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ABSTRACT
Introduction  Multimorbidity is widely recognised as the 
presence of two or more concurrent long-term conditions, 
yet remains a poorly understood global issue despite 
increasing in prevalence.
We have created the Wales Multimorbidity e-Cohort 
(WMC) to provide an accessible research ready data 
asset to further the understanding of multimorbidity. Our 
objectives are to create a platform to support research 
which would help to understand prevalence, trajectories 
and determinants in multimorbidity, characterise clusters 
that lead to highest burden on individuals and healthcare 
services, and evaluate and provide new multimorbidity 
phenotypes and algorithms to the National Health 
Service and research communities to support prevention, 
healthcare planning and the management of individuals 
with multimorbidity.
Methods and analysis  The WMC has been created and 
derived from multisourced demographic, administrative 
and electronic health record data relating to the Welsh 
population in the Secure Anonymised Information Linkage 
(SAIL) Databank. The WMC consists of 2.9 million people 
alive and living in Wales on the 1 January 2000 with 
follow-up until 31 December 2019, Welsh residency break 
or death. Published comorbidity indices and phenotype 
code lists will be used to measure and conceptualise 
multimorbidity.
Study outcomes will include: (1) a description of 
multimorbidity using published data phenotype algorithms/
ontologies, (2) investigation of the associations between 
baseline demographic factors and multimorbidity, (3) 
identification of temporal trajectories of clusters of 
conditions and multimorbidity and (4) investigation of 
multimorbidity clusters with poor outcomes such as 
mortality and high healthcare service utilisation.
Ethics and dissemination  The SAIL Databank 
independent Information Governance Review Panel has 

approved this study (SAIL Project: 0911). Study findings 
will be presented to policy groups, public meetings, 
national and international conferences, and published in 
peer-reviewed journals.

INTRODUCTION
Multimorbidity is defined by the UK’s Academy 
of Medical Sciences (AMS) and World Health 
Organization (WHO) as the presence of two or 
more concurrent long-term conditions, which 
is a global and growing phenomenon.1 2 Multi-
morbidity is more prevalent in older individuals 
and associated with high healthcare utilisation 
and mortality, but with large numbers of patients 
of all age suffering from multimorbidity.3–6 With 
an ageing population, it is estimated that two in 

Strengths and limitations of this study

►► Creation and access to a multisourced population 
based, deeply phenotyped e-cohort.

►► Future use of this resource removes the need for 
data management and cleaning of source data, ac-
celerating research and which could also support 
efforts for reproducibility of results.

►► Variety of individual and household level data avail-
able on demography, health status, healthcare utili-
sation, both primary and secondary healthcare, and 
mortality to support a wide range of analytical ap-
proaches to addressing scientific questions.

►► Input from multiple disciplines and institutions from 
across all four nations of the UK to help understand, 
measure and address multimorbidity.

►► Routine data do not capture data on some important 
aspects, such as quality of life.
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three people in England aged 65 years or over will experi-
ence multimorbidity by 2035 and nearly one fifth will have 
complex multimorbidity (four or more conditions).7

Much of what is known about multimorbidity is based on a 
limited and fragmented knowledge base, largely derived from 
studies of older people in high-income countries or hospital 
populations.1 8 The 2018 AMS report concluded that multi-
morbidity is an unhelpful term implying random assortment 
of disease when it often refers to clusters of specific diseases. 
Once identified, these disease clusters can be addressed 
specifically through research, healthcare policy development 
and service delivery.1 9 The identification of previously unrec-
ognised disease clusters may also provide biological and 
clinical insights into their aetiology, prevention and treat-
ment. The AMS report identified specific research gaps and 
proposed a list of priorities (box 1). Several can be addressed 
through a combination of health data science, epidemiology 
and statistics and by exploiting the potential from creating 
deeply phenotyped cohorts from population and clinical 
data sources.

Responding to this agenda, we created a privacy protecting 
total population electronic cohort—the Wales Multimor-
bidity e-Cohort (WMC)—as a platform to study these issues 
in depth, collaborating with scientists from many different 
institutions and disciplines, clinicians, and members of the 
public from across the UK to create a broader team science 
approach.

The objectives of this work are to understand prevalence, 
trajectories and determinants of multimorbidity, and iden-
tify clusters causing the greatest healthcare burden. The 
WMC will also contribute data on incidence, prevalence and 
burden to the Global Burden of Diseases (GBD) Study,10 11 
and provide new multimorbidity phenotypes to e-cohorts with 
local participants, and phenotyping algorithms to many e-co-
horts that use routine data.12

We expect that findings from these analyses will provide 
evidence to health policy leads in order to support preven-
tion and the complex healthcare planning and manage-
ment of multimorbid individuals. Members of the public 
are embedded in the research team to ensure the resource 
focuses on issues of concern to the public.

This paper describes the creation of the WMC and the 
statistical approaches that will be developed to support the 
diverse research objectives.

METHODS
The WMC was developed by linking multiple routinely 
collected population and clinical data sources on the popula-
tion of Wales from 2000 to 2019. We used the privacy-protecting 
Secure Anonymised Information Linkage (SAIL) Databank, 
to contribute to the Health Data Research UK National 
Implementation Multimorbidity Resource (HNIMR) project 
and extended to 2020 for the Medical Research Council 
(MRC) funded Welsh Multimorbidity Machine Learning 
project .13 14 SAIL is one of the most comprehensive, privacy 
protecting, linked data Trusted Research Environments in 
the UK. SAIL uses data from many different sources and 
provides linkage at individual and household level.15 It has 
supported many different study designs, including large-scale 
community-based or clinical condition-based observational 
studies, disease surveillance, evaluation of natural experi-
ments of environmental interventions, embedded trials and 
the Dementias Platform UK.16–23

Cohort design and characteristics
The WMC is a clearly defined complete population 
cohort. Cohort entry includes all residents in Wales, 
alive and living on 1 January 2000. Cohort censorship 
was defined by the first date of migration out of Wales/
residency break, death, or the study endpoint on 31 
December 2019 (figure 1). Within these constraints, the 
cohort is designed to be without selection bias and to 
achieve complete follow-up. WMC also provides a fully 
generalisable population sample against which findings 
from more selected samples may be compared.

The WMC contains 2 902 101 individuals aged 0–99 at 
cohort start date with 46 million person years of follow-up 
available (table 1, figures 2 and 3, online supplemental 
appendix table A1 and A2). Individuals have a minimum 
of 1-day follow-up (cohort end date = 2 January 2000) and 
maximum of 20 years of follow-up (cohort end date = 31 
December 2019).

The Heatmap in figure 3 visualises the person years of 
follow-up by age, sex and area level deprivation. The more 
years of follow-up available the darker the colour. Age is 
calculated at the cohort start, therefore, younger individ-
uals will have more years of available follow-up compared 
with older individuals. On average, there are less person 
years of follow-up available for the least deprived 15–24 
years old compared with their respective age group in 
other areas of Wales.

Data sources
The WMC has used and combined anonymised health, 
social and environmental data held within the SAIL Data-
bank (​www.​saildatabank.​com).

The baseline characteristics for the WMC have been 
created using the Welsh Demographic Service Dataset 

Box 1  The Academy of Medical Sciences identified 
research gaps

►► The scale and nature of multimorbidity and how it is changing over 
time.

►► Which clusters of conditions cause the biggest problems for patients.
►► The causes of the most common clusters including links with sex, 
ethnicity, income and lifestyle.

►► The best ways to prevent the patients developing multimorbidity, 
and whether this requires different approaches to just preventing 
individual conditions.

►► How doctors can increase the benefits and reduce the risks of treat-
ment for patients with multimorbidity.

►► How to organise healthcare systems to deal with multimorbidity 
more effectively and how best to use digital technology in caring 
for patients.
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(WDSD) and the Annual District Death Extract (ADDE) 
mortality registry data from the Office for National 
Statistics. The WDSD contains administrative informa-
tion concerning the resident population of Wales that 

are registered to a Welsh General Practice, a free to 
use National Health Service (NHS) system at the point 
of primary care registration in the UK. The ADDE data 
contains information about the dates and causes of all 
deaths relating to residents in Wales, including those that 
died outside of Wales. SAIL holds general practitioner 
(GP) data for approximately 80% of the population with 
coverage extending to all local authorities in Wales. The 
Welsh Longitudinal General Practice data will be used to 
identify the subpopulation of individuals who are regis-
tered to a practice providing data to SAIL to identify 
which individuals have GP data present and avoid under-
estimation of conditions or severity of conditions not 
managed through hospital admission.

The Welsh Health Survey Dataset and the National 
Survey for Wales Dataset with data on well-being measures, 
social class, education, housing and wealth are available 
for 9905 and 33 295 cohort participants respectively.24

Anonymised linkage fields
Linkage fields are used to anonymously link between data 
sources in the SAIL Databank and have been previously 
described elsewhere.13 14 25 SAIL uses a multiple encryp-
tion system in which a trusted third party, the NHS Wales 
Informatics Service, uniquely matches identities (NHS 
number, name, date of birth and residential address/ 
Unique Property Reference Number (UPRN)) and 
replaces these with unique identifiers. For individuals 
this is called an Anonymised Linkage Field (ALF) and 

Figure 1  WMC flow diagram, based on inclusion criteria. LSOA; lower layer super output area, WDSD; Welsh Demographic 
Service Dataset, WMC; Wales Multimorbidity e-Cohort, WMML; Welsh Multimorbidity Machine Learning.

Table 1  WMC baseline demographics

WMC characteristics n (%)

Cohort size 2 902 101 (100)

Full coverage (1 January 2000–31 December 
2019)

1 714 484 (59.08)

Residency break/emigration 643 472 (22.17)

Mortality 544 145 (18.75)

Primary care data available 2 470 874 (85.14)

Care home residency at cohort end 97 006 (3.34)

Mean age in years (range) at cohort start 39 (0–99)

Sex

 � Female 1 472 113 (50.70)

 � Male 1 429 988 (49.30)

WIMD 2011 Quintile at cohort start

 � 1. Most deprived 605 203 (20.85)

 � 2 589 479 (20.31)

 � 3 584 039 (20.12)

 � 4 557 319 (19.20)

 � 5. Least deprived 566 061 (19.51)

WIMD, Welsh Index of Multiple Deprivation; WMC, Wales 
Multimorbidity e-Cohort.
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Residential Anonymised Linkage Field (RALF) for pseud-
onymised residences before uploading data to SAIL.

Demographic data
The cohort includes the following variables: ALF, age in 
years, sex, date of death, date of movement out of Wales, 
RALF at both cohort inception and cohort end and Care 
Home Anonymised Linkage Fields (CHALFs) at cohort 
end date. The CHALF was derived from a data extract 
from Care Inspectorate Wales in 2020 for all adult care 
home settings.18 Geographical variables associated with 
the RALF and CHALF include Lower layer Super Output 
Area (LSOA) 2001 at cohort inception and LSOA 2011 at 
cohort end. These have been mapped to the Welsh Index 

of Multiple Deprivation version 2011 and 2019, respec-
tively, to derive socioeconomic deprivation quintiles and 
urban/rurality categories.26 27

Health data
All admissions to hospital (inclusive of critical care admis-
sions), outpatient, emergency department attendances 
treated in NHS hospitals as well as disease registries and 
laboratory test results data are available for cohort partic-
ipants, GP data for diagnoses and treatments from SAIL 
providing practices are data for approximately 80% of the 
population.28

All relevant health events recorded in clinical data 
sources will be joined onto the WMC to identify diagnosis 

Figure 2  WMC pyramid for age (years) at cohort inception. WMC, Wales Multimorbidity e-Cohort.

Figure 3  Heatmap of person years of WMC follow-up, by age group, sex and area-level deprivation at cohort inception. WMC, 
Wales Multimorbidity e-Cohort.
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of conditions, treatments and various significant heath 
events that occur across multisourced linked heath data 
per person (table 2 and figure 4).

The Upset plot in figure 4 demonstrates the number of 
WMC participants that have interacted with the various 
healthcare settings from 1 January 2000 to their cohort 
censorship end date.29 For example, 780 830 (26.9%) 
individuals have used GP, inpatient, outpatient and emer-
gency department services as well as had at least one labo-
ratory test within their WMC coverage.

Phenotyping the e-cohort
Published comorbidity indices and phenotype code lists 
(International Classification of Diseases 10th revision 
(ICD-10), OPCS Classification of Interventions and Proce-
dures version 4 (OPCS4) and primary care Read Codes 
version 2) will be used to measure and conceptualise 
multimorbidity. These include those created by: CALIBER 
initiative; Charlson Comorbidity Index; Common Mental 
Disorders (CMD); Elixhauser Comorbidity Index; GBD 
Study and the NHS Quality and Outcomes Framework 
(QOF).30–41 Diagnostic codes relating to HIV will not be 
included in any outputs to conform with SAIL policies. 
They are part of the list of redacted codes not allowed 
to be used for research using the data.42 All ICD-10 and 

OPCS4 codes provided at the three character level were 
expanded to include all children terms.

CALIBER
Phenotyping algorithms created from the CALIBER 
resource using ICD-10, OPCS4 and Read Codes will be 
used to identify 300 physical and mental health conditions 
recorded in both primary and secondary healthcare.31 39

There are 1645 distinct ICD-10 codes (at three and 
four-character level) for 300 conditions, however, when 
capturing all ICD-10 codes to include variation in coding 
entry (eg, C796– instead of C796) and expanding the 
code list to the four-character level (F200 instead of F20), 
there are 3702 distinct ICD-10 codes (at the four-character 
level) recorded in the inpatient data. This is important to 
note as to link solely on standardised codes would result 
in loss of information and potential reporting of false 
negatives.

There are 587 distinct OPCS4 codes (at three and four-
character level) for 28 conditions and 8588 distinct Read 
Codes (at the five-character level) for 275 conditions.

Charlson Comorbidity Index
The Aylin and Bottle Charlson amended ICD-10 code list 
will be used for inpatient diagnosis and the Metcalfe et 

Table 2  Clinical data sources available for the WMC

Data source Period covered
No and percentage of WMC 
individuals with data

Critical Care Data Set 01-Jan-2007–31-Dec-2019 79 521 (2.7)

Welsh Cancer Incidence Surveillance Unit 01-Jan-2000–31-Dec-2016 328 792 (11.3)

Welsh Results Reporting Services 01-Jan-2015–10-Dec-2018 1 540 754 (53.1)

Emergency Department Data Set 01-Apr-2009–31-Dec-2019 1 579 665 (54.4)

Patient Episode Database for Wales) 01-Jan-2000–31-Dec-2019 2 129 384 (73.4)

Out Patient Dataset for Wales 01-Apr-2004–31-Dec-2019 2 177 081 (75.0)

Welsh Longitudinal General Practice 01-Jan-2000–31-Dec-2019 2 400 313 (82.7)

Please note clinical data sources will be updated on a monthly/quarterly basis.
WMC, Wales Multimorbidity e-Cohort.

Figure 4  Number of WMC individuals utilising healthcare services recorded in multisource data sources, 20 most common 
combinations presented. WMC, Wales Multimorbidity e-Cohort.
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al33 Charlson Read Code list will be utilised for primary 
care recorded diagnosis.32 33

The ICD-10 codes have been taken from the pool of 
diagnosis codes recorded within hospital admissions data, 
containing 1024 distinct codes (at the four-character 
level) for 16 conditions. The GP data contains 4545 
distinct Read Codes at the five-character level.

Common mental disorders
The John et al validated algorithm will be used to identify 
CMD in GP data.30 40 41 The algorithm has used a combi-
nation of diagnosis, treatment and symptoms Read Codes 
in identifying CMD. Individuals with CMD are identified 
as either having a historical diagnosis code, currently 
treated or, having a current diagnosis/current symptom 
code. There are 89 distinct diagnosis codes, 15 symptom 
codes and 601 treatment codes.

Elixhauser Comorbidity Index
The Quan et al (2005) Elixhauser ICD-10 code list will 
be utilised for inpatient diagnosis and the Metcalfe et al33 
Elixhauser Read Code list will be utilised for primary care 
recorded diagnosis.33 34

The ICD-10 codes have been taken from the pool of 
diagnosis codes recorded within hospital admissions data 
and contains 1423 distinct codes (at the four-character 
level) for 30 conditions. The general practice data 
contains 6074 distinct Read codes at the five-character 
level.

GBD Study
The GBD 2019 ICD-10 codes will be used to identify 130 
health conditions in secondary healthcare data. There 
are 3497 distinct ICD-10 codes at the three and four-
character level.38

Quality Outcome Framework
The QOF conditions business rule V.38 will be used to 
identify 18 health conditions in primary care data.35 
The 18 conditions are asthma, atrial fibrillation, obesity, 
coronary heart disease, chronic obstructive pulmonary 
disease, cancer, chronic kidney disease, dementia, depres-
sion, diabetes, epilepsy, heart failure, hypertension, 
learning difficulties, peripheral arterial disease, rheuma-
toid arthritis, serious mental illness and stroke. There are 
2275 distinct Read Codes available at the five-character 
level for the 18 QOF conditions.

Statistical analysis
The WMC provides an accessible research ready data asset 
to further understanding of multimorbidity through the 
use of biostatistical and machine learning approaches. 
Our collaborative team will work across a number of 
projects to develop and evaluate statistical and machine 
learning algorithms to address the following broad analyt-
ical challenges:

►► What is the prevalence of multimorbidity in the WMC, 
and how does prevalence of multimorbidity change 
over time?

►► What are common clusters of multimorbidity in the 
WMC, and how do they correspond to or differ from, 
common clusters of multimorbidity identified in 
other datasets?

►► Which clusters of multimorbidity occur less frequently 
than one would expect based on the prevalence of 
their constituent conditions?

►► How does multimorbidity develop across the life 
course (ie, trajectories)?

►► What are the biological, psychological and social 
determinants of different clusters and trajectories of 
multimorbidity?

►► Which clusters and trajectories of multimorbidity are 
associated with poor health outcomes?

►► Which clusters and trajectories of multimorbidity are 
associated with high service utilisation?

►► Does multimorbidity in specific groups (eg, patients 
with musculoskeletal conditions) differ from multi-
morbidity in general?

The overarching aim is to evaluate and provide new 
multimorbidity phenotypes and algorithms to the NHS 
and research communities to support prevention, health-
care planning and the management of individuals with 
multimorbidity.

We will draw on both methods from statistics (eg, regres-
sion analysis, longitudinal mixed models, multiple corre-
spondence analysis, factor analysis,43 multistate models 
and latent class analysis) and machine learning (eg, 
k-means clustering, semantic similarity clustering, market 
basket analysis, network models44 and deep learning). We 
will use resampling methods to assess the stability of iden-
tified multimorbidity clusters and develop visualisation 
techniques to summarise multimorbidity clusters and 
their associations with risk factors and outcomes.

Analyses will be coded in R, WinBUGS, and Python and 
made available to WMC users via a Git library to maximise 
transparency and reproducibility.45

Patient and public involvement
The proposal to develop WMC was submitted to the inde-
pendent Information Governance Review Panel (IGRP) 
that includes members of the public (IGRP Project: 0911). 
We worked with this group to refine the study protocol. 
The scientific steering group includes two members of the 
public who have contributed to this paper. The HNIMR 
has a work package on patient and public involvement 
with a panel drawn from across the UK which meets to 
discuss the research work and feed into the research and 
dissemination plans.

ETHICS AND DISSEMINATION
The use of deidentified data in SAIL complies with 
National Research Ethics Service (NRES) guidance.46 
Applications to use data held within the SAIL Databank, 
an ISO: 27001 and UK Statistics Authority (UKSA) Digital 
Economy Act (DEA) accredited Trusted Research Envi-
ronment, must first be approved by the independent 
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IGRP. This panel contains individuals with expertise in 
data governance and protection, including the Chair of 
the Wales NRES Committee, Caldicott Guardians and 
members of the public. WMC was approved by IGRP on 
26 June 2019.

Findings from this study will be disseminated widely 
through a variety of routes, including to health policy and 
NHS leads across UK, the AMS and the Royal Colleges, 
as well as traditional scientific outlets. The team includes 
NHS clinicians and informaticians to allow for early 
NHS adoption of useful findings. Members of the public 
embedded in the team will create plain English summa-
ries and lead at public facing meetings.
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