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An Efficient Direct Solver for a Class of Mixed Finite Element
Problems

B.M. Brown!, P.K. Jimack?, M.D. Mihajlovi¢!

Abstract. In this paper we present an efficient, stable and parallelizable direct method for the solution
of the (indefinite) linear algebraic systems that arise in the solution of fourth order partial differential
equations (PDEs) using mixed finite element approximations. The method is intended particularly for
use when multiple right-hand sides occur, and when high accuracy is required in these solutions. The
algorithm is described in some detail and its performance is illustrated through the numerical solution
of a biharmonic eigenvalue problem: where the smallest eigenpair is approximated using inverse iteration
after discretization via the Ciarlet-Raviart mixed finite element method.
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1 Introduction

Fourth order partial differential operators play a significant role in modeling a wide variety of
physical processes. For example, the clamped plate problem and the buckling plate problem,
which arise in the theory of plates and shells [34] are important equations used in the design
of structures. However, in comparison with second order operators, a relatively small amount of
literature is dedicated to such problems. Nevertheless, a variety of numerical procedures for solving
fourth order problems have been investigated, usually based upon the Rayleigh-Ritz method,
using either high-order polynomial approximations or different finite element formulations (see, for
example, [5],[7],[22],[28],[30],[31],[37])-

When high-order polynomials are used, the resulting linear algebra typically requires the so-
lution of dense systems of equations for which standard Gaussian elimination schemes are appro-
priate. We do not consider such cases in this paper. Instead we focus on the use of finite element
techniques. When using conforming elements these techniques fall into essentially two distinct
classes: either a standard weak form of the differential equation may be obtained (by two applica-
tions of the divergence theorem) yielding a problem whose solution lies in H?, or a mixed method
may be used in which a secondary variable is used to directly approximate the second derivative
of the primary variable. This latter problem has a solution in H! x H' which means that a finite
element solution may be sought based upon straightforward C° Lagrangian elements [14],[33],[38].
The former problem requires the use of C' finite elements (e.g. [2],[6],[14]) which are not so simple
to work with in more than one dimension. Since, for this paper, we are concerned with problems in
greater than one dimension (mainly two dimensions in fact), we now restrict attention to a mixed
finite element method based upon C° elements. The purpose of the paper is to propose an efficient
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direct solver for the resulting algebraic equations which makes use of the underlying structure of
this mixed finite element formulation.

In the next section we provide some motivation for wishing to use a direct, rather than an
iterative, linear solver by describing a family of biharmonic eigenproblems. The use of inverse
iteration (for example) leads to a sequence of linear systems to be solved: each with the same
indefinite matrix but a different right-hand side. Moreover, it is demonstrated that very high
accuracy is required in the solution of these systems in order to get an accurate representation of
the fundamental eigenfunction. Section 3 then outlines the particular finite element discretization
that we wish to consider, which is originally due to Ciarlet and Raviart [15]. Despite the fact that
the biharmonic problem is self-adjoint and elliptic, this mixed finite element formulation is shown to
give rise to an indefinite algebraic system which is known to be highly ill-conditioned [23]. Recently,
a number of authors have considered the solution of these linear systems using iterative techniques
based upon efficient multigrid algorithms (see [23],[29],[35] for example). These methods appear
to perform well in terms of their speed and low storage requirements, however, they do require
the existence (or construction) of a multilevel mesh hierarchy which is not always convenient.
Moreover, when multiple right-hand sides must be solved for, and very high accuracy is required,
there are clearly potential advantages to be gained from using a direct, rather than an iterative,
technique.

Having provided some motivation in Sections 2 and 3, Section 4 introduces details of the direct
method that we propose for this class of indefinite system. It is based upon permuting the initial
system to a block tridiagonal form, and then applying block Gaussian elimination on this system.
The memory requirements are minimized by exploiting the sparsity pattern of the coefficient matrix
and, because of the efficient re-use of data obtained in the process of factorization, the method is
suitable for problems with multiple right-hand sides. The proposed method shows high accuracy
when tested on a range of problems, as demonstrated in Section 5, and performs more efficiently
than the use of sparse direct solvers on the original linear systems (also shown in Section 5).
The paper concludes with a brief discussion of the algorithm presented, including issues such as
its efficient parallelization (using the standard LAPACK libraries for example, see [1]) and the
possible use of fast Laplacian solvers on regular structured grids.

2 A fourth order eigenvalue problem

This section is intended to provide the motivation for the rest of the paper by introducing some
practical problems for which the discretized biharmonic equation must be solved on unstructured
meshes, with multiple right-hand sides and to a very high level of accuracy. There are likely to
be other situations where the same requirements arise, such as in iterative design processes for
example, but we do not consider these here.

Consider the following two biharmonic eigenvalue problems:

APy = Du in ), u:%:o on 02, (1)

which is usually referred to as the clamped plate eigenproblem, and

A’y = —AAu in Q, u = Ou =0 on 09, (2)
on



which is the buckling plate eigenproblem [34]. These problems have some interesting features. In
particular, the eigenfunctions corresponding to each of the eigenvalues in these problems may be
shown to possess extreme oscillatory behaviour near to any sufficiently small corners of the domain
Q. The first numerical evidence of this behaviour dates from 1972 when Bauer and Reiss [4]
reported this effect for the eigenfunction corresponding to the smallest eigenvalue of the clamped
plate problem on the unit square. However, because this effect only occurs in areas where the
eigenfunction values are exceptionally small (relative to values near the centre of the domain), the
result was thought to be surprising and was questioned at that time. Nevertheless, later theoretical
results (e.g. [8],[16],[17],[24],[25]), as well as more accurate computations ([37]), confirmed this
initial work to be correct.

For a full discussion of the oscillatory structure of the solutions to (1) near a corner the reader
is referred to [16], which builds upon the earlier papers [8] and [24] (see also [25]). By considering
asymptotic expansions for the eigenfunctions, u, of (1) along the symmetry line of a corner of the
domain (with internal angle ), a number of results may be derived. In particular, if r, is the
distance along the symmetry line to a local extremal value of v and s, is the distance to a zero of
this function, where n increases with decreasing distance from the corner, then it may be shown
that

Tn Sn

~Y

~ exp(m/f3), (3)

as n — 0o. Here (3 is the imaginary part of the complex solution p = .+ i3 of the transcendental
equation

Tn+1 Sp+1

sin((p — 1)6)
sin
which has the smallest real part. In addition the ratio of the magnitudes of the consecutive extrema

can also be derived asymptotically as

p—1+ =0 (4)

07
()~ explan/o) 6)
n+1 Tn+1

as n — oo. (Note that (4) has only real solutions if # > 0.81287 = 146°30', from which it may be
concluded that the oscillations are only present for angles smaller than this critical value.)

In recent years many authors have tried to verify numerically these theoretical results using
a variety of computational techniques (see, for example, [5],[12],[22],[37]). Since the oscillatory
features occur very close to the corners and are damped out very quickly, most of these attempts
have, due to discretization errors and numerical inaccuracy, failed to find more than one sign
change. Clearly this is not sufficient to verify equation (3). A notable exception to this is the
recent paper of Bjgrstad and Tjgstheim ([7]) in which the authors report five correct sign changes
for the principal eigenfunction. For this work a spectral Legendre—Galerkin method is used and
computations are performed using quadruple precision arithmetic.

The above considerations demonstrate that the solutions to eigenproblems of the form (1)
or (2) on domains which contain corners of sufficiently small internal angles (# < 0.81287 in two
dimensions for example) can be highly oscillatory in the neighbourhood of these corners. Moreover,
as one approaches such a corner these sign changes become closer together and the magnitude of
the function gets smaller. If a numerical method based upon the use of finite elements is to be
able to resolve some of these oscillations therefore, it is clear that a very fine mesh is required close
to these corners. Furthermore, the algebraic equations which result from such a discretization will
need to be solved very accurately if the relative error in the magnitudes of the first few oscillations
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is to be acceptable (since the size of the solution at these local extrema is many orders of magnitude
smaller than it is away from the corners).

Before introducing our proposed direct method for the solution of these algebraic equations,
which is designed to satisfy the above requirements, the next section briefly describes the finite
element discretization. This is based upon the use of C° Lagrange finite elements and so may be
applied on an unstructured mesh on an arbitrary polygonal domain in two dimensions.

3 The Ciarlet—Raviart mixed formulation
Let us consider the biharmonic problem
Au=f, (6)

defined on some domain 2 in R?, subject to the Dirichlet boundary conditions

ou
=— =0 0f. 7
u= on (7)
In (6) the right-hand side function f can represent either the usual load vector if we solve the
simple biharmonic equation, or it can be

f=X or f=-Mu (8)

for the clamped plate and the buckling plate eigenproblems, respectively. To simplify the notation
in what follows we shall use the symbol f for all of these cases of the right-hand side vector
throughout this paper, unless explicitly stated otherwise. In this section we consider the Ciarlet—
Raviart mixed method for solving the biharmonic problem in the plane. Many authors have
considered this technique as a starting point in developing methods for solving problem (6)—(7)
(see, for example, [9],[23],[29],[30],[35]). Analysis of mixed methods using mesh-dependent norms
is given in [3].

One can construct a variety of weak formulations of the biharmonic Dirichlet eigenproblem
that are of the following abstract form.

Problem 3.1 Given real Banach spaces V' and W, and bilinear forms a(-,-), b(-,-), c(-,*) on
VXV, VxXW and W x W respectively, find a pair {v,u} € V x W such that

a(v,wi) +b(w,u) = 0 Yw, €V,

b(v,we) — c(we,u) = (f,ws) Vwe € W.

The mixed method of Ciarlet and Raviart [15] is a finite element method for one such formulation.
Introducing an auxiliary function v such that

Au = v,
Av = f 9)

and using Green’s formula we may obtain a weak formulation of the original problem (6)—(7) in
the same form as Problem 3.1 with ¢(+,-) = 0.



Problem 3.2 Find {v,u} € H'(Q) x Hy(Q) such that

(v,wy) + b(wy,u) = 0 Yw, € H'(Q),
bv,wy) = —(f,we) Ywy € Hy (),

where the quadratic form b(-,-) and the L?>-inner product are given by

bp) = [ Vo Vde,  (p%) = [ pwrda (10)

As usual, H'(Q) represents the Sobolev space of L?(Q2) functions whose first partial derivatives are
all in L?(€2), and

1 1 %

H,(Q) = wEH(Q):w\agza— =07.

™ lan

This formulation is studied by Ciarlet and Raviart in [15]. They show that if v and 02 are
sufficiently smooth Problem 3.2 is uniquely solvable, and that the part of the solution u in the pair
{v,u} € H(Q) x H}(Q) also solves the original problem (6)-(7).

If we consider a family of regular and quasi-uniform triangulations, 7" (where A is the diameter
of the largest triangle), of the domain 2 (see, for example, Ciarlet [14]), then we may define the
space

St ={peC’Q) : plr € P,(T), VT € T"},

where P, (T) is the space of polynomials of degree at most m over triangle 7. From this we may
define the following finite-dimensional subspaces of H!(Q2): V* = 8% and Wh = S" N H} (). Then
the Ciarlet-Raviart mixed finite element method approximates the solution {v,u} of Problem 3.2
with the solution of the following problem.

Problem 3.3 Find {v" u"} € VA x W" such that

(vh,wl) + b(wl,uh) = 0 Vuw, € VP,
b(UhaU)Q) = _(fa U)Q) Vwy € wh.

Moreover, if the Brezzi stability conditions are satisfied (see [10],[30] for example), then the unique
solvability of these discrete equations can be established. Indeed, the following error estimate may
be derived ([30]):

h h : h . h
[Au=tllmo) + lu=u ey < C( inf [ Au=wllim + inf Ju-ulm).

where C' is independent of A.

Consider the choice of bases {¢;}7" for V* and {¢;}I%, for W" where ¢; are the usual
Lagrange “hat” functions of degree m and the degrees of freedom are enumerated so that those
that lie on the boundary of €2 are ordered last (from n, + 1 to ny + n.). In [30], for example, it is
shown that for m > 2 the Brezzi stability conditions are satisfied for these spaces and in [15] the
following asymptotic error estimate is given:

lu = w1 @) + [[Au — 0" 2 () < cllull gmrz@h™ " (11)
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(Note that one may also use spaces of differing polynomial degree for V* and W" but for simplicity
we do not discuss such a generalization here.) It is possible to rewrite Problem 3.3 as the following
linear algebraic system (in block matrix form):

M K! v 0
EIHERN ®
where [Kl;; = b(¢;, #5), [M]ij = (¢;, ¢i), K* is the transpose of K and [f]; = (f, ¢;). The vectors
v € Rt and u € R™ denote the coefficients of v and u” respectively when they are expanded
in terms of their basis functions. That is

np+ne np
ot = Z V; O and ul = Zung,
i=1 i=1

The coefficient matrix in (12) is indefinite and is clearly not diagonally dominant. Moreover, this
matrix becomes extremely ill-conditioned as the mesh parameter h — 0. Hence the fast, stable
and accurate solution of (12) is a task that presents significant difficulties when the mesh becomes
very fine.

Recall that when solving a biharmonic eigenproblem f takes one of the forms given in (8). Hence
(12) is really an algebraic eigenvalue problem. Assuming that the solutions of interest correspond
to the smallest eigenvalues in magnitude then it is appropriate to apply an iterative technique such
as the inverse power method or a Lanczos algorithm (see, for example, [21]). In either case it will
be necessary to solve a system with the same coefficient matrix (the indefinite matrix of (12)) at
each iteration. Since this matrix is sparse one possible approach would be to make use of iterative
techniques, such as Krylov subspace methods for example (e.g. [21],[36]). However, when very high
accuracy is required and the system is highly ill-conditioned these algorithms rely almost entirely
on the quality of the preconditioner used. Good preconditioners for other mixed finite element
problems, for solving Stokes’ equations or the linear elasticity equations for example, have been
successfully developed in recent years (see [32], [36]) but these clearly do not apply to systems of
the form (12) which have very different spectral properties.

Another technique that may be considered is to solve the Schur complement system, in which
(12) is reduced to

KM'K'u=f. (13)

Now the coefficient matrix is symmetric and positive-definite however it is still extremely ill-
conditioned (with a condition number of O(h™*) as h — 0, [23]). Hence, for an iterative solver, the
same difficulties of finding an appropriate preconditioner arise here as for the original saddle-point
problem. Moreover, lack of sparsity in the matrix KM ' K*, which is of dimension n; x n;, prevents
the use of a direct solver for (13) when the number of unknowns is large.

Probably the most successful approach that has been used to solve systems of the form (12)
and (13) are multigrid algorithms. Details of how the multigrid approach may be applied to such
problems can be found in [23],[30] for example. These algorithms are capable of producing very
accurate solutions however they are most efficient when only moderate accuracy is required (in
which case fewer cycles need to be completed). Their major disadvantage however is the need for a
hierarchy of grids to be present, which can be a major complication (and significant overhead) when
non-uniform meshes are required on complex geometries. Also, like other iterative approaches, the
multigrid solvers in [23],[30] do not use any information from the first solution of a problem to
improve the efficiency of subsequent solves using the same matrix with a different right-hand vector.
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This therefore leads us to consider the use of direct methods for the solution of multiple systems
of the form (12). Since the coefficient matrix is not diagonally dominant the use of sparse Gaussian
elimination (or LU factorization) will require a pivoting strategy that ensures stability as well as
a small amount of fill-in. There are a number of software tools that are designed for this type
of problem (e.g. [18],[27]) however, of those that we considered here, we found the code called
SuperLU ([18]) to be the most efficient. When compared with iterative techniques on the finite
element grids described in Section 5 below, this code not only executed fastest but also provided
results with a greater number of significant digits of accuracy.

We have not explicitly contrasted the performance of SuperLU against the multigrid approach
of [23] since our objective is to consider methods appropriate for arbitrary unstructured grids which
are as straightforward as possible to use. Nevertheless we have considered the asymptotic cost of
this sparse direct method on systems of the form (12) as the mesh size h is decreased uniformly.
Table 1 shows the number of floating point operations required by SuperLU for various uniform
meshes when using piecewise polynomials of degree 3. As can be seen the solver appears to have a
complexity of approximately O(n'*®) for this class of problem (where n is the dimension of the linear
system and the average value for the exponent is calculated from the three finest meshes), with
a complexity of approximately O(n'?3) for subsequent right-hand sides. This second asymptotic
rate is similar to that obtained by the multigrid approach in [23] however the cost of the sparse
factorization is somewhat greater. This factorization cost may be contrasted with the number of
operations required to solve finite element discretizations of Laplace’s equation on similar grids
using SuperLU. These figures are given for piecewise cubic polynomial approximations in Table
2. For these problems we observe an approximate cost of O(n'®) for the sparse factorization of a
matrix of dimension n. It is this disparity that motivates the direct method that is described in
the following section.

grid | 32x32 | 40x40 | 48x48 | 56x56 | 64x64 | 72x72 | 80x80 | 88x88 | 96x96
n | 18434 | 28802 | 41474 | 56450 | 73730 03314 | 115202 | 139394 | 165800
fact. | 1.196E9 | 2.668E9 | 5.205E9 | 7.812E9 | 1.274E10 | 1.887E10 | 2.776E10 | 3.816E10 | 5.369E10
solve | 1.004E7 | 1.823E7 | 2.961E7 | 4.240E7 | 5.976E7 | 8.078E7 | 1.058E8 | 1.438E8 | 1.796ES8
f+s | 1.206E9 | 2.686E9 | 5.235E9 | 7.854E9 | 1.280E10 | 1.895E10 | 2.787E10 | 3.830E10 | 5.387E10
grid ratio | 32/40 | 40/48 | 48/56 | 56/64 | 64/72 | 72/80 | 80/88 | 88/96 | Ave.
ay 1.798 | 1.833 | 1.317 | 1.831 | 1.668 | 1.832 | 1.660 | 1.962 | 1.821
as 1.337 | 1.330 | 1.165 | 1.285 | 1.279 | 1.280 | 1.610 | 1.277 | 1.389

Table 1: The number of floating point operations required to factorize and solve (forward and
backward substitution) n x n systems of the form (12) resulting from piecewise cubic finite element
discretizations of (6) on uniform grids. Here oy and «; are the exponents in work estimates of the
form C'n® for the factorization and the solution steps respectively.

4 A new direct method

In this section we introduce an efficient direct method for solving the system (12). The approach
is related to a technique which has been used in constrained optimization algorithms, (see [20] for
example), and is essentially based upon a block Gaussian elimination in a manner which allows us
to exploit the sparsity patterns arising from our particular application.



grid 32x32 | 40x40 | 48x48 | 56x56 | 64x64 | 72x72 | 80x80 | 88x88 | 96x96
n 9025 14161 20449 27889 36481 46225 57121 69169 82369
fact. | 4.055E7 | 8.513E7 | 1.567E8 | 2.690E8 | 4.226E8 | 6.214E8 | 8.912E8 | 1.169E9 | 1.564E9
solve | 1.112E6 | 1.942E6 | 3.055E6 | 4.494E6 | 6.242E6 | 8.320E6 | 1.076E7 | 1.345E7 | 1.659E7
Nsru | 4.166E7 | 8.707TE7 | 1.598E8 | 2.735E8 | 4.288E8 | 6.297E8 | 9.020E8 | 1.182E9 | 1.581E9

grid ratio | 32/40 | 40/48 | 48/56 | 56/64 | 64/72 | 72/80 | 80/8% | 88/96 | Ave.
ay 1.646 | 1.661 | 1.740 | 1.683 | 1.629 | 1.740 | 1.419 | 1.666 | 1.608
a, 1.238 | 1.233 | 1.244 | 1.224 | 1.214 | 1.216 | 1.166 | 1.199 | 1.194

Table 2: The number of floating point operations required to factorize and solve (forward and back-
ward substitution) n x n linear systems resulting from piecewise cubic finite element discretizations
of Laplace’s equation on uniform grids. Here oy and a; are the exponents in work estimates of the
form C'n® for the factorization and the solution steps respectively.

Let us consider more carefully the sparsity pattern of the coefficient matrix of the system (12)
where, for simplicity, only piecewise linear approximations are made to u and v in (9) in the first
instance. As in the previous section, denote by n, the number of interior nodes in the triangulation
of 2, and by n, the number of nodes on the boundary 0€). The sparsity pattern of the coefficient
matrix corresponding to a 4 element by 4 element uniform mesh (hence n, = 9 and n. = 16) is
shown on the Fig. 1. The boundaries between the blocks denoted in (12) are marked by the second
row and column of tick marks (after row and column 25). In addition another row and column
of tick marks have been added to define a new block decomposition. This is created by splitting
the blocks M and K in (12) according to whether the corresponding degree of freedom is in the
interior of {2 or on the boundary 0€2. In this way a 3 x 3 block system of the form

M; M! K!'7[
M, My Kt ||uw|=-

Ki KC O u

(14)

[~ 1o 1©

is obtained. Observe that in (14) the block M; is of size ny x ny, M, is of size ne X ne, K; is
of size my x np and the interface rectangular blocks M, and K. have sizes n, X n, and n, X n,
respectively. The unknown vector and the right-hand side are partitioned accordingly. (Note that
when the mesh is large, unlike for Fig. 1 below, the number of nodes inside the body, n,, will be
much greater than the number of nodes satisfying the essential boundary conditions, n.. In fact,
for a two-dimensional problem, it will generally be the case that n, ~ n? as h — 0.)

The system (14) may be simply rearranged by interchanging the first and third row blocks and
then eliminating the unknowns v; from this new third block of equations, to obtain

KZQZ + KCQI) = —i
Mo; + My, +Klu = 0 (15)
(Mg - MiKi_ch)Qb —|—ng = Msz_li .

The system is now in block tridiagonal form and may be solved by means of Gaussian elimination
(sometimes referred to in this special case of a tridiagonal (or block-tridiagonal) system as the
Thomas method). This yields the following equations:

B, =-K'K., 7= —K_li, (16)



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
1 * ok * ok | * * * | * * *
2 * ok % * % | * * | * * *
3 * % * * * * * * * *
4 * * ok * ok * * * * * *
5 * ok * ok %k * ok * * * * *
6 * % * % * * * * * * *
7 * * ok * * * * * * *
8 E * ok ok * * * * *
9 - - - -2 x _ox x| _ _ - x x *x _ _ _ _ _ _\ - - - - - * _ * *
10 * * * *
11 * ok * * * *
12 * %k * * * *
13 * * * * * *
14 * * *
15 * * * * * *
16 * * * * * *
17 * * * * * *
18 * * * *
19 * ok * * * *
20 * ok * * * *
21 * * * * * *
22 * * *
23 * * * * * *
24 * * * * * *
25 | x _ _ox _ _ _ _ _ L
26 * ok * * *
27 * ok ok * *
28 * ok * * *
29 * * ok * *
30 * * ok ok *
31 * * % * *
32 * * ok * *
33 * * ok ok *
34 * * ok * *

Figure 1: The sparsity pattern of the matrix in (12) corresponding to a uniform 4 by 4 grid.

By = —(My+ M,B))'K!, Zy=—(My+ M,By)""M.Z, (17)
Zy = (Kt + (M! - MiK['K,) BQ)_1 (MK f — (M- MiK['K,) 25) . (18)

Note that the unknown vector u must now be equal to Z3. Consequently, the algorithm for solving
the linear system (14) can be organized in 3 macro steps as follows.

Step 1. The equations (16) may be rewritten as
KBy =-K, KZ=-f. (19)

This is really a single system with n, 4+ 1 right-hand sides which may be expressed as
KilBy | Z1] = —[K. | f]. (20)

The sparse matrix K; is symmetric and positive definite. In order to solve the systems (20), we
may therefore use sparse Cholesky factorization of the coefficient matrix K; with any ordering
of the unknowns (e.g. for minimum fill-in or bandedness, etc.), followed by a forward and back-
substitution phase.

It should be noted that when it is necessary to solve the biharmonic problem (1) repeatedly
for different right-hand side vectors, the coefficient matrix in (14) remains the same. This will
enable us to re-use a significant amount of data calculated in the first solve. At this stage, the
sparse Cholesky factorization of the block K; and the matrix B; will remain unchanged, hence for
subsequent calculations this step reduces to a single forward and back-substitution phase to obtain
the vector Z.

Step 2. We now consider equations (17). These may be rewritten as

(My+ M.B1)By = =K}, (My+ M.B1)Zy=—M.Z,

9



or equivalently,
(My + M.B1)([By | Zo] = —[K, | McZy). (21)

The sizes of the matrices involved in (21) are as follows: M, + M. B is of size n, X n., K! is
ne X ny and M.Z; is n, x 1. Consequently, the unknown matrices, B, and Z,, are of size n, X n,
and n, x 1 respectively. Hence (21) may be considered as n, + 1 systems of n, equations, each
with the same coefficient matrix. This coefficient matrix, M, + M_.B, is both dense and non-
symmetric. The conventional approach to solving (21) would therefore be to perform a full LU
factorization of the coefficient matrix (with pivoting as necessary) followed by n, + 1 forward and
backward substitutions. It may be observed however that since n;, > n. the forward and backward
substitution phase is more time-consuming than the factorization (since it has complexity O(nyn?)
which is greater than O(n?)). Given that the matrix K’ on the right-hand side of (21) is sparse
(containing O(n,.) non-zero entries), an alternative is to compute an explicit inverse of M, + M_.B;
in O(n?) operations followed by multiplication with the sparse augmented matrix [K!|M .Z:], also
in O(n3) operations. Even this multiplication is not completely necessary however since it is
advantageous to use (M, + M.B;)™! and the sparse matrix K! separately in Steps 3.3 and 3.6
below, rather than the dense block B,. Hence, having computed (M; + M.B;)~! it remains only
to compute Z, at this step.

We may again note that many of the calculations in this step need only be performed once
when the biharmonic equation is solved many times with different right-hand sides. In particular,
since the coefficient matrix in (21) depends only upon the coefficient matrix of the original system,
(12), the inverse need only be calculated once and than re-used. Consequently, on all subsequent
applications of this algorithm, Step 2 reduces to just two matrix—vector multiplications in order
to calculate the vector Zs.

Step 3. Finally, we consider the third block of equations (18). These may be rewritten in the
form

(KE + (M + MiB)B2) Zy = —(MiZy + (M[ + MiB1)Zy). 22)

Here the matrix M!+ M;Bj is of size ny X ne, By is n, x ny and K is ny X ny. The overall coefficient
matrix is consequently of size n, X n,. Similar considerations for the right-hand side show it to
be an n, x 1 matrix. Hence it is necessary to solve a single system of n, equations. At first
sight this appears to be prohibitively expensive since the coefficient matrix in (22) is both dense
and non-symmetric, thus requiring O(n}) operations (and O(n?) memory locations) for a solution.
Fortunately however a simple modification of formula (18) can lead to a significant reduction in
the complexity of this step.

To compute the action of the inverse matrix (K} + (M! + M;B;)B,)~" in (18) we may apply
the Sherman-Morrison-Woodbury formula (see [21] for example) which gives a closed expression
for the inverse of a rank k correction of an n X m matrix. In the case where £ < n this formula
can be very efficient. Given the matrices A € R™™ and U, V! € R™**, we have

(A+U0vH'=A"1—AlU(I+VvrAT )TV AT (23)

This means that it is possible to reduce the problem of inverting the original matrix A + UV of
size n X n to the inversion of the matrix A plus inversion of the matrix I + V*A~U of dimension
k x k. Note that in our case n = n, and k = n, (and recall that n, < n;). Moreover the matrix
A = K} is sparse, symmetric, positive-definite and has already been factorized so this modification
will be especially efficient here. Introducing the notation

UQ = Mé + MiBla g = —(MZZl —+ (]\4;5 + MZ'Bl)ZQ),
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it is possible to write equation (18) in the form

Zy = (K! 4+ UyBy)™1g. (24)

Applying formula (23) to (24) then gives
Zy = (KY)'g — (KD)'Us [1 + Bo(KY™'Us] Bk g, (25)

which may in turn be written as
Zy=Zy— 73,

where
Z:I,’ = (Kzt)_lg and Z:IJ,, = (Kit)_lUQ [I + BQ(K;')_IUQ] - Bg(Kf)_lg

Calculation of Z3 according to the formula (25) may now be organized as follows.
Step 3.1) Calculation of Zi. Rewrite the equation

Zy=(Kj) 'g (26)

as
K!Z, = g

This is a sparse, symmetric, positive-definite system of n, equations. Moreover the Cholesky
factorization of K has already been performed in Step 1 above.

Step 3.2) Calculation of Zi. To calculate the vector Zf the following expression is used:
7y = (K)™'Us [T + Bo(K)™'0s]  Ba(K]) ™. (27)
Recalling (26), this may be rewritten as
7y = (K} U [1+ By(K}) 'Us] ' B2y,

We now split the calculation of Zj into a number of substeps.
1) Calculate X, = ByZ4. Here we use the fact that By = (M, + M.B;) ' (—K!), thus yielding

Xl == (Mb + McBl)_l(—K£Zé) .

This requires a sparse matrix—vector multiplication of complexity O(n.) followed by a dense matrix—
vector multiplication of complexity O(n?). (If at Step 2 above we had calculated B, explicitly and
then formed X; at this step by the dense matrix—vector multiplication BsZj}, this would have
required O(nyn.) = O(n?) operations.)

2) Calculate X5 = [I + By(K!)~'U,]~" X,. This calculation may be performed in several phases.
First, the above equation is rewritten as

[T 4+ Bo(KH ™LX, = X

Here, the matrix I + By(K}!)~'U, is of size n, x n. and the vectors X, and X are of size n, x 1.
We now have
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Phase 2a). Calculate
Y = (K§)71U2’

that is,
Kztyl - UQ.

This is a multiple right-hand side system (i.e. n. systems) for which the coefficient matrix has
already been factorized.
Phase 2b). Perform the matrix multiplication

Yy = ByYi.
Here we again benefit from not having computed B, explicitly since it is possible to express
Y = (M, + M,B) "\ (~K!Yy).

This requires a sparse matrix multiplication with a dense matrix, of complexity O(n?), followed by
a dense matrix multiplication of complexity O(n?). (Again we note the disadvantage of computing
Y> by direct multiplication using the dense matrix By, which would have a complexity of O(n2n;) =
O(nd).)

Phase 2¢). Perform the matrix addition

Ys=1+Y,

where [ is the n, X n, identity matrix.
Phase 2d). Solve the system
Y3X =X,y

where Y3 is of size n, x n, and X; and X, are of size n, x 1. The matrix Y3 is dense and non-
symmetric so it is necessary to perform LU factorization (possibly with pivoting for stability) which
requires O(n?) operations. This is then followed by forward and back-substitution.

Again it should be noted that the matrix Y3 is dependent only upon matrices which do not
include the right-hand side vector or the matrices Z; and Z, (which themselves depend upon the
right-hand side). Therefore, in the calculations that involve solving multiple systems with the same
coefficient matrix, phases 2a)—2d) need be performed only once, for the first right-hand side. For
subsequent solves all that needs to be done at this substep is a single forward and back-substitution
to calculate X, from the factorization of Y;.

3) Calculate X3 = U X5. The complexity of performing this dense matrix—vector multiplication
is O(nyne) = O(n?). However, by replacing Uy by M! + M; By, which is in turn equal to M! —

[
M;K;'K,, one obtains the expression

X3 = (M! - MiK;'K,) Xy = M!Xy — M;K; ' (K X;).

Given that the sparse factorization of K; is already known, this may be computed with a complexity
of O(ny) = O(n?) plus the cost of one forward and backward substitution using the sparse factors
of K;. (In practice this forward and backward substitution is the dominant cost.)

4) Calculate Z§ = (K})™' X3. This may be expressed as

K!'Z! = X,

12



which is a single system for which the coefficient matrix has already been factorized. Hence, only
application of forward and back-substitution is necessary.

Step 3.8) Calculation of Z3 = Z} — ZY. Simple vector subtraction now allows us to calculate
the required vector Zs (which is in fact the unknown vector w).

The complete algorithm outlined above is presented in Figure 2 (with f used to denote the
right-hand side vector). In this figure the steps of the algorithm that need only be performed once
when multiple right-hand sides are being solved for are displayed in bold. The column next to
each step displays the asymptotic complexity of that step, where it is assumed that n, ~ n?, the
cost of a sparse Cholesky factorization of the n, x n, matrix K; is O(n{; ) and the cost of a single
forward and backward substitution is O(nj). Note that it is assumed that s > 1 when determining
the dominant contributions to steps 3.1 and 3.10 in the figure. (Also note that the steps in the
figure have been renumbered from those above for further clarity.)

STEP 1
1.1) Factorize K; = L L%, O(n])
1.2) Solve LxLi B, = —K, Onit/?)
1.3) Solve LxL%Z) = —f O(n})
STEP 2
2.1) Form M, + M_.B, O(n?)
2.2) Invert M, + M.B; O(n?)
2.3) Form —M_.Z, O(ne)
9.4) Form Z, = (My + M.B) (=M. Z,) O(n?)

STEP 3

3.1) Form g = —M;Z; — M!Zy + M;K; 'K.Z,  O(n})
3.2) Solve LyxLtZ;=g O(ng)
3.3) Form X; = (My + M.B,) ' (—K!)Z} O(n?)
3.4) Form M! + M;B, O(nyne)
3.5) Solve Lx Lt Y, = M! + M;B, ons™"%
3.6) Form Y, = (M, + M,B,)" (—K})Y;  O(n})
3.7) FormY; =1+ Y, O(ne)
3.8) Factorize Y; = L3Us; O(n?)
39) Solve L3U3X2 = X1 O(’I’Lg)
3.10) Form X3 = (M! — M;K;'K.) X, O(ng)
3.11) Solve Lx L% Z} = X, O(ng)
3.12) Form Z3 =7} — 7} O(ny)

Figure 2: Summary of the algorithm for solving (14) along with the asymptotic complexity of
each step (note that n, ~ n?). Those steps shown in bold need not be repeated when second or
subsequent right-hand sides are solved for.

Although the derivation of this direct algorithm is described in terms of piecewise linear poly-
nomial approximations, the use of higher order Lagrange polynomial finite element spaces has
no significant effect on either the algorithm itself or the asymptotic costs presented. (Where n,
generalizes to be the total number of unknowns inside the body, or on a Neumann boundary, and
n. the total number of unknowns on the essential boundary.)
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Clearly the overall computational cost of the algorithm will depend upon the performance
characteristics of the sparse solver used for the systems involving the symmetric positive-definite
matrix K;. In particular the most expensive step of the first solve using this algorithm will have
a complexity of either O(n{) (step 1.1), O(nzﬂ/z) (steps 1.2 and 3.5) or O(n)'?) (steps 2.2, 3.4
and 3.8). Reference to Table 2 suggests that when SuperLU ([18]) is used for the sparse solves
f ~ 1.6 and s =~ 1.2, hence steps 1.2 and 3.5 are likely to dominate with an asymptotic cost of
approximately O(nj 7). For second and subsequent right-hand sides the dominant terms will have
a cost of O(nf) ~ O(n}?). Inspection of Table 1 suggests that there is likely to be a significant
saving when using this new algorithm in comparison to the application of a general sparse direct
solver to the original system.

5 Numerical results

In this section we report on the performance of the proposed algorithm when applied to linear
systems of the form (14) obtained from the mixed finite element discretization of the biharmonic
equation on unstructured grids (using SuperLU for the factorization and solution of systems in-
volving K;). In order to demonstrate the accuracy of the method we first present some results for
the biharmonic eigenvalue problem (1) on a unit square domain Q = (0, 1)? using piecewise cubic
C" elements (since, by (11), these are more accurate than piecewise linears or piecewise quadrat-
ics). These results are contrasted with the known analytic expressions for the ratio of the distance
between zeros as a corner is approached, (3), and with the numerical results in [7] obtained using
a high order spectral Legendre-Galerkin method with quadruple precision arithmetic. Having es-
tablished the accuracy of the solver its complexity is then contrasted with that of SuperLU ([18])
applied to the full system (14), which is the best alternative direct solver that we have been able
to find. All comparisons are given in terms of the number of floating point operations required,
as in Tables 1 and 2, so as to ensure that the results are neither platform nor implementation
dependent.

When 6 = 7/2 the solution of equation (4) with smallest real part may be shown to be
p = 3.739593284 + 1.11902448:. Hence, by substituting o = 3.739593284 and 3 = 1.11902448 into
(3) and (5), we obtain

Tn Sn
~

ln
~ 16.567429848 and ~ 36267.54987 (28)
T'n+1 Sn+1 n+1

as n — 00. (Recall from section 2 that r, is the distance along the bisector of the angle 6 to the
n* local extremal value of the eigenfunction u, t, is the magnitude of this extremum, and s, the
distance to the n'* zero.)

In Table 3 we present some numerical results for the first of these ratios, obtained by solving (1)
on the unit square using piecewise cubic C° elements on a sequence of unstructured meshes over a
quarter of the domain (making use of symmetry at x = 1/2 and y = 1/2 and applying appropriate
Neumann conditions at these boundaries). N denotes the dimension of the linear system resulting
from each of the non-uniformly refined meshes, which are designed to allow greater resolution
of the eigenfunction in the corner. Table 4 shows calculations of the same ratios for a different
sequence of non-uniformly refined meshes, on an eighth of the domain (utilizing further symmetry
along the bisector of the corner). In each case the calculations are based upon the approximation
of the principal eigenfunction (i.e. that which corresponds to the smallest eigenvalue) using inverse
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iteration, and the final column of the tables is used to present the best numerical results obtained
in [7]. The non-uniform meshes used to produce the other columns of these tables have a mesh
size, h, of O(107") near the corner and O(1072) near the centre of the domain; with a gradual
transition between the two. The precise details of the meshes depend upon the exact grid sizes.
Moreover, for the calculations on an eighth of the domain the mesh is divided using polar rather
than Cartesian coordinates.

N 42229 94177 166897 Results from [7]
s1/s2 | 16.5674314 | 16.5674538 | 16.5674561 16.56745701
Sa/ss | 16.5674172 | 16.5674281 | 16.5674285 16.56742775
s3/ss | 16.5674192 | 16.5674263 | 16.5674282 16.5674282
s4/ss | 16.5671211 | 16.5678311 | 16.5675317 16.58008884

Table 3: The ratio of distances between consecutive zeros calculated using piecewise cubic C°
elements on a sequence of non-uniformly refined grids on a quarter of the unit square domain.

N 15052 56035 219136 | Results from [7]
s1/s> | 16.5674214 | 16.5674511 | 16.5674567 | 16.56745701
s2/s3 | 16.5674022 | 16.5674231 | 16.5674282 | 16.56742775
s3/s4 | 16.5674164 | 16.5674208 | 16.5674276 | 16.56742802
s4/s5 | 16.5672813 | 16.5672315 | 16.5676374 | 16.58008884

Table 4: The ratio of distances between consecutive zeros calculated using piecewise cubic C°
elements on a sequence of non-uniformly refined grids on an eighth of the unit square domain.

Inspection of Tables 3 and 4 reveals a good correspondence between our double precision finite
element calculations and the quadruple precision spectral results presented in [7]. Furthermore, the
ratios obtained in each of these cases are remarkably close to the asymptotic limit of 16.56742776
for the continuous problem (as given in (28)). It may also be observed from (28) that the ratio of
the magnitudes, ¢,, of the consecutive extrema for this angle is comparatively large. Consequently
the size of the oscillations decreases very rapidly as the corner is approached. For example, the
magnitude of the fifth extremum from the centre is approximately 10723 times the size of the eigen-
function at the centre. This implies that very high accuracy is required in both the discretization
and the direct solver in order to have any significant digits of accuracy in this value. Similar results
to those in Tables 3 and 4 may also be obtained for the buckling plate problem (2) and so a similar
degree of accuracy is also required: see [26] for details.

Further demonstrations of the accuracy of the method come from its application to more
general domains (indeed justification for the use of the finite element method, rather than spectral
techniques such as that in [7] for example, stems from its applicability to quite general geometries).
In [11] we present a number of applications of the solver described above on a variety of different
domains (both convex and non-convex and with curved and straight boundaries). The common
feature in each case being the requirement to solve systems with many right-hand sides to a very
high numerical accuracy.

We now focus on the computational expense of the new direct solver that we propose. In
particular, we wish to verify the claim made in the previous section that we expect to obtain
better performance than by applying a sparse direct solver to the discrete fourth order system (14)
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directly. In Tables 5 and 6 results are presented for piecewise cubic approximations on the same
two different sequences of meshes used to generate the ratios of distances between consecutive
zeros (quoted in Tables 3 and 4). In each case the subscript f is used to denote the number of
operations required for the first solution of the system (14) and the subscript s denotes the number
of operations required for each subsequent solve. “New” refers to the algorithm proposed in Section
4 (using SuperLU ([18]) to factor and solve the sparse positive-definite systems) and SLU refers
to the application of SuperLU directly to (14). The ratios quoted allow comparison between the
two approaches to be made. Note also that in each table the grid sizes quoted indicate only the
number of intervals on each boundary of the domain, however, since the meshes are unstructured,
the total number of degrees of freedom, IV, gives a more accurate indication of the overall size of
the problem.

grid 64x64 | 80x80 | 96x96 | 112x112 | 128 x128 | 144x144 | 160x160 | 176x176 | 192x 192
N 19093 29509 42229 57217 74545 94177 116113 140353 166897

New; | 7.314E8 | 1.455E9 | 2.596E9 | 4.216E9 | 6.273E9 | 9.199E9 | 1.230E10 | 1.698E10 | 2.146E10
New, | 5.917E6 | 1.027E7 | 1.601E7 | 2.360E7 | 3.239E7 | 4.314E7 | 5.504E7 | 6.972E7 | 8.554E7
SLU; | 1.250E9 | 2.663E9 | 4.698E9 | 7.705E9 | 1.302E10 | 1.893E10 | 2.859E10 | 3.795E10 | 5.100E10
SLU, | 1.035E7 | 1.844E7 | 2.889E7 | 4.241E7 | 6.036E7 | 8.106E7 | 1.072E8 | 1.346E8 | 1.667ES8
Ratioy 0.585 0.546 0.553 0.547 0.482 0.486 0.431 0.447 0.421
Ratiog 0.562 0.557 0.554 0.556 0.537 0.532 0.513 0.518 0.513

Table 5: Computational costs, both absolute (measured in floating point multiplications) and
relative (Ratio), of the proposed (New) algorithm and SuperL.U (SLU) for the first (f) and subse-
quent (s) solution of the system (14) obtained from piecewise cubic C° elements on a sequence of

non-uniformly refined grids on a quarter of the unit square domain.

grid 4 x 28 8x32 | 16 x48 | 32x96 | 64 x 192
N 2086 4804 15052 56035 219136
New; | 2.250E7 | 8.445E7 | 5.447E8 | 4.750E9 | 4.536E10
New, | 2.774E5 | 9.792E5 | 4.880E6 | 2.787E7 | 1.569ES8
SLU; | 3.824E6 | 4.930E7 | 7.934E8 | 1.014E10 | 1.227E11
SLU; | 2.116E5 | 1.089E6 | 7.612E6 | 4.991E7 | 3.111ES8
Ratioy 5.883 1.713 0.686 0.469 0.370
Ratio, 1.311 0.899 0.641 0.558 0.504

Table 6: Computational costs, both absolute (measured in floating point multiplications) and
relative (Ratio), of the proposed (New) algorithm and SuperLLU (SLU) for the first (f) and subse-
quent, (s) solution of the system (14) obtained from piecewise cubic C? elements on a sequence of
non-uniformly refined grids on an eighth of the unit square domain.

Inspection of Tables 5 and 6 clearly shows that in each case the cost of subsequent solves is
almost insignificant in comparison to the cost of the first solve. In addition, as the discrete systems
become larger, the advantage of using the new algorithm becomes more and more significant.
Moreover, these operation counts compare very favourably with the solution of (14) using other
available software: either sparse direct ([27]) or iterative ([21],[32]).
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6 Conclusions

In this paper we present a new efficient method for solving the linear algebraic system which arises
from the mixed finite element approximation of the biharmonic problem. The method is based
upon reducing the initial system to block tridiagonal form and then applying block Gaussian
elimination. In this way we are able to exploit the sparsity of the blocks, allowing significant
reductions in execution time and memory requirements in comparison with more general sparse
direct solvers (although such solvers are used within the new algorithm). The approach is especially
suitable for problems where the solution of multiple systems with the same coefficient matrix is
required to a high level of accuracy, such as with biharmonic eigenvalue computations using inverse
iteration or when solving the biharmonic equation with multiple load vectors.

Although the method introduced here is designed with unstructured finite element grids in
mind it appears to also have some potential for use with structured grids, where fast Laplacian
solvers (based upon cyclic reduction for example (e.g. [21])) might be used. Another area in which
the work may be extended is in the parallel implementation of the algorithm. All of the substeps
shown in Fig. 2 may be implemented in parallel: the main requirements being a parallel sparse
direct solver (steps 1.1, 1.2, 1.3, 3.1, 3.2, 3.5, 3.10 and 3.11) and a parallel dense solver (steps 2.2,
3.8 and 3.9), along with a number of matrix—vector and matrix—matrix multiplications. Use of
parallel BLAS or ScaLAPACK (see [1],[13]) would provide efficient implementations of all of these
operations except for the sparse factorization and solve. It may be noted however that SuperLU,
for example, has also been implemented in parallel [19] (or a parallel banded solver could be used),
and so a complete parallel algorithm appears to be achievable in an efficient manner.
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