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Two classes of β-perfect graphs that do not

necessarily have simplicial extremes

Jake Horsfield∗ Kristina Vušković†

February 11, 2021

Abstract

For a graphG, β(G) = max{δ(G′)+1 | G′ is an induced subgraph of G}.
This parameter is an upper bound on the chromatic number of a graph.
A graph G is β-perfect if χ(G′) = β(G′) for all induced subgraphs G′ of
G. A number of classes have been shown in literature to be β-perfect,
but for the class of all β-perfect graphs, the complexity of their recog-
nition and characterization in terms of forbidden induced subgraphs
remain open.

It is known that minimally β-imperfect graphs cannot have a sim-
plicial extreme, i.e. a vertex whose neighborhood is a clique or of
size 2. β-perfection of all the known β-perfect classes of graphs was
shown through the existence of simplicial extremes. In this paper we
study two classes of β-perfect graphs that do not necessarily have this
property.

A hole is a chordless cycle of length at least 4, and it is even or odd
depending on the parity of its length. β-perfect graphs cannot contain
even holes as induced subgraphs. We prove that graphs that do not
contain an even hole, a twin wheel nor a cap as an induced subgraph
are β-perfect (where a twin wheel is a graph that consists of a hole and
a vertex that has exactly 3 neighbors on the hole, that are furthermore
consecutive on the hole; and a cap is a graph that consist of a hole and
a vertex that has exactly 2 neighbors on the hole, that are furthermore
consecutive on the hole). This class properly contains chordal graphs,
and is the only known generalization of chordal graphs that is shown
to be β-perfect.

A hyperhole is a graph that is obtained from a hole by a sequence
of clique substitutions. We give a complete structural characterization
of β-perfect hyperholes, which we then use to give a linear-time algo-
rithm to recognize whether a hyperhole is β-perfect. We also obtain a
complete list of minimally β-imperfect hyperholes.
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1 Introduction

Throughout this paper, all graphs are finite and simple. We say that a graph
G contains a graph F if some induced subgraph of G is isomorphic to F ,
and it is F -free if it does not contain F . A graph G is F-free, for a family
of graphs F , if G is F -free for every F ∈ F . A hole in a graph is a chordless
cycle of length at least 4. A hole is even (resp. odd) if it has an even (resp.
odd) number of vertices.

For a graph G, let

β(G) = max{δ(G′) + 1 | G′ is an induced subgraph of G},

where δ(G) is the minimum degree of a vertex in G. A graph G is β-perfect
if χ(G′) = β(G′) for all induced subgraphs G′ of G. A k-coloring of a
graph G is a function c : V (G) → {1, . . . , k} such that for adjacent vertices
u, v ∈ V (G), c(u) 6= c(v). The chromatic number of a graph G, denoted by
χ(G), is the smallest integer k for which there exists a k-coloring of G.

For a graph G, consider the ordering v1, . . . , vn of V (G) such that for i ∈
{1, . . . , n}, the vertex vi is of minimum degree in G[{v1, . . . , vi}]. Coloring
greedily with respect to this ordering gives the bound χ(G) ≤ β(G). It
follows that, given such an ordering, the greedy coloring algorithm produces
an optimal coloring for β-perfect graphs. Since this ordering can be produced
in polynomial time, β-perfect graphs can be colored in polynomial time.

Observe that since any even hole H has χ(H) = 2 and β(H) = 3, any β-
perfect graph must be even-hole-free. Since there are even-hole-free graphs
that are not β-perfect (see Figure 1), the class of all β-perfect graphs forms a
proper subclass of even-hole-free graphs. β-perfect graphs were introduced
by Markossian, Gasparian and Reed in [7], where the following class of
graphs was shown to be β-perfect. A cap is a hole H together with an
additional vertex whose neighbourhood in H induces an edge. A diamond
is a K4 with one edge removed.

Figure 1: An even-hole-free graph that is not β-perfect.

Theorem 1.1 (Markossian, Gasparian and Reed [7]). If G is an (even hole,
diamond, cap)-free graph, then G is β-perfect.
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This result was then extended to the following.

Theorem 1.2 (de Figueiredo and Vušković [4]). If G is an (even hole,
diamond, cap-on-6-vertices)-free graph, then G is β-perfect.

In the paper of de Figueiredo and Vušković, they conjectured that ex-
cluding only even holes and diamonds is sufficient for β-perfection. This
conjecture was answered positively in [6].

Theorem 1.3 (Kloks, Müller and Vušković [6]). If G is an (even hole,
diamond)-free graph, then G is β-perfect.

A graph is minimally β-imperfect if it is not β-perfect but all of its proper
induced subgraphs are β-perfect. A vertex is simplicial if its neighborhood is
a clique, and is a simplicial extreme if either it is simplicial or it has degree
2. The proofs of Theorems 1.1, 1.2 and 1.3 used the following result on
minimally β-imperfect graphs.

Lemma 1.4 (Markossian, Gasparian and Reed [7]). If G is a minimally β-
imperfect graph that is not an even hole, then G does not have a simplicial
extreme.

In view of Lemma 1.4, in order to show that every graph in a class C of
even-hole-free graphs is β-perfect, it suffices to show that every graph in C
contains a simplicial extreme.

Lemma 1.5. If G is a minimally β-imperfect graph, then β(G) = δ(G)+1.

proof — Let H be an induced subgraph of G such that β(G) = δ(H) + 1.
Suppose that H is a proper induced subgraph of G. By our choice of H
we have that β(H) = β(G), so χ(H) = β(H) = β(G). But then χ(G) ≥
β(G), contradicting our assumption that G is not β-perfect. So H = G and
β(G) = δ(G) + 1. �

A graph is chordal if it is hole-free. It is well known that every chordal
graph has a simplicial vertex, and hence it follows directly from Lemma 1.4
that chordal graphs are β-perfect.

Theorem 1.6. If G is a chordal graph, then G is β-perfect.

It is not known whether β-perfect graphs are recognizable in polynomial
time. It also remains open to characterise the class of β-perfect graphs in
terms of forbidden induced subgraphs.

We observe that for all of the above mentioned classes of graphs, their
β-perfection was shown by proving that every graph in the class must have
a simplicial extreme. In this paper we study two classes of β-perfect graphs
that do not necessarily have simplicial extremes.
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A twin wheel is a graph comprised of a hole and a vertex that has exactly
three neighbors on this hole, that are furthermore consecutive vertices of the
hole. In Section 2 we prove that (even hole, twin wheel, cap)-free graphs
are β-perfect, hence generalizing both Theorems 1.1 and 1.6.

In Section 3 we study hyperholes, i.e. graphs that can be obtained from
holes by clique substitutions (they are defined more formally later). So, for
example, a twin wheel is also a hyperhole. We give a complete structural
characterization of β-perfect hyperholes, which we then use to give a linear-
time algorithm to recognize whether a hyperhole is β-perfect. We also obtain
a complete list of minimally β-imperfect hyperholes.

1.1 Terminology and notation

Let G be a graph. The vertex set of G is denoted by V (G). For a vertex
x ∈ V (G), NG(x) (or simply N(x) when clear from context) denotes the
set of all neighbors of x in G, and NG[x] (or simply N [x] when clear from
context) denotes the closed neighborhood of x, i.e. the set NG(x) ∪ {x}.

Let A and B be disjoint subsets of V (G). We say that A is complete
(resp. anticomplete) to B if every vertex of A is adjacent (resp. nonadjacent)
to every vertex of B.

A clique (resp. stable set) is a (possibly empty) set of pairwise adjacent
(resp. nonadjacent) vertices of G. The size of a maximum clique in G is
denoted by ω(G), and the size of a maximum stable set in G is denoted by
α(G). A complete graph is a graph whose vertex set is a clique. We refer to
a complete graph on 3 vertices also as a triangle.

Let S be a subset of V (G). G[S] denotes the subgraph of G induced by
S, and G\S = G[V (G)\S]. We say that S is a cutset if G\S is disconnected.
A cutset S is a clique cutset if S is a clique.

A cycle is a graph C with vertex set V (C) = {x1, . . . , xk} (where k ≥ 3)
and edge set E(C) = {x1x2, x2x3, . . . , xk−1xk, xkx1}. Under these circum-
stances, we say that the length of C is k. A cycle of length k is denoted by
Ck. A chord of a cycle C in graph G is an edge of G that is not an edge of
C but both of whose ends belong to C, and C is chordless if no edge of G is
a chord of C.

2 β-perfection of (even hole, twin wheel, cap)-free
graphs

In this section we prove that (even hole, twin wheel, cap)-free graphs are
β-perfect (Theorem 2.7). Note that chordal graphs are properly contained
in the class of (even hole, twin wheel, cap)-free graphs. Furthermore, since
diamond-free graphs do not contain twin wheels, this result generalises The-
orem 1.1.
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The following well-known characterisation of chordal graphs, and the
construction of (cap, 4-hole)-free graphs with a hole and no clique cutset
given by Theorem 2.2 are used to prove Lemma 2.3, a decomposition theorem
for (even hole, twin wheel, cap)-free graphs.

Theorem 2.1 (Dirac [5]). If G is a chordal graph, then either G is a com-
plete graph or it has a clique cutset.

Given graphs G and F , we say that G is obtained by blowing up vertices
of F into cliques provided that there exists a partition {Xv}v∈V (F ) of V (G)
into nonempty cliques such that for all distinct u, v ∈ V (F ), if uv ∈ E(F )
then Xu is complete to Xv in G, and if uv 6∈ E(F ) then Xu is anticomplete
to Xv in G. A universal clique is a (possibly empty) clique K in a graph G
such that K is complete to V (G) \K.

Theorem 2.2 (Cameron, da Silva, Huang and Vušković [2]). Let G be a
(cap, 4-hole)-free graph that contains a hole and has no clique cutset. Let F
be any maximal induced subgraph of G with at least 3 vertices that is triangle-
free and has no clique cutset. Then G is obtained from F by first blowing up
vertices of F into cliques, and then adding a universal clique. Furthermore,
any graph obtained by this sequence of operations starting from a (triangle,
4-hole)-free graph with at least 3 vertices and no clique cutset is (cap, 4-
hole)-free and has no clique cutset.

Lemma 2.3. If G is an (even hole, twin wheel, cap)-free graph, then one
of the following holds:

(i) G is a complete graph;
(ii) G consists of a triangle-free graph on at least 3 vertices that has no

clique cutset together with a (possibly empty) universal clique; or
(iii) G has a clique cutset.

proof — Let G be an (even hole, twin wheel, cap)-free graph and assume
that (i) and (iii) do not hold. By Theorem 2.1, G contains a hole. Let F be
any maximal induced subgraph of G with at least 3 vertices that is triangle-
free and has no clique cutset. By Menger’s theorem, every vertex of F is
contained in a hole. Since G does not contain a twin wheel, Theorem 2.2
implies that (ii) holds, i.e. V (G)\V (F ) is a clique that is complete to V (F ).
�

Lemma 2.4. If G is a graph whose vertex set can be partitioned into (pos-
sibly empty) sets A and B so that:

• A is a clique of G,

• if B 6= ∅ then G[B] is a (triangle, even hole)-free graph, and
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• A is complete to B,

then G is β-perfect.

proof — It suffices to show that χ(G) = β(G). Clearly we may assume
that B 6= ∅. By Theorem 1.1, χ(G[B]) = β(G[B]). But then β(G) =
β(G[B]) + |A| = χ(G[B]) + |A| = χ(G). �

Let S ⊆ V (G) be a clique cutset of G and let C1, . . . , Ck be the connected
components of G \ S. The blocks of decomposition of G with respect to the
clique cutset S are graphs Gi = G[V (Ci) ∪ S], for i = 1, . . . , k. If, for some
i, Gi has no clique cutset then Gi is an extreme block and S is an extreme
clique cutset. To complete our proof we will use the following well-known
property of clique cutsets.

Lemma 2.5. If a graph G has a clique cutset, then it has an extreme clique
cutset.

Lemma 2.6 (Markossian, Gasparian and Reed [7]). Let G be a (triangle,
even hole)-free graph. Let x be a vertex of G. Then either {x} is complete
to V (G) \ {x} or there is some vertex y in G \N [x] such that y has degree
at most 2 in G.

A graph is k-degenerate if every one of its subgraphs has a vertex of
degree at most k. It is well known that the chromatic number of a k-
degenerate graph is at most k + 1.

Theorem 2.7. If G is an (even hole, twin wheel, cap)-free graph, then G
is β-perfect.

proof — Suppose not and let G be a minimally β-imperfect (even hole,
twin wheel, cap)-free graph. By Lemma 1.5, β(G) = δ(G) + 1.

Lemmas 2.3 and 2.4 together imply that G has a clique cutset. Let K
be an extreme clique cutset of G (it exists by Lemma 2.5). Let C1, . . . , Ck

be the connected components of G \ K, and G1, . . . , Gk their respective
blocks of decomposition. Without loss of generality, let G1 = G[V (C1)∪K]
be an extreme block. Since G1 has no clique cutset, by Lemma 2.3 G1 is
either a complete graph or a 2-connected triangle-free graph together with
a universal clique.

If G1 is a clique, then every vertex of C1 is a simplicial extreme in G1

and hence in G, contradicting Lemma 1.4. So V (G1) may be partitioned
into sets A1 and B1 such that A1 is a clique, G[B1] is 2-connected triangle-
free, and A1 is complete to B1. Since G[B1] is 2-connected triangle-free,
by Lemma 2.6 B1 contains 2 nonadjacent distinct vertices y1 and y2 that
are both of degree 2 in G[B1]. It follows that y1 and y2 are both of degree
2 + |A1| in G1. Without loss of generality, assume that y1 ∈ V (C1). It
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follows that dG(y1) = 2 + |A1|. Since G[B1] contains an odd hole and is
2-degenerate, χ(G[B1]) = 3 and so χ(G1) = 3 + |A1|. But then

β(G) = δ(G) + 1 ≤ dG(y1) + 1 = 3 + |A1| = χ(G1) ≤ χ(G),

and hence β(G) = χ(G), contradicting our assumption that G is minimally
β-imperfect. �

We observe that the class of (even hole, twin wheel, cap)-free graphs can
be recognized in polynomial time. In [3] it was shown that (even hole, cap)-
free graphs can be recognized in polynomial time. To recognize whether a
graph contains a twin wheel it suffices to test for every {u, v, x, y} ⊆ V (G)
that induces a diamond, with say uv 6∈ E(G), whether there is a path from
u to v in G \ ((N [x] ∪N [y]) \ {u, v}).

3 Hyperholes

A hyperhole is a graph H whose vertex set can be partitioned into k ≥ 4
nonempty sets X1, . . . , Xk such that for all i ∈ {1, . . . , k}, Xi is a clique that
is complete to Xi−1 ∪Xi+1 and anticomplete to V (H) \ (Xi−1 ∪Xi ∪Xi+1).
Under these circumstances, we say that H is a k-hyperhole, and write H =
(X1, . . . , Xk). We refer to (X1, . . . , Xk) as the hyperhole partition of H, and
to sets Xi as the bags of H. Throughout, indices of bags are assumed to be
taken modulo k (e.g. Xk+1 = X1). A k-hyperhole is odd if k is odd, and it
is even otherwise. It is easy to see that for a hyperhole H = (X1, . . . , Xk),
ω(H) = max1≤i≤k |Xi ∪ Xi+1|. Furthermore, observe that every induced
subgraph of a k-hyperhole is either a chordal graph or a k-hyperhole.

The following result on the chromatic number of a hyperhole is used
throughout this section.

Theorem 3.1 (Narayanan and Shende [8]). If H is a hyperhole, then

χ(H) = max

{

ω(H),

⌈

|V (H)|

α(H)

⌉}

.

Corollary 3.2. If H is a minimally β-imperfect k-hyperhole with k odd,
then

|V (H)| ≤
(β(H)− 1)(k − 1)

2
.

proof — Since k is odd, α(H) = k−1
2 , and hence by Theorem 3.1, χ(H) ≥

2|V (H)|
k−1 . Since H is minimally β-imperfect, β(H) > χ(H). It follows that

β(H)− 1 ≥ 2|V (H)|
k−1 . �

The following lemma will be used repeatedly throughout this paper.
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Lemma 3.3. Let H = (X1, . . . , Xk) be a minimally β-imperfect k-hyperhole.
Then for all i ∈ {1, . . . , k}, the following hold:

(i) if |Xi−1| = |Xi+1| = 1, then |Xi| ≥ β(H)− 2;

(ii) if |Xi| = 1, then |Xi−2 ∪Xi−1 ∪Xi| ≥ β(H) and |Xi ∪Xi+1 ∪Xi+2| ≥
β(H);

(iii) if |Xi| = |Xi+1| = 1, then |Xi+2| ≥ β(H)− 2 and |Xi−1| ≥ β(H)− 2.

proof — Suppose that for some i ∈ {1, . . . , k}, |Xi−1| = |Xi+1| = 1 and
|Xi| ≤ β(H) − 3. Fix a vertex x ∈ Xi. Then d(x) ≤ β(H) − 2 and so
β(H) ≥ d(x) + 2 ≥ δ(H) + 2, contradicting Lemma 1.5. So (i) holds.

To prove (ii), by symmetry it suffices to prove that if |X1| = 1, then
|X1∪X2∪X3| ≥ β(H). Suppose that |X1| = 1 but |X1∪X2∪X3| ≤ β(H)−1.
Fix a vertex x ∈ X2. Then d(x) ≤ β(H) − 2 and so β(H) ≥ d(x) + 2 ≥
δ(H) + 2, contradicting Lemma 1.5. So (ii) holds.

It follows directly from (ii) that (iii) holds. �

Lemma 3.4. Let H = (X1, . . . , Xk) be a k-hyperhole such that |Xi| ≥ 2 for
all i ∈ {1, . . . , k}. Then H is not β-perfect.

proof — If k is even then clearly H is not β-perfect, so we may assume that
k is odd, and hence k ≥ 5. Consider a k-hyperhole H ′ = (X ′

1, . . . , X
′
k) such

that for all i ∈ {1, . . . , k}, |X ′
i| = 2. Clearly δ(H ′) = 5, and so β(H ′) ≥ 6.

Using Theorem 3.1 we obtain χ(H ′) = max{4, ⌈ 4k
k−1⌉}. Since ⌈ 4k

k−1⌉ = 5 for
all k ≥ 5, χ(H ′) = 5 < β(H ′). Therefore H ′ is not β-perfect. Since we may
find an induced subgraph of H that is isomorphic to H ′, it follows that H
is not β-perfect. �

3.1 The 5-hyperholes and 7-hyperholes

We begin by characterising β-perfect 5-hyperholes and 7-hyperholes.

Theorem 3.5. Let H = (X1, . . . , X5) be a 5-hyperhole. Then H is β-perfect
if and only if some bag of H is of size 1.

proof — If H is β-perfect, then some bag of H is of size 1, for otherwise
Lemma 3.4 is contradicted.

Now suppose, without loss of generality, that |X1| = 1 but that H is not
β-perfect. Since every induced subgraph of H is either chordal or is a 5-
hyperhole, by Theorem 1.6 we may assume that H is minimally β-imperfect.
By Lemma 3.3, |X1 ∪ X2 ∪ X3| ≥ β(H) and |X4 ∪ X5 ∪ X1| ≥ β(H). So

|V (H)| ≥ 2β(H)− 1 = 4(β(H)−1)
2 + 1, contradicting Corollary 3.2. �

So the graph in Figure 1 is the only minimally β-imperfect 5-hyperhole.

8



Figure 2: A minimally β-imperfect 7-hyperhole.

Theorem 3.6. Let H = (X1, . . . , X7) be a 7-hyperhole. Then H is β-
perfect if and only if for some i ∈ {1, . . . , 7}, either |Xi| = |Xi+1| = 1 or
|Xi| = |Xi+2| = 1.

proof — Suppose that H is β-perfect but (|Xi|, |Xi+1|) 6= (1, 1) and
(|Xi|, |Xi+2|) 6= (1, 1) for all i ∈ {1, . . . , 7}. By Lemma 3.4, we may assume
without loss of generality that |X1| = 1. We begin by claiming that we may
assume that for all i ∈ {1, . . . , 7}\{1, 4}, |Xi| ≥ 2. Suppose that |Xj | = 1 for
some j ∈ {1, . . . , 7}\{1, 4}. From our assumption that (|Xi|, |Xi+1|) 6= (1, 1)
and (|Xi|, |Xi+2|) 6= (1, 1) for all i ∈ {1, . . . , 7}, it follows that j ∈ {4, 5}.
So, without loss of generality, we may assume that |X4| = 1. It follows from
the same assumption that all remaining bags are of size at least 2.

Therefore H contains a hyperhole H ′ = (X ′
1, . . . , X

′
7) such that |X ′

1| =
|X ′

4| = 1 and with all remaining bags being of size 2. By Theorem 3.1,

χ(H ′) = max{ω(H ′),
⌈

|V (H′)|
3

⌉

} = max{4, ⌈123 ⌉} = 4. But β(H ′) ≥ δ(H ′) +

1 = 5 > χ(H ′), and hence H ′ is not β-perfect, contradicting our assumption
that H is β-perfect.

Suppose now that |X1| = |X2| = 1 but that H is not β-perfect. Since
every induced subgraph of H is chordal or a 7-hyperhole with two consecu-
tive bags of size 1, by Theorem 1.6 we may assume that H is minimally β-
imperfect. By Lemma 3.3, |X3| ≥ β(H)−2 and |X7| ≥ β(H)−2. If |X4| ≥ 2,
then χ(H) ≥ ω(H) ≥ |X3∪X4| ≥ β(H) and so χ(H) = β(H), contradicting
our assumption that H is minimally β-imperfect. So |X4| = 1, and by sym-
metry |X6| = 1. It then follows from Lemma 3.3 that |X5| ≥ β(H)− 2. But

now |V (H)| ≥ 3(β(H)− 2)+ 4 = 6(β(H)−1)
2 +1, contradicting Corollary 3.2.

Finally, suppose that |X1| = |X3| = 1 but that H is not β-perfect. As
before, by Theorem 1.6 we may assume that H is minimally β-imperfect. It
follows from Lemma 3.3 that |X2| ≥ β(H)− 2, |X3 ∪X4 ∪X5| ≥ β(H), and

|X6 ∪ X7 ∪ X1| ≥ β(H). Therefore |V (H)| ≥ 3β(H) − 2 = 6(β(H)−1)
2 + 1,

contradicting Corollary 3.2. This completes the proof. �

It follows that the graph in Figure 2 is the only minimally β-imperfect
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7-hyperhole.

3.2 Odd hyperholes of length at least 9

Let H = (X1, . . . , Xk) be an odd hyperhole. For i, j,m ∈ {1, . . . , k},
(Xi, . . . , Xj) is a sequence of m bags of H if for l ∈ {1, . . . ,m}, the l-th
element of the sequence is Xi+l−1 (and in particular the m-th element of
the sequence is the bag Xj). A sector of H is a sequence of at least 2 bags
(Xi, . . . , Xj) such that |Xi| = |Xj | = 1 and all the other bags in the sequence
have size at least 2. We say that Xi and Xj are the end bags of the sector,
and all the other bags are called the interior bags of the sector. The length
of a sector is the number of its interior bags. A sector is an n-sector, for an
integer n ≥ 0, if it is of length n. A sector is safe if it has length 1 or length
at least 3. A super-sector of H is a sequence of at least 5 bags (Xi, . . . , Xj)
such that |Xi| = |Xi+1| = |Xj−1| = |Xj | = 1 and for h ∈ {i+ 1, . . . , j − 2},
(|Xh|, |Xh+1|) 6= (1, 1). If (Xi, . . . , Xj) is a super-sector of H then we say
that H contains a super-sector. We say that a super-sector (Xi, . . . , Xj)
contains an n-sector if some subsequence of (Xi+1, . . . , Xj−1) is an n-sector
of H.

Figure 3: From left to right: hyperholes satisfying parts (i), (ii), and (iii) of
the definition of a trivial hyperhole.

A k-hyperhole H = (X1, . . . , Xk) is trivial if at least one of the following
holds:

(i) for some i ∈ {1, . . . , k}, |Xi| = |Xi+1| = |Xi+2| = 1;

(ii) H contains a super-sector that contains only 2-sectors;

(iii) H contains exactly one 0-sector, and all its other sectors are of length
2.

See Figure 3 for examples of trivial hyperholes. A nontrivial hyperhole is a
hyperhole that is not trivial.
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Lemma 3.7. Let H = (X1, . . . , Xk) be an odd k-hyperhole. If |Xi| =
|Xi+1| = 1 and |Xi+2|, |Xi+3| ≥ 2 for some i ∈ {1, . . . , k}, then H is not
minimally β-imperfect.

proof — We may assume, by symmetry, that |X1| = |X2| = 1 and
|X3|, |X4| ≥ 2. Let x be the vertex in X2, and suppose that H is min-
imally β-imperfect. Then, by Lemma 1.5, β(H) = δ(H) + 1. Therefore
β(H) ≤ d(x) + 1 = |X3| + 2 ≤ |X3| + |X4| ≤ ω(H) ≤ χ(H). But then
χ(H) = β(H), a contradiction. �

Lemma 3.8. If H is a trivial odd hyperhole, then H is β-perfect.

proof — Let H = (X1, . . . , Xk) be a trivial odd hyperhole, and assume
that H is not β-perfect. Since every induced subgraph of H is either chordal
or a trivial hyperhole, by Theorem 1.6 we may assume that H is minimally
β-imperfect. By Lemma 3.7, H cannot satisfy (ii) or (iii) of the definition
of a trivial hyperhole, and hence for some i ∈ {1, . . . , k}, |Xi| = |Xi+1| =
|Xi+2| = 1. Let x be the vertex of Xi+1. Then d(x) = 2, and hence x is a
simplicial extreme of H, contradicting Lemma 1.4. �

A base hyperhole is any odd hyperhole H = (X1, . . . , Xk) such that for all
i ∈ {1, . . . , k}: |Xi| ≤ 2, (|Xi|, |Xi+1|, |Xi+2|) 6= (1, 1, 1), and (|Xi|, |Xi+1|) 6=
(2, 2). It follows that every sector of H is of length 0 or 1, and hence every
proper induced subgraph of a base hyperhole is either chordal or a trivial
hyperhole. Note that if H is a base hyperhole, then ω(H) = 3 and β(H) = 4.
We say that a base hyperhole H is good if it has exactly one sector of length
0, and bad otherwise. Note that, up to isomorphism, there is only one good
base hyperhole of length k. Also, observe that since k is odd, every base
hyperhole must have a sector of length 0, and hence bad base hyperholes
have at least two sectors of length 0. See Figure 4 for examples of base
hyperholes.

Figure 4: The unique (up to isomorphism) good base hyperhole of length 9
(left) and a bad base hyperhole that has three sectors of length 0 (right).

We now characterise β-perfect base hyperholes. First, we prove the
following useful lemma on the number of vertices in a base hyperhole.
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Lemma 3.9. Let H be a base hyperhole of length k. The following hold.

(i) If H is good, then |V (H)| = 3(k−1)
2 + 1.

(ii) If H is bad, then |V (H)| ≤ 3(k−1)
2 .

proof — Suppose that H is good. Then H contains exactly one 0-sector,
and all other sectors are of length 1. It follows that H has k−1

2 bags of size

2 and k−1
2 + 1 bags of size 1. Therefore |V (H)| = 3(k−1)

2 + 1, and (i) holds.
Now suppose that H is bad. Let (Xi, Xi+1) and (Xj , Xj+1) be distinct

0-sectors ofH (their existence follows from the definition of a bad base hyper-
hole). Let m denote the number of bags in the sequence (Xi+2, . . . , Xj−1),
and let m′ denote the number of bags in the sequence (Xj+2, . . . , Xi−1).
Since k = m + m′ + 4, we may assume without loss of generality that m
is even and m′ is odd. It follows from H being a base hyperhole and from
|Xi+1| = |Xj | = 1 that |Xi+2 ∪ · · · ∪Xj−1| ≤ 2 (m/2) +m/2 = 3m/2. Sim-
ilarly, we can obtain the bound |Xj+2 ∪ · · · ∪Xi−1| ≤ 2 ⌈m′/2⌉ + ⌊m′/2⌋ =
m′ + 1 + (m′ − 1)/2. Now, using these bounds together with the fact that
m+m′ = k − 4 and |Xi ∪Xi+1 ∪Xj ∪Xj+1| = 4, we obtain

|V (H)| ≤
3m

2
+m′ +

m′ − 1

2
+ 5

=
3m

2
+

3m′

2
+

9

2

=
3(k − 4)

2
+

9

2

=
3(k − 1)

2
.

Therefore (ii) holds. �

Lemma 3.10. Let H = (X1, . . . , Xk) be a base hyperhole. Then H is β-
perfect if and only if H is good. Furthermore, if H is bad, then H is mini-
mally β-imperfect.

proof — Since H is a base hyperhole, ω(H) = 3 and β(H) = 4. Sup-
pose that H is bad. Substituting the upper bound on |V (H)| given by
Lemma 3.9 (ii) into the equation in Theorem 3.1 (observing that since k is
odd, α(H) = k−1

2 ) gives

χ(H) ≤ max







ω(H),









2
(

3(k−1)
2

)

k − 1















= max

{

3,

⌈

3(k − 1)

k − 1

⌉}

= 3.

Therefore χ(H) < β(H), and hence H is not β-perfect. Since any proper
induced subgraph of H is either a chordal graph or a trivial hyperhole,
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by Theorem 1.6 and Lemma 3.8, every proper induced subgraph of H is
β-perfect. Therefore H is minimally β-imperfect.

Now suppose that H is good but not β-perfect. Since every proper
induced subgraph of H is chordal or a trivial hyperhole, by Theorem 1.6
and Lemma 3.8, H is minimally β-imperfect. By Corollary 3.2,

2|V (H)|

k − 1
≤ β(H)− 1 = 3,

which implies that |V (H)| ≤ 3(k−1)
2 . But this contradicts Lemma 3.9 (i). �

Lemma 3.11. Every nontrivial odd hyperhole contains a base hyperhole.

proof — Let H = (X1, . . . , Xk) be a nontrivial odd hyperhole. Suppose
that at most one bag of H is of size 1. Without loss of generality, we may
assume that for i ∈ {2, . . . , k}, |Xi| ≥ 2. For i ∈ {1, . . . , k}, if i is odd then
let X ′

i be any one-element subset of Xi, and otherwise let X ′
i be any two-

element subset of Xi. Then clearly H ′ = (X ′
1, . . . , X

′
k) is a base hyperhole

that is contained in H.
So we may assume that there are at least two distinct bags of H that

are of size 1, and hence H contains at least 2 sectors. Let j1, . . . , jt be the
indices of the bags of H that are of size 1, ordered such that j1 < · · · < jt,
and let S1, . . . , St be the sectors of H such that for i = 1, . . . , t − 1, Si =
(Xji , . . . , Xji+1

), and St = (Xjt , . . . , Xj1).
We construct a hyperhole H ′ = (X ′

1, . . . , X
′
k), where for i = 1, . . . , k,

X ′
i ⊆ Xi, as follows. For i = 1, . . . , t, X ′

ji
= Xji . For every safe sector Si,

we reduce the interior bags of Si according to the following rules:

• If the length of Si is odd, then for h ∈ {ji + 1, . . . , ji+1 − 1},

|X ′
h| =

{

1 if h− ji is even,

2 otherwise.

• If the length of Si is even, then |X ′
ji+1−1| = 2, |X ′

ji+1−2| = 1, and for
h ∈ {ji + 1, . . . , ji+1 − 3},

|X ′
h| =

{

1 if h− ji is even,

2 otherwise.

To finish off the construction of H ′ we now need to reduce all 2-sectors. To
do so, we consider the following cases.

Case 1: H has no 0-sectors.

For every 2-sector Si, we ensure that |X ′
ji+1| = 2 and |X ′

ji+2| = 1. The
resultant hyperhole H ′ is clearly a base hyperhole.
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Case 2: H has exactly one 0-sector.

Since H is nontrivial, it must contain a safe sector. Without loss of gener-
ality, let us say that S1 is the 0-sector and Ss is a safe sector. For every
2-sector Si we reduce its interior bags according to the following rule:

• If 1 < i < s, then |X ′
ji+1| = 2 and |X ′

ji+2| = 1, and otherwise |X ′
ji+1| =

1 and |X ′
ji+2| = 2.

The resultant hyperhole H ′ is clearly a base hyperhole.

Case 3: H has at least two 0-sectors.

Since H is nontrivial, any two consecutive 0-sectors together with inter-
mediate bags forms a super-sector. We consider each super-sector S =
(Xl, . . . , Xr) separately. Since H is nontrivial, S contains a safe sector
Ss. Let Si be a 2-sector contained in S. If Si is contained in the subse-
quence (Xl, . . . , Xjs) of S, then |X ′

ji+1| = 2 and |X ′
ji+2| = 1, and otherwise

|X ′
ji+1| = 1 and |X ′

ji+2| = 2. The resultant hyperhole H ′ is clearly a base
hyperhole. �

Lemma 3.12. Let H = (X1, . . . , Xk) be a minimally β-imperfect k-hyperhole.
For integers i, j,m ∈ {1, . . . , k} and with m ≥ 3 and m odd, let (Xi, . . . , Xj)
be a sequence of m bags of H such that for all h ∈ {i, . . . , j}, |Xh| = 1 if h−i

is even and |Xh| ≥ 2 otherwise. Then |Xi ∪ · · · ∪Xj | ≥
(β(H)−1)(m−1)

2 + 1.

proof — Observe that in the sequence (Xi, . . . , Xj) there are m−1
2 bags of

size at least 2 and m+1
2 bags of size 1. It now follows from Lemma 3.3 that

|Xi ∪ · · ·Xj | ≥ (β(H)− 2)

(

m− 1

2

)

+
m+ 1

2

=
(β(H)− 1) (m− 1)

2
−

m− 1

2
+

m+ 1

2

=
(β(H)− 1)(m− 1)

2
+ 1,

as required. �

Let H ′ = (X ′
1, . . . , X

′
k) be a good base hyperhole with k odd and k ≥ 9.

Without loss of generality, let us assume that |X ′
3| = |X ′

4| = 1. Let A be
one of the sets {1, 3}, {1, 6}, {3, 4}, {4, 6}. We call A a free set of H ′. A
hyperhole H = (X1, . . . , Xk) is an extension of H ′ if for all i ∈ {1, . . . , k},
X ′

i ⊆ Xi and for some free set A of H ′, for all i ∈ {1, . . . , k} \A, |X ′
i| = 1 if

and only if |Xi| = 1. (Such a free set A of H ′ is called a free set of H.) We
now give a structural characterisation of β-perfect k-hyperholes with k odd
and k ≥ 9.
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Lemma 3.13. Let H be a k-hyperhole with k odd and k ≥ 9. If H is
nontrivial and is not an extension of a good base hyperhole, then H contains
a bad base hyperhole.

proof — Suppose that H is neither trivial nor an extension of a good
base hyperhole. Since H is nontrivial, by Lemma 3.11 it contains a base
hyperhole H ′ = (X ′

1, . . . , X
′
k) (with X ′

i ⊆ Xi for all i ∈ {1, . . . , k}). We
may assume that H ′ is good, for otherwise we are done. Without loss of
generality we assume that |X ′

3| = |X ′
4| = 1. Since H is not an extension of

H ′, one of the following holds:

• for some even i ∈ {8, . . . , k}, |Xi| ≥ 2;

• |X1| ≥ 2 and |X4| ≥ 2;

• |X3| ≥ 2 and |X6| ≥ 2.

First, let us suppose that for some even i ∈ {8, . . . , k}, |Xi| ≥ 2. Consider
a hyperhole H ′′ = (X ′′

1 , . . . , X
′′
k ) such that for all h ∈ {1, . . . , k}:

|X ′′
h | =











1 if h ∈ {1, 3, i− 1, i+ 1},

1 if h ∈ {4, . . . , i− 2} ∪ {i+ 2, . . . , k} and h is even,

2 otherwise.

ClearlyH ′′ is a base hyperhole that is contained inH. Furthermore, (X ′′
i−2, X

′′
i−1)

and (X ′′
i+1, X

′′
i+2) are two distinct 0-sectors of H ′′, and hence H ′′ is bad.

Suppose that |X1| ≥ 2 and |X4| ≥ 2. Consider a hyperhole H ′′ =
(X ′′

1 , . . . , X
′′
k ) such that for all h ∈ {1, . . . , k}:

|X ′′
h | =











1 if h ∈ {2, 3, 5, k},

1 if h ∈ {6, . . . , k − 1} and h is even,

2 otherwise.

ClearlyH ′′ is a base hyperhole that is contained inH. Furthermore, (X ′′
2 , X

′′
3 )

and (X ′′
5 , X

′′
6 ) are two distinct 0-sectors of H ′′, and hence H ′′ is bad. A sym-

metric argument may be used for the case where |X3| ≥ 2 and |X6| ≥ 2.
�

Theorem 3.14. A k-hyperhole H with k odd and k ≥ 9 is β-perfect if and
only if it is trivial or it is an extension of a good base hyperhole.

proof — Let H = (X1, . . . , Xk) be a k-hyperhole with k odd and k ≥ 9.
By Lemma 3.10 and Lemma 3.13 it follows that if H is β-perfect then it is
trivial or an extension of a good base hyperhole.
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Now suppose that H is either trivial or is an extension of a good base
hyperhole, but H is not β-perfect. By Lemma 3.8, H is an extension of a
good base hyperhole H ′ = (X ′

1, . . . , X
′
k). Furthermore, since every induced

subgraph of H is either chordal, a trivial hyperhole, or an extension of a
good base hyperhole, we may assume that H is minimally β-imperfect. Let
A be a free set of H. By symmetry, it suffices to consider the following three
cases. In each case, we obtain a lower bound on |V (H)| which contradicts
the bound given in Corollary 3.2.

Case 1: A = {1, 3}.

Applying Lemma 3.12 to the sequence (X4, . . . , Xk−1) gives the lower bound

|X4 ∪ · · · ∪Xk−1| ≥ (β(H)− 1)

(

k − 5

2

)

+ 1.

It follows from Lemma 3.3 applied to Xk−1, Xk, X1 and to X2, X3, X4 that
|Xk−1 ∪ Xk ∪ X1| ≥ β(H) and |X2 ∪ X3 ∪ X4| ≥ β(H). Adding together
these bounds, and subtracting 2 to account for double counting, we obtain

|V (H)| ≥ (β(H)− 1)

(

k − 5

2

)

+ 2β(H)− 1

= (β(H)− 1)

(

k − 1

2

)

− 2 (β(H)− 1) + 2β(H)− 1

= (β(H)− 1)

(

k − 1

2

)

+ 1,

contradicting Corollary 3.2. This completes Case 1.

Case 2: A = {1, 6}.

Using Lemma 3.3, we easily obtain the following bounds: |Xk−1∪Xk∪X1| ≥
β(H), |X2∪X3∪X4| ≥ β(H), |X3∪X4∪X5| ≥ β(H), and |X6∪X7∪X8| ≥
β(H). If k = 9, then adding together these bounds and subtracting 3 to
account for double counting gives the bound

|V (H)| ≥ 4β(H)− 3 = (β(H)− 1)

(

k − 1

2

)

+ 1,

contradicting Corollary 3.2. So k > 9. By applying Lemma 3.12 to the
sequence (X8, . . . , Xk−1), we obtain the additional bound

|X8 ∪ · · · ∪Xk−1| ≥ (β(H)− 1)

(

k − 9

2

)

+ 1.

Adding this to the above bounds, and subtracting 4 to account for double
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counting, we obtain

|V (H)| ≥ (β(H)− 1)

(

k − 9

2

)

+ 4β(H)− 3

= (β(H)− 1)

(

k − 1

2

)

− 4 (β(H)− 1) + 4β(H)− 3

= (β(H)− 1)

(

k − 1

2

)

+ 1,

contradicting Corollary 3.2. This completes Case 2.

Case 3: A = {3, 4}.

Applying Lemma 3.12 to the sequence (X6, . . . , Xk, X1) gives the lower
bound

|X6 ∪ · · · ∪Xk ∪X1| ≥ (β(H)− 1)

(

k − 5

2

)

+ 1.

It follows from Lemma 3.3 applied to the sets X1, X2, X3 and to X4, X5, X6

that |X1 ∪X2 ∪X3| ≥ β(H) and |X4 ∪X5 ∪X6| ≥ β(H). Adding together
these bounds, and subtracting 2 to account for double counting, we obtain

|V (H)| ≥ (β(H)− 1)

(

k − 5

2

)

+ 2β(H)− 1

= (β(H)− 1)

(

k − 1

2

)

− 2 (β(H)− 1) + 2β(H)− 1

= (β(H)− 1)

(

k − 1

2

)

+ 1,

contradicting Corollary 3.2. This completes Case 3. �

3.3 Forbidden induced subgraph characterisation

By putting together previously obtained results we obtain the following for-
bidden induced subgraph characterisation of β-perfect hyperholes (in which
all the excluded induced subgraphs are minimally β-imperfect). Let H1 be
the graph in Figure 1, and let H2 be the graph in Figure 2.

Theorem 3.15. A hyperhole is β-perfect if and only if it is (even hole, bad
base hyperhole, H1, H2)-free

proof — Suppose thatH is a β-perfect hyperhole. ClearlyH must be even-
hole-free. It follows from Lemma 3.4 that H is H1-free, from Theorem 3.6
that H is H2-free, and from Theorem 3.10 that H does not contain a bad
base hyperhole.

Now suppose that H = (X1, . . . , Xk) is a k-hyperhole that does not
contain an even hole, H1, H2, or a bad base hyperhole. In particular, k is
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odd. If k = 5, then it follows from H being H1-free that some bag of H has
size 1. Therefore H is β-perfect by Theorem 3.5. If k = 7, then it follows
from H being H2-free that for some i ∈ {1, . . . , k}, either |Xi| = |Xi+1| = 1,
or |Xi| = |Xi+2| = 1. Therefore, by Theorem 3.6, H is β-perfect. Now
suppose that k ≥ 9. SinceH contains no bad base hyperhole, by Lemma 3.13
it is either trivial or an extension of a good base hyperhole, and hence it is
β-perfect by Theorem 3.14. �

3.4 A recognition algorithm for β-perfect hyperholes

In this section, we give a linear-time algorithm that decides whether an input
hyperhole is β-perfect. We observe that in [1] it is shown that hyperholes can
be recognized in linear-time, and that a hyperhole partition can be found
also in linear-time.

Theorem 3.16. There is an algorithm with the following specifications:

Input: A k-hyperhole H = (X1, . . . , Xk).
Output: YES if H is β-perfect, and NO otherwise.
Running time: O(k).

proof — Consider the following algorithm:

1. If k is even, then return NO.

2. If k = 5, then check whether some bag of H is of size 1. If so, then
return YES. Otherwise, return NO.

3. If k = 7, then check whether |Xi| = |Xi+1| = 1 or |Xi| = |Xi+2| = 1
for some i ∈ {1, . . . , k}. If so, then return YES. Otherwise, return NO.

4. From now on, we may assume that k is odd and k ≥ 9. Check whether
H is trivial. If so, then return YES.

5. We may now assume that H is nontrivial. Using the reduction rules
given in Lemma 3.11, construct a base hyperhole H ′ = (X ′

1, . . . , X
′
k)

such that V (H ′) ⊆ V (H).

6. Check whether H ′ is bad. If so, then return NO.

7. Check whether H is an extension of H ′. If so, then return YES.
Otherwise, return NO.

We now prove that the algorithm is correct. Suppose that the algorithm
returns YES when given a k-hyperhole H = (X1, . . . , Xk) as input. As a
result of Step 1, we may assume that k is odd. If k = 5, then by Step
2, |Xi| = 1 for some i ∈ {1, . . . , k}. It follows from Theorem 3.5 that
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H is β-perfect. If k = 7, then by Step 3, either |Xi| = |Xi+1| = 1 or
|Xi| = |Xi+2| = 1 for some i ∈ {1, . . . , k}. It follows from Theorem 3.6 that
H is β-perfect. If k ≥ 9, then by Steps 4 and 7, either H is trivial or H is
an extension of a good base hyperhole. It follows from Theorem 3.14 that
H is β-perfect.

Suppose now that the algorithm returns NO, but that H is β-perfect.
Since even holes are not β-perfect, we may assume that k is odd. If k = 5,
then by Theorem 3.5, |Xi| = 1 for some i ∈ {1, . . . , k}. But then the algo-
rithm returns YES in Step 2. If k = 7, then by Theorem 3.6, |Xi| = |Xi+1| =
1 or |Xi| = |Xi+2| = 1 for some i ∈ {1, . . . , k}. But then the algorithm re-
turns YES in Step 3. So we may assume that k ≥ 9. By Theorem 3.14, H is
either trivial or an extension of a good base hyperhole. If H is trivial, then
the algorithm returns YES in Step 4. If H is an extension of a good base
hyperhole, then H is an extension of the hyperhole H ′ constructed in Step
5 of the algorithm. But then the algorithm returns YES in Step 7. This
completes the proof that the algorithm is correct.

Each step of the algorithm can clearly be performed in O(k) time. �
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