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ABSTRACT

We study kink oscillations of a straight magnetic tube with a transitional region at its boundary. The tube is homogeneous in
the axial direction. The plasma density monotonically decreases in the transitional region from its value inside the tube to that
in the surrounding plasma. The plasma motion is described by the linear magnetohydrodynamic equations in the cold plasma
approximation. We use the ideal equations inside the tube and in the surrounding plasma, but take viscosity into account in the
transitional region. We also use the thin tube and thin transitional or boundary layer (TTTB) approximation. Kink oscillations
are assumed to be driven by a driver at the tube footpoint. We derive the equation describing the displacement in the fundamental
mode and overtones. We use this equation to study kink oscillations in both the case of harmonic and random driving. In the case
of random driving, we assume that the driver is described by a stationary random function. The displacements in the fundamental
mode and overtones are also described by stationary random functions. We derive the relation between the power spectra of the
fundamental mode and all overtones and the power spectrum of the driver. We suggest a new method of obtaining information
on the internal structure of coronal magnetic loops based on the shape of graphs of the power spectrum of the fundamental mode.

Key words: MHD —plasmas —waves — Sun: corona— Sun: oscillations.

1 INTRODUCTION

Transverse oscillations of coronal magnetic loops were first observed
by the Transition Region And Coronal Explorer (TRACE) mission in
1998. These observations were reported by Aschwanden et al. (1999)
and Nakariakov et al. (1999) and interpreted as kink oscillations of
magnetic flux tubes. Now these oscillations are routinely observed
by space missions (e.g. Erdélyi & Taroyan 2008; Duckenfield et al.
2018; Suetal. 2018; Abedini 2018; and references therein). The kink
oscillations were also observed in prominence threads (e.g. Arregui,
Oliver & Ballester 2018).

Transverse oscillations of coronal magnetic loops observed by
TRACE had large amplitudes and were quickly damped. Later low-
amplitude undamped or decayless transverse oscillations of coronal
loops were observed (Tian et al. 2012; Wang et al. 2012; Nistico,
Nakariakov & Verwichte 2013; Nistico, Anfinogentov & Nakariakov
2014; Anfinogentov, Nakariakov & Nistico 2015). Recently, Duck-
enfield et al. (2018) reported the observation of multiple harmonics
in decayless observations.

Since the decayless oscillations are ubiquitously present in the
corona the question arises if they can provide the energy necessary
to heat the corona. This problem was addressed by Hillier, Van
Doorsselaere & Karampelas (2020). They assumed that there is
a fully developed stationary turbulence in the transitional layer
connecting the tube core and the surrounding plasma. This turbulence
is caused by the Kelvin—Helmholtz (KH) instability. They obtained
the relation between the amplitude of the loop kink oscillations and
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the amount of energy dissipated in the transitional layer. Using the
observed amplitudes of the decayless kink oscillations they found that
the amount of dissipated energy is insufficient to cover the radiative
losses from coronal loops.

Two models of excitation of decayless coronal loop transverse
oscillations were suggested. Nistico et al. (2013, 2014) suggested that
these oscillations are excited by random driving, most probably of the
loop footpoints, by subphotospheric convective motion. Nakariakov
etal. (2016) developed the model of decayless transverse oscillations
as a nonlinear self-oscillatory process.

Afanasyev, Karampelas & Van Doorsselaere (2019) and Karam-
pelas et al. (2019) studied the excitation of kink oscillations in a
stratified coronal loop by a continuous monochromatic driving using
the three-dimensional numerical modelling. They used a few driving
frequencies. They found that for the same driving amplitude the
excitation of kink waves is much more efficient when the deriving
frequency is equal or close to the frequency either the fundamental
mode or one of the frequencies of overtones, which is an expected
result. They also found the manifestation of the KH instability that
results in the development of turbulence in the transitional layer
between the tube core region and the surrounding plasma. Thus, they
confirmed the result previously found by other authors (e.g. Terradas
et al. 2008; Terradas, Magyar & Van Doorsselaere 2018; Antolin,
Yokoyama & Van Doorsselaere 2014; Antolin et al. 2016). However,
it is doubtful that the decayless kink oscillations are excited by a
harmonic driver. It looks like a more viable assumption that they are
excited by the random driving.

The random driving was studied by De Groof, Tirry & Goossens
(1998) and De Groof & Goossens (2000, 2002) mainly with the
relation to the coronal loop heating. These authors modelled a
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coronal magnetic loop as a magnetic slab. Since the properties of
kink oscillations of magnetic slabs and cylinders are quite different
their analysis cannot be directly applied to the problem of excitation
of decayless kink oscillations of coronal loops.

Recently, Afanasyev, Van Doorsselaere & Nakariakov (2020)
studied the excitation of decayless kink oscillations of coronal loops
by random motions using an inhomogeneous wave equation with
damping and random driving. They managed to reproduce many
observed properties of decayless kink oscillations like peaks in the
Fourier spectrum of oscillations corresponding to the fundamental
mode of the loop kink oscillation and its overtones. Our study is
motivated by this article.

In this paper, we study the excitation of decayless oscillations by
random motion modelling a coronal loop as a straight homogeneous
magnetic tube with a transitional or boundary layer. The paper is
organized as follows. In the next section, we formulate the problem.
In Section 3.2, we solve the magnetohydrodynamic (MHD) equations
in the tube transitional layer and calculate the variations of the radial
plasma displacement and magnetic pressure perturbation across the
transitional layer. In Section 4, we derive the governing equation
for driven kink oscillations of the magnetic tube. In Section 5,
we study the kink oscillations of the tube in the case of harmonic
driving, while in Section 6 we study these oscillations in the case of
stochastic driving. Section 7 contains the summary of the results and
our conclusions.

2 PROBLEM FORMULATION AND GOVERNING
EQUATIONS

We consider kink oscillations of a straight magnetic tube with a
transitional layer at its boundary in the cold plasma approximation.
The unperturbed magnetic field is straight. In cylindrical coordinates
r, ¢, z, it is given by B = Be,, where e, is the unit vector in the
z-direction and B is a constant. The equilibrium plasma density is
given by

Pis r < R(1—1¢/2),
p(r)y=q pi(r), R(1—£/2) <r < R(1 +£/2), Q)
Pe, r>R(1+1¢/2),

where R is the tube radius, p; and p, are constants, p, < p;, p;(r) is a
monotonically decreasing function, and p(r) is continuous at » = R(1
=+ ¢/2). The domain defined by r < R(1 — ¢/2) is the core part of the
magnetic tube, while R(1 — ¢/2) < r < R(1 + ¢/2) is the transitional
or boundary layer.

The tube length is L. We assume that the tube is thin, R < L.
In addition, we assume that the transitional layer is also thin, £ <
1. Hence, we use the thin tube and thin boundary layer (TTTB)
approximation.

Ruderman, Shukhobodskiy & Erdélyi (2017) derived a very
general equation describing kink oscillations of magnetic tubes in
the TTTB and cold plasma approximations. This equation takes into
account the tube expansion, the density variation along the tube,
the presence of siphon plasma flow, and the time dependence of the
plasma density. In the case when there is no equilibrium flow, the
tube has constant cross-section radius, the density is independent of
time, and the tube is homogeneous in the longitudinal direction this
equation reduces to
021

2
912 kg

02 L 2B?
7 : 0
Z

= , Ci=——"7—,
Pi + Pe mo(pi + pe)
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where

8P B?3*(n+6n) 92(n + 8n)
L=—+— = Pe .
R o 972 at?

When writing the expression for £ we corrected a misprint in
Ruderman et al. (2017) where the first term on the right-hand side of
this expression is divided by R?. In this equations 1 is the magnetic
permeability of free space, 1 is the plasma displacement in the tube
core orthogonal to the equilibrium magnetic field and in planes
containing the tube axis, and P is the magnetic pressure perturbation;
o1 and 8P are the variations of the radial plasma displacement and
magnetic pressure perturbation across the transitional layer defined

by

3

on = Er|r:1e(1+4z/2) - €’|r:R(1—€/2)’

§pP = P|r:R(l+Z/2) - P|r:R(l—Z/2)’ “)
where &, is the radial plasma displacement. We note that the radial
plasma displacement in the tube core is independent of » and n = &,
for r < R(1 — €/2).

The tube ends are assumed to be frozen in the dense plasma that
mimics the solar photosphere. For simplicity, we assume that one of
the loop ends is immovable, while the other loop is driven and the

driver is independent of r. Hence,
n=f@) atz=0,

where, at present, f{(¢) is arbitrary. Equation (2) with the right-hand
side defined by equation (3) does not provide the full description
of kink oscillations because it contains the quantities é1 and éP. To
obtain this full description, it is necessary to express 67 and 6P in
terms of 7.

n=0 atz=1L, )

3 SOLUTION IN TRANSITIONAL LAYER

The set of equations describing the plasma motion in the transitional
layer in the cold plasma approximation are given by Shukhobod-
skiy & Ruderman (2018) (see equations 17-19). In the case of straight
magnetic tube, this system reduces to

B [3(r&) 0
P=——((’5)+ﬁ>, ®)
o ar blo}
%6 1P 0% 0 (9% 1%
-~y 2 - : 7
oz = par a2 TV G TR ™
9 1 9P 9 9 (9%, 19
08 _ _1OP a0 0 (0% 15N
or? rp 0¢ az2 at \ ar?2  r? 9¢?

where V2 = B?/uop is the square of the Alfvén speed, &, is the
azimuthal component of plasma displacement, and v is the kinematic
viscosity.

The characteristic length in the radial direction is R, while the
characteristic length in the axial direction is L. This observation
inspires us to introduce the scaled variable in the z-direction, Z =
€z, where € = R/L <« 1. The characteristic time calculated using
the characteristic scale in the radial direction is R/V,;, where Vy;
is the Alfvén speed in the tube core. The typical period of kink
oscillations is of the order of L/Vy;. In accordance with this, we
introduce the scaled time T = €. It follows from equation (7) that P
is of the order of €2p V2, (&, /R). In accordance with this estimate, we
introduce the scaled magnetic pressure perturbation Q = € >P. The
terms proportional to v in equations (7) and (8) describe the effect of
viscosity. We assume that plasma is only weakly dissipative, which
implies that the terms proportional to v are only important where
there are large gradients. We will see that these large gradients are
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only present in the radial direction. This means that we can neglect
terms with the derivatives with respect to ¢ in terms proportional to
v. Now we assume that the driving is extended to the transitional
layer, which implies that &, = f(#). Then we introduce

N zZ—

r = Sr 4 9
& =&+ 11 R 9)
Now ér satisfies the boundary condition
£ =0 at Z=0,R. (10)
We also introduce
. ) zZ—

s =8, +if() (11)

Since we study kink oscillations, we take all variables proportional to
', In principle, it is possible to study a more general problem with
all variables proportional to ¢™?, where m is an arbitrary non-zero
integer number, |m| > 1 corresponding to a fluting mode. However,
no observations of fluting modes have been reported up to now. Since
we study a linear problem and the equilibrium state is axisymmetric,
there is no interaction between kink and fluting modes. Therefore,
we restrict our analysis to kink modes and do not consider the fluting
modes. Next, we rewrite equations (6)—(8) using the scaled variables
and only keep terms of the leading order approximation with respect
to €. As a result, we obtain

a(ré,

(85 +i€, =0, (12)
92, % Z-Rd& 19 &,

S _yp s _Z-RdS 132 0% (13)
aT? 322 R di2  p or AT ar?
%€, 0%, Z—-Rd&f iQ 5 33E,
= Vit =i — — ; (14)
aT? 9272 R a2 rp Varar

where D = e~ !v. It follows from equation (12) that §¢ satisfies the

same boundary conditions as £,. We also impose that Q satisfies the
same boundary conditions.

Since &,, &, and Q satisfy the zero boundary conditions, we can
expand these variables in the Fourier series,

Zu,,(r T)sm

YA
0= Z Q. (r, T)sin — = (15)

n=1

a,, = Z v, (. T) sin

These expansions explicitly show that we consider standing waves.
Substituting these expansions in equations (12)—(14) and using the
identity

Z—-R 7TnZ
LIyt o
yields
a(ru,
% +iv, =0, 17)
3%u, _ du, 100, 2 df

2Q%u, — - - ==L 18
a2 T Y T T Ty T man (18)
9%v, ) 3%v, i0, 2i &> f

Qu, — D =- - = 19
a7z TRt TV rp  mndT?’ (19)
where

nv,

Qi = TA' (20)
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3.1 Solution to equation (19)

We consider the initial value problem for equation (19). For simplic-
ity, we assume that

v,
oT

We need to calculate 87 and 8P in the leading order approximation
with respect to £ < 1. Hence, we can substitute R for r in
equation (19). It follows from equation (18) that the relative variation
of O, across the transitional layer is of the order of ¢ meaning that
@, is almost constant in the transitional layer. In accordance with
this we substitute Q,; for Q,, in equation (19), where Q,; is equal to
Q, atr=R(1 — £/2).

To solve equation (19) we use the method used by Ruderman
(1999) to study the heating of coronal magnetic loops by phase-
mixed torsional Alfvén waves. The ratio of the second term on the
left-hand side of equation (19) to the third term is of the order of
Reynolds number Re = RV,;/D; however, we will see later that
this estimate is only valid for not very large time. The meaning of
condition ‘not very large time’ will be specified later. We assume that
Re > 1. Then, for not very large time, the third term on the left-hand
side of equation (19) can be neglected and it reduces to

=0 at

T=T,. (21)

v, =

9%v, 22 .
8T2 +n QAvn = _lgn(T), (22)
where
Qm 2 d&f
&n(T) = + % d? (23)

The solution to this equation satisfying the initial conditions equa-
tion (21) is

. T
LA / en(T")sin[nQu(T" — T)]dT". (24)
n2 To

Differentiating this expression with respect to r yields

d i dQ T
Mo S (T - Tgu(T)
ar Qy dr Jy
x cos[nQa(T' — TH1dT" + ..., (25)
where ‘...’ indicates terms not growing with time. We can see that

the derivative of v, with respect to r increases unboundedly in time.
This implies that after sufficiently large time the third term on left-
hand side of equation (19) will be of the same order as the two other
terms. Hence, the approximate solution to equation (19) given by
equation (24) is not uniformly valid.

To obtain the uniformly valid approximate solution to equa-
tion (19), we use the Wentzel-Kramers-Brillouin (WKB) method
(e.g. Bender & Orszag 1999). The first step is to find the solution
to the homogeneous counterpart of equation (19). To do this we
introduce the ‘slow’ time T = (T — T))), where o < 1. Then we look
for the solution to the homogeneous counterpart of equation (19) in
the form v, = U(r, )exp [ia~' O(r, T)]. Substituting this expression
in the homogeneous counterpart of equation (19), we obtain
u (2@ : PN LC X L A

(E) —n QU — za;E —ia e

2
e <@> = 0(@@?) + O(a™'v). (26)
at \ odr

Now, we assume that the third and fifth terms on the lest-hand side
of this equation are of the same order. To satisfy this condition, we
take @ = Re™3. In the first-order approximation (the approximation

MNRAS 501, 3017-3029 (2021)
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of geometrical optics), we collect terms of the order of unity in
equation (26) to obtain

— = +4nQ,. @7
aT

For simplicity, we take ® = 0 at t = 0. Then it follows from
equation (27) that

O = £nQyut. (28)

In the second-order approximation (the approximation of physical
optics), we collect terms of the order of « in equation (26). Then,
using equation (28) we obtain

AU RV [dQ.\>
7~ 3an’U, A=A (2 29)
0T 6Re dr

It follows from this equation that
U = Uy(r) exp(—An21'3), (30)

where Uy(r) is an arbitrary function. The general solution to the
homogeneous counterpart of equation (19) is the linear combination
of two linearly independent solutions, one corresponding to the plus
sign in equation (28) and the other to the minus sign. Returning to
the original variable, we write this solution as

vy = exp[—An*(T — Ty)’ /Rel{A.(r) cos[nQ(T — Ty)]
+A,(r)sin[nQA(T — Ty)1}, @31

where A.(r) and A,(r) are arbitrary functions.

Now, we obtain the solution to equation (19) satisfying the
initial conditions equation (21). To do this we construct Green’s
function G, (T, #). Considered as a function of T it must satisfy the
homogeneous counterpart of equation (19), be continuous, and also
satisfy the conditions

— . 0G,
G,(T,0)=0 for T <86, lim
T—1t4+0 0T

=1. (32)

It is easy to verify that the function G,(T, ) = G,(T — 6), where

sin(nQ2,T)
I’lQA ’

satisfies all these conditions. In equation (33) H(T) is the Heaviside
step function, H(T) = 0 for T < 0, H(T) = 1 for T > 0. In particular,
since G,(T) = 0 for T < 0, it follows that G (T, 8) = G (T — ) =
0 for T < 6. Then the convolution of G,(T) and —ig,(7) gives a
particular solution to equation (19). It is straightforward to show that
this solution satisfies the initial conditions equation (21). Now, taking
Ty — —o00, we obtain

G,(T) = H(T)exp(—An*T?/Re) (33)

T
Uy = —i/ Gu(T — 6)g,(0)do. (34)

o0

3.2 Calculation of 7 and §P

Using equations (4), (9), (12), (15), and (34), and the approximation
r ~ R yields

| [RO+2) T

oy = —— dr/ G,(T —0)g,(0)do, (35)
R JRra-ep2) —c0

where 67, is the coefficient of expansion of §7 in the Fourier series

similar to those given by equation (15). We note that, since f{7) is

independent of r, §n = 0 at z = 0, L and, consequently, §n = 0 can

be expanded in the Fourier series with respect to z.

MNRAS 501, 3017-3029 (2021)

Next, we calculate 6P in the leading order approximation with
respect to £ and Re~!. We use the relation P = €2Q and the expansion
of Q in the Fourier series given by equation (15). Even after the phase
mixing creates small scales in the radial direction in the transitional
layer the ratio of the third term on the left-hand side of equation (18)
to the second term is of the order of Re™">. Hence, we can neglect the
third term when calculating the variation of Q, across the transitional
layer. Since the ratio of variation of u, across the transitional layer to
its value at r = R(1 — ¢/2) is of the order of £ we can substitute the
value of u, at r = R(1 — ¢/2) in equation (18) when calculating the
variation of Q,. Expanding 7 in the Fourier series similar to those
given by equation (15), using equations (9) and (16), and taking into
account that &, = 1 in the core region we obtain

(36)

”"|r=R(1—z/2) = Nns

where 1, are the Fourier coefficients of expansion of n + f(if)(Z —
R)/R. Now, equation (18) reduces to the approximate form

100, 2 d>f  d%y, 22
o or = mmar: ar2 " ©7

where €24; is the value of 24 at r = R(1 — ¢/2). Then the coefficients
of the Fourier expansion of §P are given by

2 de dznn R(1+¢/2)
8Py = —*|| —— + —= / o(r)dr
v de de R(1—£/2)

—l—ERinnzn,,} . (38)

When deriving this equation, we used the approximation r ~ R. We
also use this approximation below when calculating integrals with
respect to r over the transitional layer.

We need the expressions of 7 and §P in terms of 1. However,
the expression for 87, involves Q,;, which is the value of Q,, at r =
R(1 — ¢/2). We note that equations (17)—(19) are valid not only in
the transitional layer but also in the core region. Since there are no
large gradients in the core region, we can safely neglect the terms
proportional to . Since &, is independent of r in the core region, we
obtain from equation (17) that

Uy = Ny (39)
Substituting this expression in equation (19) and taking r ~ R, we
obtain

d*n,

arz T Qi+

2
2 df). (40)

7n dT?

Oni = —piR <

Substituting this expression in the expression for g, given by
equation (23) yields

20—p)df  pi (dznn

W(T) = e
gn(T) a2

mp dT?  p
Equations (33), (35), (38), and (41) determine the coefficients of
Fourier expansions of §7 and 6 P.

+ nzﬂiinn> . (41)

4 DERIVATION OF GOVERNING EQUATION
FOR 1y

Since L is of the order of £ it follows from equation (2) that

d’n d?n
— =Ci— + O(0). 42
2 = Ciga tOW 2)
It follows from this equation that
d2 N 2 d2 2 2c2 N

M 2 df  mnCin @3)
dr2  mn de? L?
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Using equation (42), we reduce equation (3) to the approximate form

SP ¢ 3’n  B? 3% 9%8n
L=—+-CHpi — p)— + — — Pe—r- 44
R +2 i (oi /oe)az2 + o 922 Pe3s (44)

Now, we obtain with the aid of equations (7), (38), and (43) that the
Fourier coefficients of the expansion of L are given by

| [RO+E/2)
L, = win’n, (*/ p(r)dr — L’p,-)
R

R Jra—es2)
d’sn,
—PWRN* 81 — pe—, (45)
dr
where
niC TV,
wk:Tk’ a)AZGQA:TA. (46)
Substituting equation (45) in equation (2), we obtain
dznn y [ 1 ( 1 R(1+£/2)
+ nwin, |1+ Kpi——/ p(r)dr
dr? k Pi + Pe R Jrai=¢/2)
Pe _ d%sn, 2 d*f
= — wy n-8n, - — . 47
,o,--l—,Oe( A0 dr? mn dr? “47)

The second term in the square brackets only provides a slight
correction of the order of £ to the frequency of the fundamental
mode and overtones. This correction is related to the presence of the
transitional layer. Usually, this correction is neglected when studying
the damping of kink oscillations due to resonant absorption. We will
do the same and also neglect this correction below. The expression
for the first term on the right-hand side of equation (47) is obtained
in Appendix A (see equation A22). Neglecting the second term and
using equation (A22), we transform equation (47) to

dzﬂn 2.2 )Oepin6 2 2 2 2
dr2 + ntwpn. + m(wk — Wy @ — @)
RO+E/2) o 1 _
X / — G,(t —0)n,(0)do
R(1-£/2) P J-o0
2np, R(1+£/2)

= —— (a)2 —a)z)dr
TR(p; + pe) JrO—e)2) e 4

ro_ 42 2[pi + (1 — 0)p.] d?
« / Gn(,_g)ldg_ul. (48)
oo de? mn(p; + p.)  dr?
Using the identity
2 2
2 2 2 2 @ (pi — pe)
() — g Ny — @y;) 40upr (49)

and the expression for 5,, (t — 0) defined by equation (A4), we obtain
that the last term on the left-hand side of equation (47) is equal to

. o2 0, 2 ,R(+E/2)
Ln,] = _,((,07,02)/ wy dr
2R(p;i + pe) R(1-£/2)
13
x / exp (— n*(t — 0)*/1]) sin[nwa(t — 6)],(6) o, (50)
where

)1 -1/3
Iy = v (dﬂ 51)
6 \ dr ’

The ratio of the first term on the right-hand side of this equation to
the second term is of the order of ¢ meaning that the first term can
be neglected. We also can neglect ¢ in comparison with unity in the
second term. Then finally we reduce equation (47) to

dn, 2 &f
dr? mn dr?’

+ o, + Lin,] = — (52)
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5 HARMONIC DRIVING

In this section, we consider the excitation of kink oscillations of a
magnetic tube by harmonic driving of its footpoint. This problem was
extensively studied for a few decades (see e.g. Goossens, Erdélyi &
Ruderman 2011 and references therein). Hence, we will present only
a very brief analysis.

When we took the plasma displacement and the magnetic pressure
perturbation proportional to e, we implicitly assumed that these
quantities are complex variables. Hence, only their real parts have
the physical sense. This implies that we can also take f(r) to be
complex. In accordance with this, we take

@) =ae™, (53)
where a and w, are real constants. Now, we look for the solution to
equation (50) in the form 7, = A,e/“¢’. With the aid of the variable
substitution 8 = ¢t — 1,6(3n2)~'/3, we obtain

/ exp (—n*(t — 0)’/13)

sin[nwa(t — 0)]e’?do

= iV, (wg)e' (54
where
! _
V(@) = Z(sz)m[F(fdan) 3 (—w — nwy))
— F(taGn*) P (—w + nwy))]. (55)
F(x) = / ” exp(ixf — 6°/3)de. (56)
0

This function was first introduced by Goossens, Ruderman &
Hollweg (1995) (see also Goossens et al. 2011). When deriving
equation (54) we dropped the tilde. Substituting 7, = A, e’ in

equation (50) yields
inSw2(p; — pe)? R(1+€/2)
n T T AN . T v n d
{ 2R(p; + pe)? /13(1-15/2) oayn(@) dr
2aw?
2.2 2 d
2 _ = , 57
+ (2w a)d)} o (57)

Below we only consider moderate values of n implying that n can
be considered as a quantity of the order of unity. First, we assume
that there is no resonance between the driver and the nth harmonic.
Moreover, we assume that |0, — nw | ~ @ . It is easy to show that
the ratio of the first term to the second term in equation (57) is of the
order of £. Then we obtain

2aa)§,

A, =

= m + O(). (58)

Hence, in this case the amplitude of the nth harmonic is of the order
of the driver amplitude.

It is instructive to compare the results of our analytical study with
those obtained in the numerical modelling by Afanasyev etal. (2019).
It is difficult to make the quantitative comparison for many reasons,
not least because in the numerical modelling by Afanasyev et al.
(2019) the loop was only driven for a few periods of the fundamental
mode. It seems that after this time the system is in the state of quasi-
stationary oscillation. To reach the state of stationary oscillation,
one needs to drive the loop for longer time. Still the amplitude
dependence on the driving frequency is qualitatively similar to that
given by equation (58). The amplitude takes maximum when the
driving frequency is equal to the fundamental frequency of kink
oscillations, which is in the agreement with the result obtained below.
The oscillation amplitude decays when w,; > @ and increases,
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although in fig. 2 in Afanasyev et al. (2019) this decay is non-
monotonic.

Now, we consider the case where |w; — nw | ~ L@ . In this case,
the first and second terms in the square brackets on the left-hand side
of equation (57) are of the same order and we can expect that A, is
of the order of a/¢. We only consider the case of the exact resonance
where w,; = nwy. It is shown in Appendix B that in this case

_461R(,0, +pe)2( /R(lJrZ/Z) wi dr N l-,].[wk)l
R

" S0 — pe)? (-t WP —wi  4A
(59)
where
dw
A= —TrA . wA(ra) = @y, (60)
r=ra

ra is the point of Alfvén resonance and P indicates that the integral is
calculated in the sense of Cauchy principal part. Since the first term
in the brackets in equation (59) is over the interval with the length
LR, it follows that this term is of the order of ¢R. The characteristic
scale of variation of w, in the transitional layer is ¢R. Since wy is
of the order of @, we conclude that A is of the order of @ ((¢R)™!.
Then it follows that the second term in the brackets in equation (59)
is also of the order of ¢R. Using these estimates we obtain that A,
is of the order of a/¢ as it was expected. The driver amplitude a is
multiplied by a complex quantity. This implies that there is the phase
shift of the kink oscillation in comparison with the driver phase. This
phase shift is related to the presence of the Alfvén resonance.

We note that in this section we only considered the steady state of
driven oscillation and did not study the transition to this state. When
the driving begins the oscillation amplitude in the dissipative layer
starts to grow. This growth continues until the amount of energy
dissipated due to viscosity per one period of oscillation matches the
amount of input energy. In this state, the oscillation amplitude is of
the order of Re'” times the driver amplitude (e.g. Goossens et al.
1995, 2011).

6 STOCHASTIC DRIVING

6.1 General analysis

Now, we proceed to the main aim of this paper which is the stochastic
driving of kink oscillations. We assume that f{7) is a stationary random
function. We introduce the Fourier transform

h(w) = Fh) = /OO h(He ' dt,
h(t) = 1 / h hw)e® dw. 61)
21 J_o

Stationary random functions do not possess the Fourier transform.
Hence, following Champeney (1973) we introduce the truncated
function

f(t), T] <t<T+T1,

0, otherwise. (62)

fT(l‘)={

Now we solve equation (50) with f7(¢) substituted for f(¢). It is shown
in Appendix C that

F(LIna)) = inn(@)K (o), (63)

where

K(w) =

520 N2 pRO4L2)
_w/ W) dr (64)
R

2R(p; + pe)? (1—¢/2)
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and v, (w) is defined by equation (55). We denote the corresponding
solution to equation (50) as ny,. It is shown in Appendix C that
equation (64) reduces to

K() =

n®wi(pi — pe)? [ T
2R(pi + po)* \4n2A,

R(1+¢/2) ia)i dr
-P Py (65)
R(1—¢/2) @7 — N-Wy
for w € [nwy;, nwy.], and
n®wl(pi — p)*  [FOHPiwd dr
K(w)=—— 0= PR (66)
2R(p;i + pe) R(1—t/2) ©° — N°Wy

for wg[nwa;, nwa,], where

dw
Ay =—n—2a . nos(r) = . (67)

dr o)

We note that equations (65) and (66) are only valid when w is not
very close to nwy; and nwy,, that is when |@ — nwg;| > @ (£*Re)~ 1?3
and |o — nwa.| > @ (*Re) ™13,

Applying the Fourier transform to equation (50) with f7(¢) substi-
tuted for f(r) and using equation (63), we obtain

2

N . 2w
fArn [n*of — 0” +iK(w)] = — fr. (68)
n
Now, we define the power spectrum P{w) as (Champeney 1973)
R IR
Py() = lim | fr@)”. (69)
When f{#) is a stationary random process this limit is independent

of Ty. The amplitude of the nth harmonic, 7,, is also a stationary
random process. Its power spectrum is defined by

. 1
Py (@) = Jim Sl (@) = (@) Pr(@), (70)
where
2w?
T, (w) = (71)

o} — o +iK(w)]

6.2 Linear density profile

We now introduce the characteristic scale of variation of P{w), wcn,
and assume that w., 3> €@ . This condition is equivalent to the
inequality

(72)

dw

dpP P P,
' f’w|f|<<|f|.
Wch Loy

In particular, this condition is satisfied for white noise because in this
case dPy/dw = 0. It follows from the condition imposed on P{w) that
we can take Pw) ~ Pg(nw ;) in the interval centred at n; and with
the length of a few £z ;. In accordance with this, we introduce
P, ()
N(w) = 2 = |Ty(@). (73)
P f (I’l wy )

Then we assume that the plasma density variation in the transitional
layer is linear,

Pi
20 R

p(r) = LR + 1) —2(r — R)(& — D), (74)
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Figure 1. Dependence of I1 on o for ¢ = 3. The left, middle, and right-hand panels correspond to n = 1, 2, and 3, respectively. The solid, dashed, and
dash—dotted curves correspond to £ = 0.1, 0.15, and 0.25. The dotted horizontal lines show the levels corresponding to the half maximum of IT(c). We did not
put the dotted line for the dash—dotted curve on the right-hand panel because the dash—dotted curve does not go below half of the maximum on the right-hand

side on the figure.
where ¢ = pi/p.. A simple calculation yields
RA+L/2) 2
A
P/ 2 12,2
R(1—¢/2) @ n-wy
(REC+ 1) . |2¢0?—n*(C+1)
= n R
202(¢ — 1) 202 —n%(¢ + 1)

(75)

where 0 = w/w ;. Substituting this expression in equations (65) and
(66), we obtain

¢ —1) (g +iln‘2;az —n2c+1) )

K@) ==t 1) 202 —n2(C + 1)

(76)

for

c+ I\ o1\
b)Y

o 60r 2_ 2
ien®(¢ l)n’2qa n*(¢ + 1) (78)

KO ==+ ™ 20— i + 1)

for

12 1/2
b))

where K (o) = w,:zK (o). The condition given by equation (77)
means that o is in the Alfvén continuum of the nth harmonic of
kink oscillations. It is obvious that | Y ,(o )| takes a minimum when o
is sufficiently close to n, which implies that o satisfies equation (77).
In this case, we have

+ <n2 —0o?

4 202 120+ _ 1)2
Y0 = 4o {7{ 2 - 1)

2¢az—n2<¢+1>DT

n .

2n?
(¢ —1)

402(z + 1) (80)

6404(¢ + 1)?
202 —n%(¢ + 1)

Since the first term in the square brackets is of the order of £2 and
the second term is zero when o = n, it follows that |Y,(c')|? takes a
maximum when o = n + O(¢) and this maximum is

256(¢ + 1)° .

———+ O ). 81
527T4n6(§ _ 1)2 + ( ) ( )
The dependence of IT on o given by equations (73) and (80) is shown
in Figs. 1 and 2 for n = 1, 2, 3. Fig. 1 corresponds to ¢ = 3, and
Fig. 2 to ¢ = 10, where ¢ = p;/p,.

max[I1(o)] =

We now calculate the width of the graph of I1(o) at the half of its
height. It is defined by

doc =04 —o_, Il(op)= %max[l'[(a)]. (82)

We put on =n+£6+ and assume that 6. is of the order of
unity. Then, using equations (73), (80), and (81), we obtain from
equation (82) in the leading order approximation

(R
As aresult, we obtain
s L mwnd(c — 1)
do = E(O'Jr - O',) = W (84)

We observe in Figs. 1 and 2 that [1(o) takes maximum at o = 1
and equation (81) is quite accurate for n = 1. However, this is not the
case for n =2 and n = 3. The point where I1(o) takes local maximum
is shifted to the right from ¢ = n when n = 2 and n = 3. This shift
is more pronounced for n = 3 and it increases with the increase in
£, which is not surprising because the ratio of the second term on
the right-hand side of equation (81) increases with the increase in £.
Finally, the shift of the point where I1(o) takes a local maximum and
the deviation of this maximum from the value given by equation (81)
is also more pronounced for smaller values of ¢.

When a kink oscillation of a coronal loop is caused by an impulsive
excitation like a nearby solar flare, the ratio of frequency of the
first overtone to that of the fundamental harmonic must be 2 if the
loop is homogeneous in the longitudinal direction. Verwichte et al.
(2004) reported the first observation of both fundamental mode and
first overtone of coronal loop kink oscillations. They found that
the frequency ratio was less than 2. Andries, Arregui & Goossens
(2005) suggested that this deviation of the ratio from 2 was caused
by the variation of the density along the loop (see also Arregui et al.
2007). They then developed a method for estimating the atmospheric
scale height using the ratio of frequencies of the first overtone and
fundamental harmonic. Later this method was extended to take the
loop expansion into account (Ruderman, Verth & Erdélyi 2008;
Verth & Erdélyi 2008; Verth, Erdélyi & Jess 2008; see also the review
by Andries et al. 2009). Recently, Duckenfield et al. (2018) reported
the detection of the first overtone in decayless kink oscillations of
coronal loops. This implies that decayless kink oscillations can also
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Figure 2. Dependence of I1 on o for { = 10. The left-hand, middle, and right-hand panels correspond to n = 1, 2, and 3, respectively. The solid, dashed, and
dash—dotted curves correspond to £ = 0.1, 0.15, and 0.25. The dotted horizontal lines show the levels corresponding to the half maximum of I1(o).

be used for estimating the coronal atmospheric scale height. When
doing so one must take into account the result obtained in this paper
that the ratio of the first overtone and fundamental mode deviates
from 2 even when there is no density variation along the loop. We
recall that we neglected the term proportional to £ on the left-hand
side of equation (47). However, it is straightforward to see that the
account of this term results in the multiplication of eigenfrequencies
of both the fundamental harmonic and all overtones by the same
multiplier that is slightly different from the unity. Hence, its account
cannot change the ratio of frequencies.
We now calculate the average value of || with respect to z. Using

I Z Mu(0) sin (85)
we obtain
— 1
|n|2——/ P dz = - Zmn(mz |f(r>|2
n=1
1 — n * *
+7 Z(—l) Lf5@®na ) + f(On, (0], (86)

n=1

where the asterisk indicates cornplex conjugate. We introduce the root
mean square of  as ng = (|n| ) "2 This quantity can be considered
as the measure of the coronal loop displacement. Now, it follows
from equation (86) that

Py (o) = 1 P, (o) + le(U)
2 3
n=1

(o8]

2 1o
+— D D"y, @), 87

n=1

where R indicates the real part of a quantity and Py, is the cross-
correlation function of f{¢) and 7,,(fr). We now estimate the terms on
the right-hand side of equation (87). We are mainly interested in the
value of P, (o) in the vicinity of resonances, that is in the vicinity
of 0 = n. We have already seen that P, (0)/Ps(0) = O~?) for
n =1, 2, 3. Using the estimate | P, |* < P,, Py, we obtain that the
ratio of the third term to the first term is of the order of ¢ when
o is in the vicinity of resonances. On the bases of these estimates,
we can neglect the second and third terms on the right-hand side of
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Figure 3. Dependence of In(d > Py) on o for ¢ =3 and £ = 0.15. The
dashed line is the graph of function In(d 2 Py)=—3 ln 0.

equation (87) and take

1 o0
Prr(o) ~ 5 > op,
n=1

In the numerical modelling of decayless kink oscillation using
the wave equation with damping Afanasyev et al. (2020) assumed
that the footpoint displacement is described by a power law with the
index —5/3. We make the same assumption and take

1 o0
. (0) = EPf(G),; ACHIE (88)

Pi(o)=d*0c3, o > oy, (89)

where d is a quantity with the dimension of length, d <« R, and
o is sufficiently small, definitely smaller than % Fig. 3 shows the
dependence of In(d > P, ) on o for { =3 and £ = 0.15, together with
the dependence of the input power on sigma, In(d > Py) = —% Ino.
To draw the graph of P, (o), we used equations (76) and (78). At the
boundaries of intervals where there are transitions from expression
for K(o) given by equations (76) to that given by equation (78),
or vice versa, this graph contained unphysical spikes. The presence
of these peaks is related to the fact that the expressions for K (o)
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given by equations (76) and (78) are not valid near the boundaries of
the intervals defined by equation (77). To remove these unphysical
spikes, we smoothed out the graph near the boundaries of the
intervals. We see that the graph has three peaks. The first peak is near
o = 1. It corresponds to the fundamental mode. The second peak
is near o = 2. It corresponds to the first overtone. Finally, the third
peak is to the right of o = 3. It corresponds to the second overtone
and it is very weakly pronounced. The first peak is much larger than
the second one, and the second peak is in turn much larger than
the third one. This is an expected result. What is also worth noting
is that the power in the frequency ranges near the fundamental
mode frequency and the frequency of the first overtone is strongly
enhanced. In contrast, it is not enhanced near the frequency of
the second overtone. Rather the power at frequencies slightly
different from the frequency of the second overtone is substantially
suppressed.

Ruderman & Roberts (2002) and Goossens, Andries & Aschwan-
den (2002) suggested a method of obtaining the information on the
internal structure of coronal loops using the observed damping of
kink oscillations. This method is based on the fact that the relative
thickness of the transitional layer ¢ is inversely proportional to
the damping time. On the basis of results obtained in this article,
we can suggest the second method for estimating ¢ based on the
observation of decayless kink oscillations. If using the fundamental
mode of decayless kink oscillation (n = 1), we reproduce its power
spectrum then we will be able to estimate §o. Then it follows from
equation (84) that

 8(30)(¢ + 1)
)

It would be especially interesting to apply this method when large-
amplitude decaying and small-amplitude decayless kink oscillations
of the same coronal loop are observed, like in the case reported
by Nistico et al. (2013). In this case, £ can be estimated using two
different methods and then the results can be compared.

When dealing with observations, we cannot obtained the exact
expression for P,, (o) because, in accordance with the definition
given by equation (70), for this we need to observe oscillations for
infinite time. In reality, the decayless oscillations are only observed
during a finite-time period, something between 5 and 10 periods
of fundamental kink mode. Hence, we should use the approximate
expression for P, (o) given by equation (70) with P, (o) substituted
for P,, (o), where Tis of the order of a few periods of the fundamental
mode. However, this will not affect the estimate for ¢ given by
equation (90) because it only depends on T, (w).

Since we aim to study the excitation of kink oscillations we do not
investigate the plasma motion in the transitional layer. However,
it is worth providing a brief discussion of this motion. When
the driving is random, there is no single resonant surface. If the
spectrum of the driver covers all Alfvén spectrum corresponding
to the variation of the Alfvén frequency in the transitional layer,
then we can say that any magnetic surface in this layer is a resonant
surface. Consequently, there are large gradients in the radial direction
in the whole transitional layer. Similar to the case of harmonic
driver when the driving begins the oscillation amplitude starts to
increase. This increase continues until the average energy dissipation
matches the average energy input. However, since now the energy
dissipation occurs not in a narrow dissipation layer but in the
whole transitional layer, the typical oscillation amplitude is much
smaller than that in the case of harmonic driving. Ruderman et al.
(1997) studied the direct excitation of torsional Alfvén waves by
a harmonic footpoint driving. They found that in the steady state

(90)
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the oscillation amplitude at the resonant surface where the local
Alfvén frequency matches the driving frequency is of the order of
Re'” times the driver amplitude. Ruderman (1999) studied the same
problem but with a random driving. He found that in that case the
typical oscillation amplitude in the whole transitional layer is of the
order of Re!® times the driver amplitude. Comparing the driven kink
and torsional oscillations, we can make a viable conjecture that the
typical oscillation amplitude in the whole transitional layer is of the
order of Re'® times the driver amplitude also in the case of kink
oscillations.

7 SUMMARY AND CONCLUSIONS

In this paper, we studied the excitation of kink oscillations of a
magnetic tube by the footpoint driving. We considered the simplest
model of a straight magnetic tube homogeneous in the longitudinal
direction. There is a thin boundary layer where the density mono-
tonically decreases from its value inside the tube to the value in the
surrounding plasma. We used the thin tube and thin boundary (TTTB)
approximation. We also used the cold plasma approximation.

The plasma motion is described by the linear ideal MHD equations
in the tube and surrounding plasma. However, phase mixing related
to the local Alfvén density variation creates large gradients in the
radial direction in the boundary layer. This implies that dissipation
is important in the boundary layer. Hence, we took viscosity into
account when describing motion in this layer. We found an approxi-
mate solution to the viscous linear MHD equations in the boundary
layer valid for very large Reynolds number. Using this solution, we
derived the integro-differential equation governing the magnetic tube
kink oscillations.

We used the governing integro-differential equation to study both
the harmonic and stochastic driving of the footpoint. In the case
of harmonic driving, we reproduced a well-known result that the
oscillation amplitude of kink oscillation is of the order of the
driver amplitude when the driver is not in resonance with either the
fundamental mode or one of the overtones. On the other hand, when
there is resonance the oscillation amplitude of kink oscillation is of
the order of the driver amplitude divided by the relative thickness of
the boundary layer.

In the case of stochastic driving, we assumed that the displacement
of the footpoint is described by a stationary random function.
This function is characterized by the power spectrum. The tube
displacement is the sum of the fundamental mode and all overtones.
The amplitudes of the fundamental mode and each overtone are also
stationary random functions. We derived the formulae relating the
power spectra of the fundamental mode and overtones with the power
spectrum of the driver. We assumed that the characteristic scale of
variation of the driver power spectrum is of the order of or larger
than the fundamental frequency wy. This assumption enabled us to
take the driver power spectrum to be approximately constant in the
vicinity of wy and the frequencies of overtones nwy, n = 2, 3, ...
We plot the power spectra of the fundamental mode and the first and
second overtones for two values of ratios of the density inside and
outside the tube. We also calculated the width of the graph of power
spectrum at the height of half of its maximum value and showed that
it is proportional to the relative thickness of the transitional layer.
On the basis of this result, we suggested a new method of estimation
of the transverse structure of coronal loops using the observation of
decayless kink oscillations.

First, applications of observations of decayed large-amplitude kink
oscillations to coronal seismology used the direct expressions for the
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observed quantities. In particular, this approach was used to obtain the
information about the transverse structure of coronal magnetic loops
using the observed period and damping time of kink oscillations.
However, even when the simplest model of a coronal magnetic loop
is used, which is a straight magnetic tube where the density only
varies in the radial direction, there are three unknown quantities.
These are the internal travel Alfvén time, the density contrast, and
the ratio of the transitional layer thickness to the loop radius. Since
there are only two observed quantities, the oscillation period and
damping time, it is only possible to obtain the relation among the
three unknown loop parameters. Hence, to estimate the transitional
layer thickness the authors made ad hoc assumption about the density
contrast.

This fact inspired Arregui & Asensio Ramos (2011) to use
Bayesian analysis to improve the reliability of seismological results.
Later this method was used by many authors dealing with the coronal
seismology (e.g. Arregui, Asensio Ramos & Diaz 2013; Pascoe et al.
2017, 2018; Arregui 2018). I would be convenient to use Bayesian
analysis when applying the new method of determination of the
internal structure of coronal loops as well. In this way, it would be
possible to take into account, for example, the noise and possible
temporal variation of the loop parameter. However, the detailed
description of application of Bayesian analysis to the seismological
method suggested in this paper is only relevant when this method is
applied to particular observations.

Finally, we make one comment. For simplicity, we assumed that
the loop is driven only at one footpoint. Of course, in the reality the
loop is driven at both footpoints as it was considered in the numerical
modelling (e.g. Karampelas et al. 2019; Afanasyev et al. 2020). If
we consider the loop driving at both footpoints and use the boundary
conditions

n=fi(t) at z=0, n=fo(t) at z=1L,

then equation (9) would be changed to

£t + fi@)Z —RR) - sz'

After that again £, = 0 at both footpoints. Equation (9) would be
changed in a similar way. The first term on the right-hand side of
equation (13) would be

while the first term on the right-hand side of equation (14) would be
given by the same expression multiplied by i. As a result, we would
obtain the same expressions for various quantities but with fi(r) —
f>(2) substituted for f(¢). In particular, if we make a viable assumption
that the stochastic characteristics of f(z) and f>(¢) are the same, then
the results obtained in the case of random driving would remain the
same.
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APPENDIX A: EVALUATION OF THE
RIGHT-HAND SIDE OF EQUATION (47)

In this section, we transform the right-hand side of equation (47).
Using equations (41) and (45), we rewrite the expression given by
equation (35) as

2

Sy = —n* Wy — =W, (A1)
T
where
wy = @) [
R R(1—£/2) P
t
X/ G,(t — 0)n,(0)do, (A2)
—00
1 R(1+¢/2) r f
W, = / dr/ G,(t — 9)—2 do, (A3)
mnR R(1—¢/2) —c0 de

and 5,,(1 — 0) is defined by

2
én(t):exp ( —n (l‘/t ) )%C:At)7 l‘(;3 — g(dﬂ) .

dr
(A4)
Differentiating this expression, we obtain
~/ 2 3 3}12
G, (1) =exp (—n’(t/tg) )Cos(na)At) - G, (1), (AS)
13
~, 3n%t3
G,(t) = —n wAG (1) + — Gn( ) -2
0 0
—2texp (—n’(t/12)°) cos(na)At)] , (A6)

where the prime indicates the derivative. We will also use the prime
to indicate the derivative of G, (t — €) with respect to the argument.
Below we use the relation

0G,(t =) _ 3Gt —0) _
o at

Using the integration by parts and equations (A4) and (A7), we
obtain

t 2 t
G,(t — )—fde = G (t — e)ﬂde. (A8)
—x do? o ! do

—G/ (1 —0). (A7)

Again using the integration by parts and equations (A5) and (A7)
yields

/ Gl (t —9)% do = f(t)+/ G/(t —6)f(0)ds. (A9)

With the aid of equations (A6), (A8), and (A9), we obtain

t

t 2
/ Gt — e)def —nzwj/ G,(t —0)f(0)do

+ f(t)+f/ f(9)(l—9){G (r—0)

3n2(t — 6)
x (73—2) — 2t —6)
e

d

x exp (—n*(t — 0)*/t]) cos[nwa(t — 9)]} do. (A10)
It is straightforward to show that the ratio of the third term to the
second one on the right-hand side of this equation is of the order of

Re~!. Hence, we can neglect the third term and use the approximate
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relation
0f(t R(1+¢/2) r
Wy~ O 1/ o2 dr/ Gut —0)f(6)d6. (A1)
n R R(1—£/2) —00
Differentiating this expression, we obtain
d2W2 Y d2f n R(1+£/2) 5
=—_—2 __ ar[f
dr? nd® R /Ra—e/z) w3 dr[f@
1
+/ FO)G, (& —6)] do (A12)
Using equation (A7) twice yields
! ~ J 32G,(t — 6
/ fO)GI(t —6)] do = / f(@)# ds. (A13)
oo oo 902

Using the integration by parts and equation (AS5), we obtain
0)df

' PGt —6) © 3G, —
/%)(Jf(@)iae2 d9—f(0—/ﬁ 2 ¥
(Al4)

Using again the integration by parts and equation (A4) yields

" 3G,(t—0)d . a2
/ ¥—fd9_—/ Gt —6) J:
w00 df e do

With the aid of equations (A13)—(A15), we obtain
L d2G(t—6)
0)—————do
[ 0=

Substituting equation (A16) in equation (A12) yields

(A15)

t 2
:/ G,(t — 9)—fd9 — f).

W (A16)

2
wy dr

dlz - n dtz E (1—£/2)

"= & f

2w, ¢df /R<1+e/2)
R

(A17)

Next, using equation (A7) twice, and equations (A4) and (AS), we
obtain

2 t

t a2
G (t —0)m,(0)do = nn(l)+/ Mnn(Q)de

dr? oo 002
(A18)

Using the integration by parts twice, and equations (A4) and (AS5)
yields

L 92G, (1 — 0) .

7,,9d9 G, — L(). (A19
[w = n0) [N( S a0~ (). (A19
Finally, using equations (44), (A18), and (A19), we arrive at
dZ t r dznn
— G, —0)m,(0)d0 = G,(t—06 do
o [ (t — 0)1,0) [w —0)

~nlw? / G (t — 0)n,(6)do. (A20)

—0oQ

It follows from this result that
2w,
Pl —n*wlW. (A21)

MNRAS 501, 3017-3029 (2021)

1202 Areniga 60 UO Jasn pjaieys Jo Aysianiun Aq 2812€09/.10E/Z/L0S/2I0IE/SEIUW/ W0 dNod1WapED.//:Sd)lY WOy PaPEojuMOd



3028 M. S. Ruderman and N. S. Petrukhin

Now using equations (A1)—(A3), (A17), and (A21) yields

d?sn, n®

O Rnton, =" pf — )@ - 03

R(1+¢/2) dr t 20 d2f
X — Gt —0)n, (0)d0 — — —
R1—/2) P J-x min dt

) R(1+£/2) ‘ &2
- (@3, — w,i)dr/ Gult — 9)—fd9. (A22)

TR Jra—¢/2) —o0 do

APPENDIX B: CALCULATION OF INTEGRAL
IN EQUATION (57)

In this section, we calculate the integral in equation (57) in the case
when the driver is in resonance with one of harmonics, w; = nwy.
Using equation (52), we obtain the estimate

tawa(3n>)~13 ~ (*Re)' /3, (B1)

We assume that £’Re > 1. Using the integration by parts we easily
obtain that

Fo =+ +0(1/2) (B2)

for |x| > 1. It follows from equation (59) that £,(3n%) ™3 (w, + nwy)
>> 1. This implies that we can use the approximate expression given
by equation (B2) to calculate the second term in the square brackets
in the expression for i, given by equation (54). Since @ € (w4,
Wae), it follows that there is such a point r = ra that nwa(ry) = wg =
ne . This is the point of Alfvén resonance. Hence, #,(3n%) "3 |wy —
nwa| > 1 only for r not very close to r4. The exact condition is |r —
ral > ¢R(€*Re)~"3. When this condition is satisfied we have
Lwa

Y A (B3)

n(wk2 — wi) ’
This quantity is singular at » = r4. We introduce (¢’Re)™'? « x <«
1. equation (B3) is valid when |r — ra| > x[R. When |r — ra| < x¢R
all quantities in the integrand in the integral in equation (57) can be
approximated by the first term of its expansion in the Taylor series.
In particular,

d
A=_SCAL (B4)

nwas —wg ¥ —nA@Fr —rp), 1
-

r=ra

Then for |[r — ra€| < x{¢R, we have

V(@) & = : F(iy(n/3) P AGra — 1)),

d
ney,  2(3n2)13
(B5)

where 7, is the value of ¢, calculated at r = rp. Now, we obtain an
approximate expression

R(1+£/2) i ra—x{R
/ wAYn(wq) dr ~ — (/
R(1—-€/2) n R(1-£/2)

RATUDN widr  ixeR
JUSES

Ay ER wkz—a)A 2n
[_dwk ra+xtR _ -
- — F (1 3Y3A@A — 1)) dr. B6
3G /A—xZR (fa(n/3)'P AGra — 1)) dr (B6)

Using the expression for F(x) given by equation (56) and changing
the order of integration in the last integral yields

ra+xteR —1
/ F(ian/3)'PAra — 1)) dr = —————
ra—xtR [_dlAI(n/3)l/3
= —-03/3 = 173 90
X e sin (x7a¢R|Al(n/3) 9)?. (B7)
0
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It follows from equation (B1) and the inequality x > (¢>Re)~""3 that
el = XTI LR|A|(n/3)" > 1. (B8)

Then we obtain

00 o
/ ¢~ sin (de€R|A|(n/3)1/39)?
0
®5ing s, *ing
- / MR e 34 = / 240+ 0 ~ 7. (BY)
y 0 , 0 2

Using equations (B7) and (B9) and taking formally x — 0, we obtain
from equation (B6)

R(1+£/2)
/ wA 111)1 (wd) dr
R

(1-£/2)
i
~ =P —
n R(1—¢/2) W) — Wy

R(1+¢/2) wi dr Ty,

4n|A|’

(B10)

where P indicates that the integral is calculated in the sense of the
Cauchy principal part. Substituting this expression in equation (57)
with w; = nw, we arrive at equation (59).

APPENDIX C: CALCULATION OF THE
FOURIER TRANSFORM OF L[y,]

We rewrite equation (51) as

_nSasz(,O,- — D) /R(H—Z/Z)
R

Ll =
U = =3 R0, + 02

wsE(t)dr, (C1)
(1-/2)

where

2(1) :/ exp (— n*(t — 0)’ /1) sin[nwa(t — 6)]1, () 6.

o0
(€2)
We calculate the Fourier transform of E(7):
o0 1
2(w) = / e—"w’dt/ exp (—n*(t —0)/13)

X sin[nw(t — 6)]n,(0)d6. (C3)
Changing the order of integration in this double integral yields
E(w) = / 7,(0) d0 / e " exp (—n(t —0) /1))

—00 6
X sin[nwa(t — 0)] dt. (C4)

Using the variable substitution ¢+ =7 + 6 and dropping the tilde
yields

E(w) = / na(0)e™" " do

x /0 ooexp (—iwt —n*/t]) sin(nwat) dt. (C5)
The substitution ¢ = #,(3n>)~"36 reduces this expression to
E(@) = iYu(@)y(@). (C6)
It follows from equations (C1) and (C6) that
F(Lina) = inn(@)K (), €7
where

K(w)=—

5 _2¢. _ N2 [RO+£/2)
M/ waPn(w)dr. (C8)
R

2R(pi + pe)?

Now, we simplify the expression for K(w) valid for £’Re > 1. We can
use the same derivation as in Appendix B with the only difference

(1-¢/2)
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that there is the point r,(w) defined by nwa(r,) = @ only when w €
[nwai, nw4.]. When this condition is satisfied, we obtain the equation
similar to equation (B10) but with w/n substituted for @ and A,
substituted for A, where A, = —ndw/dr calculated at r,. When w
€ [nwa;, nwa.], the term similar to the second term on the right-hand
side of equation (B10) is absent. Hence,

R(1+€/2) o
/ wAYn(wg) dr ~ ——
R(1—£/2) 4n’A,

R(1+¢/2) a)i dr

2,27
W

+inP w € [n(l)A,', nwAe], (Cg)

R(1-¢/2) w? —n
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R(1+£/2)
[ @~
R(1—£/2)
R(1+£/2) 2 4
~ inP Sl 5, @ & [nwa;, nwae]. (C10)

2 2
R(1—¢/2) W° — NWy

Substituting equations (C9) and (C10) in equation (64), we obtain
equations (65) and (66).

This paper has been typeset from a TEX/I&TEX file prepared by the author.
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