (42)

µ6(t) =
1 + t

200

(

(10 + t)(−10 + 20π + 3πt) + (325 + 60t+ 4t2) tan−1

(

15 + 2t

10

)

− (125 + 10t+ t2) tan−1

(

5 + t

10

))

, (43)

µ7(t) =
1 + t

3000

(

− 1000 + 3250π + 250t+ 1275πt− 15t2 + 165πt2 + 7πt3

+ (15 + 2t)3 tan−1

(

15 + 2t

10

)

− (5 + t)3 tan−1

(

5 + t

10

)

− 500 ln

(

125 + 10t+ t2

325 + 60t+ 4t2

))

. (44)

One can easily check that the conditions of Theorem 2 hold and hence, the uniqueness
of the solution is guaranteed. In fact, one can easily check that the exact solution of the
transformed inverse problem (8)-(13) is given by

v(y, t) = u(yh3(t) + h1(t), t) = (1 + t)

(

π + tan−1

(

5 + t+ 10y + ty

10

))

, (45)

h1(t) =
5 + t

10
, h3(t) =

10 + t

10
, c(t) = −1− t. (46)

Also,

u(x, t) = (1 + t)(π + tan−1(x)). (47)

We take the initial guesses for the vectors h1, h3 and c as follows:

h0
1j = h01 = 0.5, h0

3j = h02 − h01 = 1, c0j = c(0) = −1, j = 1, N. (48)

Note that the value of c(0) is known from equation (17).
Let us start our investigation for the recovery of the unknowns h1, h3 and c, when

there is no noise in the measured data (11)-(13), i.e., p = 0, and no regularization applied,
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i.e, β = 0. The unregularised objective function F1, as a function of the number of itera-
tions, is plotted in Figure 1. From this figure, one can notice that a rapid monotonically
decreasing convergence to a very low value of order O(10−9) is achieved in 9 iterations (in
less than 20 minutes of computational time). In fact, the minimization routine lsqnonlin
is stopped because the final change in the sum of squares is less than the selected value
of the termination tolerance TolFun = 10−15.
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Figure 1: Unregularized objective function (33), for p ∈ {0, 0.1%} noise and no regularization,

for Example 1.

Figure 2 shows the numerical results and the rmse, as functions of the number of
iterations, for the unknowns h1(t), h3(t) and c(t). It can be seen that accurate and
stable solutions are obtained. In comparison with the exact solutions we find that at
convergence, rmse(h1) = 3.6E − 4, rmse(h3) = 1.3E − 4 and rmse(c) = 4.7E − 2, which
indicate an excellent agreement. In Figure 2(c) it can be seen that slight instabilities
start to appear near the final time T = 2. This behaviour is expected since the inverse
problem under consideration is ill-posed and less information about c(t) than about h1(t)
and h2(t) appear in the input data (11)–(13).
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Figure 2: (a) The exact and numerical solutions for: (a) h1(t), (b) h3(t) and (c) c(t), for
no noise and no regularization, for Example 1, along with the rmse values, as functions
of the number of iterations.

The true solution (45) and the numerically obtained solutions for the transformed
temperature v(y, t), in the case of no noise and no regularization, are shown in Figure 3.

11



2

4

2

6

8

1

v
(y

,t
)

10

Exact solution

t

12

1

y

14

0.5

0 0

2

4

2

6

8

1
v
(y

,t
)

10

Numerical solution

t

12

1

y

14

0.5

0 0

0

0.2

2

0.4

0.6

1

10
-3

A
b

s
o

lu
te

 e
rr

o
r

0.8

t

1

1

y

1.2

0.5

0 0

Figure 3: The exact (45) and numerical solutions for the transformed temperature v(y, t),
for no noise and no regularization, for Example 1. The absolute error is also included.

Next, we add p = 0.1% noise in the input data µ3, µ4 and µ5, using (38) and (39).
The unregularized objective function F1 with, β = 0 is presented in Figure 1. From this
figure one can see that a monotonic decreasing achieved in 100 iterations to reach a low
value of order O(10−3). Also, the associated numerical results presented in Figure 4 are
found stable and accurate for h1 and h2 (with rmse(h1) = 0.0065, rmse(h3) = 2E − 3),
but unstable and inaccurate for the coefficient c(t) (with rmse(c) = 0.4357). This shows
that the inverse problem under investigation is ill-posed problem and small errors (noise)
in input data lead to drastic errors in the output coefficient c(t). One can notice that
the free boundaries h1(t) and h3(t) are not affected by noise inclusion and still have
stable features. Therefore, the free boundaries do not need to be regularized. In order to
restore the stability of the coefficient c(t), regularization should be applied. We use the
Tikhonov regularization method by adding the penalty term in equation (31). We use
various regularization parameter values β ∈ {10−i for i = 1, 8}. For the proper choice of
the reqularization parameter we use the L-curve criterion which is a plot (on ordinary or
doubly-logarithmic scale) of the norm of the regularized solution versus the residual norm,
[3]. This is shown in Figure 5, by plotting the solution norm

√

‖h1‖2 + ‖h3|2 + ‖c‖2 versus
the residual norm given by square root of the sum of the first three terms in the right-
hand side of equation (31). From this figure, it can be observed that the regularization
parameters near the corner of the L-curve are β ∈ {10−3, 10−2, 10−1} for p = 0.1%. The
optimal choice of regularization parameter based on L-curve criterion is β = 10−3. This
value is also associated with the lowest rmse values for h1 and h3 of 5.9E-3 and 1.4E-3,
respectively. A low value of rmse(c) = 0.1976 is also obtained for β = 10−3.
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Figure 4: The exact solution (−−−) and numerical solutions without regularization (-�-)
and with regularization parameters β = 10−3 (-◦-), β = 10−2 (-▽-), for p = 0.1% noise,
for: (a) h1(t), (b) h3(t) and (c) c(t), for Example 1.
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Figure 5: The L-curve method for various regularization parameters, for p = 0.1% noise,
for (a) Example 1 and (b) Example 2.

More numerical details about the objective function values, number of iterations, rmse
for unknowns coefficients with various regularization parameters and the computational
time are given in Table 1.
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Table 1: Numerical results for various regularization parameters β = 0 and β ∈ {10−i|i =
1, ..., 7} for p = 0.1% noise, for Example 1.

Regularization parameter β
0 10−7 10−6 10−5 10−4 10−3 10−2 10−1

No. of iterations 26 72 49 40 43 29 32 35
No. of function
evaluations

3348 9052 6200 5084 5456 3720 4092 4464

Objective func-
tion (33) value
at final iteration

1.7E-4 1.9E-4 3.5E-4 0.0200 0.0184 0.1793 1.7619 17.370

rmse(h1) 8.8E-3 6.3E-3 6.3E-3 6.1E-3 5.3E-3 5.9E-3 0.0219 0.1034
rmse(h3) 2.5E-3 2.0E-3 2.0E-3 1.9E-3 1.7E-3 1.4E-3 2.1E-3 4.9E-3
rmse(c) 0.4357 0.4423 0.4411 0.4266 0.3414 0.1976 0.1710 0.1999
Computational
time in hours

0.4 5.7 3.9 3.1 3.3 2.3 2.6 1.0

Table 2: Numerical results for various regularization parameters β = 0 and β ∈ {10−i|i =
0, ..., 6} for p = 1% noise, for Example 1.

Regularization parameter β
0 10−6 10−5 10−4 10−3 10−2 10−1 1

No. of iterations 401 401 401 401 401 45 40 46
No. of function
evaluations

49848 49848 49848 49848 49848 5704 5084 5828

Objective func-
tion (33) value
at final iteration

0.0782 0.0790 0.086 0.1451 0.4093 1.9533 15.314 140.202

rmse(h1) 0.4571 0.4580 0.4626 0.2699 0.0773 0.2060 0.3538 0.5354
rmse(h3) 0.0203 0.0203 0.0207 0.0170 0.0155 0.0131 0.0127 0.0166
rmse(c) 4.1582 4.1497 4.0283 2.8435 1.3896 0.4308 0.2875 0.3539
Computational
time in hours

24.78 24.78 24.78 24.78 24.78 1.03 0.95 0.99

Noisy data µ3, µ4 and µ5 contaminated by a higher amount of noise such as p = 1%
have also been inverted and the numerically obtained results are presented in Figures 6
and 7, and Table 2. From these illustrations it can be observed that stable retrievals of
the unknown quantities of interest are obtained for β ∈ {10−2, 10−1}.
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Figure 6: Regularized objective function (33), for p = 1% noise, for Example 1.
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Figure 7: The exact solution (−−−) and numerical solutions with regularization param-
eters β = 10−2 (-�-), β = 10−1 (-▽-) and β = 1 (-△-), for p = 1% noise, for: (a) h1(t),
(b) h3(t) and (c) c(t), for Example 1.
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5.2 Example 2 (for inverse problem II)

We consider the other inverse problem described in Section 3 where we replace the Stefan
conditions (4) and (5) by the first- and second-order heat moment measurements (19) and
(20), respectively. The input data are the same as in Example 1, but we replace µ3(t)
and µ4(t) by µ6(t) and µ7(t), computed by equations (43) and (44), respectively. One
can easily check that the conditions of Theorem 4 hold and therefore the uniqueness of
solution holds. The exact solution is given by equations (45)-(47).

The initial guesses for the values h1, h3 and c are given by (48), with the mention
that the value of c(0) is known from equation (30). In order to avoid repetition we only
illustrate the results for p = 0.1% noise in Figure 8 and Table 3. Similar conclusions to
those obtained in Figure 4 and Table 1 for Example 1 can be observed.
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Figure 8: The exact solution (−−−) and numerical solutions without regularization (-�-)
and with regularization parameters β = 10−4 (-◦-), β = 10−3 (-▽-), for p = 0.1% noise,
for: (a) h1(t), (b) h3(t) and (c) c(t), for Example 2.
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Table 3: Numerical results for various regularization parameters β = 0 and β ∈ {10−i|i =
1, ..., 7} for p = 0.1% noise, for Example 2.

Regularization parameter β
0 10−7 10−6 10−5 10−4 10−3 10−2 10−1

No. of iterations 29 43 34 20 22 30 32 31
No. of function
evaluations

3720 5456 4340 2604 2852 3844 4092 3968

Objective func-
tion (34) value
at final iteration

4.9E-17 2.9E-4 1.1E-3 3.5E-3 2.1E-2 0.16915 0.916 1.6346

rmse(h1) 0.0151 0.0147 0.0140 0.0133 0.0119 0.0133 0.0479 0.0796
rmse(h3) 0.0220 0.0214 0.0204 0.0194 0.0171 0.0201 0.0730 0.1209
rmse(c) 9.4612 7.3162 2.7508 1.2052 0.6305 0.4063 1.1280 1.9422
Computational
time in hours

0.5 1.2 0.9 0.5 0.5 0.8 0.9 1.2

6 Conclusions

Inverse problems concerning the simultaneous determination of time-dependent coeffi-
cients and free boundaries in the parabolic heat equation have been numerically re-
constructed by nonlinear optimization using the MATLAB optimization toolbox routine
lsqnonlin. From the numerical investigation, the following conclusions can be drawn:
• The process of reconstructing the moving boundaries using the proposed inverse mod-
elling is well-posed. Moreover, the reaction coefficient is (locally) Uniquely solvable,
though still ill-posed with respect to small errors in the measured data. To restore sta-
bility, regularization has successfully been employed.
• The inverse problem based on measuring the Stefan data (4) and (5) is more stable than
that based on measuring the first- and second-order heat moments (19) and (20).
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