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ABSTRACT

We study kink oscillations of a straight magnetic tube with a transitional region at its boundary. The tube is homogeneous in

the axial direction. The plasma density monotonically decreases in the transitional region from its value inside the tube to that

in the surrounding plasma. The plasma motion is described by the linear magnetohydrodynamic equations in the cold plasma

approximation. We use the ideal equations inside the tube and in the surrounding plasma, but take viscosity into account in the

transitional region. We also use the thin tube and thin transitional or boundary layer (TTTB) approximation. Kink oscillations

are assumed to be driven by a driver at the tube footpoint. We derive the equation describing the displacement in the fundamental

mode and overtones. We use this equation to study kink oscillations in both the case of harmonic and random driving. In the case

of random driving, we assume that the driver is described by a stationary random function. The displacements in the fundamental

mode and overtones are also described by stationary random functions. We derive the relation between the power spectra of the

fundamental mode and all overtones and the power spectrum of the driver. We suggest a new method of obtaining information

on the internal structure of coronal magnetic loops based on the shape of graphs of the power spectrum of the fundamental mode.

Key words: MHD – plasmas – waves – Sun: corona – Sun: oscillations.

1 IN T RO D U C T I O N

Transverse oscillations of coronal magnetic loops were first observed

by the Transition Region And Coronal Explorer (TRACE) mission in

1998. These observations were reported by Aschwanden et al. (1999)

and Nakariakov et al. (1999) and interpreted as kink oscillations of

magnetic flux tubes. Now these oscillations are routinely observed

by space missions (e.g. Erdélyi & Taroyan 2008; Duckenfield et al.

2018; Su et al. 2018; Abedini 2018; and references therein). The kink

oscillations were also observed in prominence threads (e.g. Arregui,

Oliver & Ballester 2018).

Transverse oscillations of coronal magnetic loops observed by

TRACE had large amplitudes and were quickly damped. Later low-

amplitude undamped or decayless transverse oscillations of coronal

loops were observed (Tian et al. 2012; Wang et al. 2012; Nisticò,

Nakariakov & Verwichte 2013; Nisticò, Anfinogentov & Nakariakov

2014; Anfinogentov, Nakariakov & Nisticò 2015). Recently, Duck-

enfield et al. (2018) reported the observation of multiple harmonics

in decayless observations.

Since the decayless oscillations are ubiquitously present in the

corona the question arises if they can provide the energy necessary

to heat the corona. This problem was addressed by Hillier, Van

Doorsselaere & Karampelas (2020). They assumed that there is

a fully developed stationary turbulence in the transitional layer

connecting the tube core and the surrounding plasma. This turbulence

is caused by the Kelvin–Helmholtz (KH) instability. They obtained

the relation between the amplitude of the loop kink oscillations and

⋆ E-mail: M.S.Ruderman@sheffield.ac.uk (MSR); npetruhin@hse.ru (NSP)

the amount of energy dissipated in the transitional layer. Using the

observed amplitudes of the decayless kink oscillations they found that

the amount of dissipated energy is insufficient to cover the radiative

losses from coronal loops.

Two models of excitation of decayless coronal loop transverse

oscillations were suggested. Nisticò et al. (2013, 2014) suggested that

these oscillations are excited by random driving, most probably of the

loop footpoints, by subphotospheric convective motion. Nakariakov

et al. (2016) developed the model of decayless transverse oscillations

as a nonlinear self-oscillatory process.

Afanasyev, Karampelas & Van Doorsselaere (2019) and Karam-

pelas et al. (2019) studied the excitation of kink oscillations in a

stratified coronal loop by a continuous monochromatic driving using

the three-dimensional numerical modelling. They used a few driving

frequencies. They found that for the same driving amplitude the

excitation of kink waves is much more efficient when the deriving

frequency is equal or close to the frequency either the fundamental

mode or one of the frequencies of overtones, which is an expected

result. They also found the manifestation of the KH instability that

results in the development of turbulence in the transitional layer

between the tube core region and the surrounding plasma. Thus, they

confirmed the result previously found by other authors (e.g. Terradas

et al. 2008; Terradas, Magyar & Van Doorsselaere 2018; Antolin,

Yokoyama & Van Doorsselaere 2014; Antolin et al. 2016). However,

it is doubtful that the decayless kink oscillations are excited by a

harmonic driver. It looks like a more viable assumption that they are

excited by the random driving.

The random driving was studied by De Groof, Tirry & Goossens

(1998) and De Groof & Goossens (2000, 2002) mainly with the

relation to the coronal loop heating. These authors modelled a
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3018 M. S. Ruderman and N. S. Petrukhin

coronal magnetic loop as a magnetic slab. Since the properties of

kink oscillations of magnetic slabs and cylinders are quite different

their analysis cannot be directly applied to the problem of excitation

of decayless kink oscillations of coronal loops.

Recently, Afanasyev, Van Doorsselaere & Nakariakov (2020)

studied the excitation of decayless kink oscillations of coronal loops

by random motions using an inhomogeneous wave equation with

damping and random driving. They managed to reproduce many

observed properties of decayless kink oscillations like peaks in the

Fourier spectrum of oscillations corresponding to the fundamental

mode of the loop kink oscillation and its overtones. Our study is

motivated by this article.

In this paper, we study the excitation of decayless oscillations by

random motion modelling a coronal loop as a straight homogeneous

magnetic tube with a transitional or boundary layer. The paper is

organized as follows. In the next section, we formulate the problem.

In Section 3.2, we solve the magnetohydrodynamic (MHD) equations

in the tube transitional layer and calculate the variations of the radial

plasma displacement and magnetic pressure perturbation across the

transitional layer. In Section 4, we derive the governing equation

for driven kink oscillations of the magnetic tube. In Section 5,

we study the kink oscillations of the tube in the case of harmonic

driving, while in Section 6 we study these oscillations in the case of

stochastic driving. Section 7 contains the summary of the results and

our conclusions.

2 PRO B L E M F O R M U L AT I O N A N D G OV E R N I N G

E QUAT I O N S

We consider kink oscillations of a straight magnetic tube with a

transitional layer at its boundary in the cold plasma approximation.

The unperturbed magnetic field is straight. In cylindrical coordinates

r, φ, z, it is given by B = Bez, where ez is the unit vector in the

z-direction and B is a constant. The equilibrium plasma density is

given by

ρ(r) =

⎧
⎨
⎩

ρi, r ≤ R(1 − ℓ/2),

ρt (r), R(1 − ℓ/2) ≤ r ≤ R(1 + ℓ/2),

ρe, r ≥ R(1 + ℓ/2),

(1)

where R is the tube radius, ρ i and ρe are constants, ρe < ρ i, ρ t(r) is a

monotonically decreasing function, and ρ(r) is continuous at r = R(1

± ℓ/2). The domain defined by r ≤ R(1 − ℓ/2) is the core part of the

magnetic tube, while R(1 − ℓ/2) ≤ r ≤ R(1 + ℓ/2) is the transitional

or boundary layer.

The tube length is L. We assume that the tube is thin, R ≪ L.

In addition, we assume that the transitional layer is also thin, ℓ ≪

1. Hence, we use the thin tube and thin boundary layer (TTTB)

approximation.

Ruderman, Shukhobodskiy & Erdélyi (2017) derived a very

general equation describing kink oscillations of magnetic tubes in

the TTTB and cold plasma approximations. This equation takes into

account the tube expansion, the density variation along the tube,

the presence of siphon plasma flow, and the time dependence of the

plasma density. In the case when there is no equilibrium flow, the

tube has constant cross-section radius, the density is independent of

time, and the tube is homogeneous in the longitudinal direction this

equation reduces to

∂2η

∂t2
− C2

k

∂2η

∂z2
=

L

ρi + ρe

, C2
k =

2B2

μ0(ρi + ρe)
, (2)

where

L =
δP

R
+

B2

μ0

∂2(ℓη + δη)

∂z2
− ρe

∂2(ℓη + δη)

∂t2
. (3)

When writing the expression for L we corrected a misprint in

Ruderman et al. (2017) where the first term on the right-hand side of

this expression is divided by R2. In this equations μ0 is the magnetic

permeability of free space, η is the plasma displacement in the tube

core orthogonal to the equilibrium magnetic field and in planes

containing the tube axis, and P is the magnetic pressure perturbation;

δη and δP are the variations of the radial plasma displacement and

magnetic pressure perturbation across the transitional layer defined

by

δη = ξr

∣∣
r=R(1+ℓ/2)

− ξr

∣∣
r=R(1−ℓ/2)

,

δP = P
∣∣
r=R(1+ℓ/2)

− P
∣∣
r=R(1−ℓ/2)

, (4)

where ξ r is the radial plasma displacement. We note that the radial

plasma displacement in the tube core is independent of r and η = ξ r

for r ≤ R(1 − ℓ/2).

The tube ends are assumed to be frozen in the dense plasma that

mimics the solar photosphere. For simplicity, we assume that one of

the loop ends is immovable, while the other loop is driven and the

driver is independent of r. Hence,

η = f (t) at z = 0, η = 0 at z = L, (5)

where, at present, f(t) is arbitrary. Equation (2) with the right-hand

side defined by equation (3) does not provide the full description

of kink oscillations because it contains the quantities δη and δP. To

obtain this full description, it is necessary to express δη and δP in

terms of η.

3 SO L U T I O N IN TR A N S I T I O NA L LAY E R

The set of equations describing the plasma motion in the transitional

layer in the cold plasma approximation are given by Shukhobod-

skiy & Ruderman (2018) (see equations 17–19). In the case of straight

magnetic tube, this system reduces to

P = −
B2

rμ0

(
∂(rξr )

∂r
+

∂ξφ

∂φ

)
, (6)

∂2ξr

∂t2
= −

1

ρ

∂P

∂r
+ V 2

A

∂2ξr

∂z2
+ ν

∂

∂t

(
∂2ξr

∂r2
+

1

r2

∂2ξr

∂φ2

)
, (7)

∂2ξφ

∂t2
= −

1

rρ

∂P

∂φ
+ V 2

A

∂2ξφ

∂z2
+ ν

∂

∂t

(
∂2ξφ

∂r2
+

1

r2

∂2ξφ

∂φ2

)
, (8)

where V 2
A = B2/μ0ρ is the square of the Alfvén speed, ξφ is the

azimuthal component of plasma displacement, and ν is the kinematic

viscosity.

The characteristic length in the radial direction is R, while the

characteristic length in the axial direction is L. This observation

inspires us to introduce the scaled variable in the z-direction, Z =

ǫz, where ǫ = R/L ≪ 1. The characteristic time calculated using

the characteristic scale in the radial direction is R/VAi, where VAi

is the Alfvén speed in the tube core. The typical period of kink

oscillations is of the order of L/VAi. In accordance with this, we

introduce the scaled time T = ǫt. It follows from equation (7) that P

is of the order of ǫ2ρV 2
Ai(ξr/R). In accordance with this estimate, we

introduce the scaled magnetic pressure perturbation Q = ǫ−2P. The

terms proportional to ν in equations (7) and (8) describe the effect of

viscosity. We assume that plasma is only weakly dissipative, which

implies that the terms proportional to ν are only important where

there are large gradients. We will see that these large gradients are
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Excitation of decayless kink oscillations 3019

only present in the radial direction. This means that we can neglect

terms with the derivatives with respect to φ in terms proportional to

ν. Now we assume that the driving is extended to the transitional

layer, which implies that ξ r = f(t). Then we introduce

ξ̃r = ξr + f (t)
Z − R

R
. (9)

Now ξ̃r satisfies the boundary condition

ξ̃r = 0 at Z = 0, R. (10)

We also introduce

ξ̃φ = ξφ + if (t)
Z − R

R
. (11)

Since we study kink oscillations, we take all variables proportional to

eiφ . In principle, it is possible to study a more general problem with

all variables proportional to eimφ , where m is an arbitrary non-zero

integer number, |m| > 1 corresponding to a fluting mode. However,

no observations of fluting modes have been reported up to now. Since

we study a linear problem and the equilibrium state is axisymmetric,

there is no interaction between kink and fluting modes. Therefore,

we restrict our analysis to kink modes and do not consider the fluting

modes. Next, we rewrite equations (6)–(8) using the scaled variables

and only keep terms of the leading order approximation with respect

to ǫ. As a result, we obtain

∂(rξ̃r )

∂r
+ iξ̃φ = 0, (12)

∂2ξ̃r

∂T 2
− V 2

A

∂2ξ̃r

∂Z2
=

Z − R

R

d2f

dt2
−

1

ρ

∂Q

∂r
+ ν̄

∂3ξ̃r

∂T ∂r2
, (13)

∂2ξ̃φ

∂T 2
− V 2

A

∂2ξ̃φ

∂Z2
= i

Z − R

R

d2f

dt2
−

iQ

rρ
+ ν̄

∂3ξ̃φ

∂T ∂r2
, (14)

where ν̄ = ǫ−1ν. It follows from equation (12) that ξ̃φ satisfies the

same boundary conditions as ξ̃r . We also impose that Q satisfies the

same boundary conditions.

Since ξ̃r , ξ̃φ , and Q satisfy the zero boundary conditions, we can

expand these variables in the Fourier series,

ξ̃r =

∞∑

n=1

un(r, T ) sin
πnZ

R
, ξ̃φ =

∞∑

n=1

vn(r, T ) sin
πnZ

R
,

Q =

∞∑

n=1

Qn(r, T ) sin
πnZ

R
. (15)

These expansions explicitly show that we consider standing waves.

Substituting these expansions in equations (12)–(14) and using the

identity

Z − R

R
= −

2

π

∞∑

n=1

1

n
sin

πnZ

R
, (16)

yields

∂(run)

∂r
+ ivn = 0, (17)

∂2un

∂T 2
+ n2�2

Aun − ν̄
∂3un

∂T ∂r2
= −

1

ρ

∂Qn

∂r
−

2

πn

d2f

dT 2
, (18)

∂2vn

∂T 2
+ n2�2

Avn − ν̄
∂3vn

∂T ∂r2
= −

iQn

rρ
−

2i

πn

d2f

dT 2
, (19)

where

�A =
πVA

R
. (20)

3.1 Solution to equation (19)

We consider the initial value problem for equation (19). For simplic-

ity, we assume that

vn =
∂vn

∂T
= 0 at T = T0. (21)

We need to calculate δη and δP in the leading order approximation

with respect to ℓ ≪ 1. Hence, we can substitute R for r in

equation (19). It follows from equation (18) that the relative variation

of Qn across the transitional layer is of the order of ℓ meaning that

Qn is almost constant in the transitional layer. In accordance with

this we substitute Qni for Qn in equation (19), where Qni is equal to

Qn at r = R(1 − ℓ/2).

To solve equation (19) we use the method used by Ruderman

(1999) to study the heating of coronal magnetic loops by phase-

mixed torsional Alfvén waves. The ratio of the second term on the

left-hand side of equation (19) to the third term is of the order of

Reynolds number Re = RVAi/ν̄; however, we will see later that

this estimate is only valid for not very large time. The meaning of

condition ‘not very large time’ will be specified later. We assume that

Re ≫ 1. Then, for not very large time, the third term on the left-hand

side of equation (19) can be neglected and it reduces to

∂2vn

∂T 2
+ n2�2

Avn = −ign(T ), (22)

where

gn(T ) =
Qni

ρR
+

2

πn

d2f

dT 2
. (23)

The solution to this equation satisfying the initial conditions equa-

tion (21) is

vn =
i

n�A

∫ T

T0

gn(T ′) sin[n�A(T ′ − T )] dT ′. (24)

Differentiating this expression with respect to r yields

∂vn

∂r
=

i

�A

d�A

dr

∫ T

T0

(T ′ − T )gn(T ′)

× cos[n�A(T ′ − T )] dT ′ + . . . , (25)

where ‘. . . ’ indicates terms not growing with time. We can see that

the derivative of vn with respect to r increases unboundedly in time.

This implies that after sufficiently large time the third term on left-

hand side of equation (19) will be of the same order as the two other

terms. Hence, the approximate solution to equation (19) given by

equation (24) is not uniformly valid.

To obtain the uniformly valid approximate solution to equa-

tion (19), we use the Wentzel-Kramers-Brillouin (WKB) method

(e.g. Bender & Orszag 1999). The first step is to find the solution

to the homogeneous counterpart of equation (19). To do this we

introduce the ‘slow’ time τ = α(T − T0), where α ≪ 1. Then we look

for the solution to the homogeneous counterpart of equation (19) in

the form vn = U(r, τ )exp [iα−1�(r, τ )]. Substituting this expression

in the homogeneous counterpart of equation (19), we obtain

U

(
∂�

∂τ

)2

− n2�2
AU − 2iα

∂�

∂τ

∂U

∂τ
− iαU

∂2�

∂τ 2

− iα−2ν̄U
∂�

∂τ

(
∂�

∂r

)2

= O(α2) + O(α−1ν̄). (26)

Now, we assume that the third and fifth terms on the lest-hand side

of this equation are of the same order. To satisfy this condition, we

take α = Re−1/3. In the first-order approximation (the approximation

MNRAS 501, 3017–3029 (2021)
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3020 M. S. Ruderman and N. S. Petrukhin

of geometrical optics), we collect terms of the order of unity in

equation (26) to obtain

∂�

∂τ
= ±n�A. (27)

For simplicity, we take � = 0 at τ = 0. Then it follows from

equation (27) that

� = ±n�Aτ. (28)

In the second-order approximation (the approximation of physical

optics), we collect terms of the order of α in equation (26). Then,

using equation (28) we obtain

∂U

∂τ
= −3�n2τ 2U, � =

RVAi

6Re

(
d�A

dr

)2

. (29)

It follows from this equation that

U = U0(r) exp(−�n2τ 3), (30)

where U0(r) is an arbitrary function. The general solution to the

homogeneous counterpart of equation (19) is the linear combination

of two linearly independent solutions, one corresponding to the plus

sign in equation (28) and the other to the minus sign. Returning to

the original variable, we write this solution as

vn = exp[−�n2(T − T0)3/Re]{Ac(r) cos[n�A(T − T0)]

+As(r) sin[n�A(T − T0)]}, (31)

where Ac(r) and As(r) are arbitrary functions.

Now, we obtain the solution to equation (19) satisfying the

initial conditions equation (21). To do this we construct Green’s

function Gn(T , θ ). Considered as a function of T it must satisfy the

homogeneous counterpart of equation (19), be continuous, and also

satisfy the conditions

Gn(T , θ ) = 0 for T < θ, lim
T →τ+0

∂Gn

∂T
= 1. (32)

It is easy to verify that the function Gn(T , θ ) = Gn(T − θ ), where

Gn(T ) = H (T ) exp(−�n2T 3/Re)
sin(n�AT )

n�A

, (33)

satisfies all these conditions. In equation (33) H(T) is the Heaviside

step function, H(T) = 0 for T < 0, H(T) = 1 for T > 0. In particular,

since Gn(T) = 0 for T < 0, it follows that Gn(T , θ ) = Gn(T − θ ) =

0 for T < θ . Then the convolution of Gn(T) and −ign(T) gives a

particular solution to equation (19). It is straightforward to show that

this solution satisfies the initial conditions equation (21). Now, taking

T0 → −∞, we obtain

vn = −i

∫ T

−∞

Gn(T − θ )gn(θ ) dθ. (34)

3.2 Calculation of δη and δP

Using equations (4), (9), (12), (15), and (34), and the approximation

r ≈ R yields

δηn = −
1

R

∫ R(1+ℓ/2)

R(1−ℓ/2)

dr

∫ T

−∞

Gn(T − θ )gn(θ ) dθ, (35)

where δηn is the coefficient of expansion of δη in the Fourier series

similar to those given by equation (15). We note that, since f(t) is

independent of r, δη = 0 at z = 0, L and, consequently, δη = 0 can

be expanded in the Fourier series with respect to z.

Next, we calculate δP in the leading order approximation with

respect to ℓ and Re−1. We use the relation P = ǫ2Q and the expansion

of Q in the Fourier series given by equation (15). Even after the phase

mixing creates small scales in the radial direction in the transitional

layer the ratio of the third term on the left-hand side of equation (18)

to the second term is of the order of Re−1/3. Hence, we can neglect the

third term when calculating the variation of Qn across the transitional

layer. Since the ratio of variation of un across the transitional layer to

its value at r = R(1 − ℓ/2) is of the order of ℓ we can substitute the

value of un at r = R(1 − ℓ/2) in equation (18) when calculating the

variation of Qn. Expanding η in the Fourier series similar to those

given by equation (15), using equations (9) and (16), and taking into

account that ξ r = η in the core region we obtain

un

∣∣
r=R(1−ℓ/2)

= ηn, (36)

where ηn are the Fourier coefficients of expansion of η + f(t)(Z −

R)/R. Now, equation (18) reduces to the approximate form

1

ρ

∂Qn

∂r
= −

2

πn

d2f

dT 2
−

d2ηn

dT 2
− n2�2

Aηn, (37)

where �Ai is the value of �A at r = R(1 − ℓ/2). Then the coefficients

of the Fourier expansion of δP are given by

δPn = −ǫ2

[(
2

πn

d2f

dT 2
+

d2ηn

dT 2

)∫ R(1+ℓ/2)

R(1−ℓ/2)

ρ(r) dr

+ℓRρ�2
An2ηn

]
. (38)

When deriving this equation, we used the approximation r ≈ R. We

also use this approximation below when calculating integrals with

respect to r over the transitional layer.

We need the expressions of δη and δP in terms of η. However,

the expression for δηn involves Qni, which is the value of Qn at r =

R(1 − ℓ/2). We note that equations (17)–(19) are valid not only in

the transitional layer but also in the core region. Since there are no

large gradients in the core region, we can safely neglect the terms

proportional to ν̄. Since ξ r is independent of r in the core region, we

obtain from equation (17) that

vn = iηn. (39)

Substituting this expression in equation (19) and taking r ≈ R, we

obtain

Qni = −ρiR

(
d2ηn

dT 2
+ n2�2

Aiηn +
2

πn

d2f

dT 2

)
. (40)

Substituting this expression in the expression for gn given by

equation (23) yields

gn(T ) =
2(ρ − ρi)

πnρ

d2f

dT 2
−

ρi

ρ

(
d2ηn

dT 2
+ n2�2

Aiηn

)
. (41)

Equations (33), (35), (38), and (41) determine the coefficients of

Fourier expansions of δη and δP.

4 D E R I VAT I O N O F G OV E R N I N G E QUAT I O N

F O R η

Since L is of the order of ℓ it follows from equation (2) that

d2η

dt2
= C2

k

d2η

dz2
+ O(ℓ). (42)

It follows from this equation that

d2ηn

dt2
+

2

πn

d2f

dt2
= −

π
2n2C2

k ηn

L2
. (43)
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Excitation of decayless kink oscillations 3021

Using equation (42), we reduce equation (3) to the approximate form

L =
δP

R
+

ℓ

2
C2

k (ρi − ρe)
∂2η

∂z2
+

B2

μ0

∂2δη

∂z2
− ρe

∂2δη

∂t2
. (44)

Now, we obtain with the aid of equations (7), (38), and (43) that the

Fourier coefficients of the expansion of L are given by

Ln = ̟ 2
k n2ηn

(
1

R

∫ R(1+ℓ/2)

R(1−ℓ/2)

ρ(r) dr − ℓρi

)

−ρω2
An2δηn − ρe

d2δηn

dt2
, (45)

where

̟k =
πCk

L
, ωA = ǫ�A =

πVA

L
. (46)

Substituting equation (45) in equation (2), we obtain

d2ηn

dt2
+ n2̟ 2

k ηn

[
1 +

1

ρi + ρe

(
ℓρi −

1

R

∫ R(1+ℓ/2)

R(1−ℓ/2)

ρ(r) dr

)]

= −
ρe

ρi + ρe

(
ω2

Aen
2δηn +

d2δηn

dt2

)
−

2

πn

d2f

dt2
. (47)

The second term in the square brackets only provides a slight

correction of the order of ℓ to the frequency of the fundamental

mode and overtones. This correction is related to the presence of the

transitional layer. Usually, this correction is neglected when studying

the damping of kink oscillations due to resonant absorption. We will

do the same and also neglect this correction below. The expression

for the first term on the right-hand side of equation (47) is obtained

in Appendix A (see equation A22). Neglecting the second term and

using equation (A22), we transform equation (47) to

d2ηn

dt2
+ n2̟ 2

k ηn +
ρeρin

6

R(ρi + ρe)
(̟ 2

k − ω2
Ae)(̟ 2

k − ω2
Ai)

×

∫ R(1+ℓ/2)

R(1−ℓ/2)

dr

ρ

∫ t

−∞

G̃n(t − θ )ηn(θ ) dθ

=
2nρe

πR(ρi + ρe)

∫ R(1+ℓ/2)

R(1−ℓ/2)

(ω2
Ae − ω2

A) dr

×

∫ t

−∞

G̃n(t − θ )
d2f

dθ2
dθ −

2[ρi + (1 − ℓ)ρe]

πn(ρi + ρe)

d2f

dt2
. (48)

Using the identity

(̟ 2
k − ω2

Ae)(̟ 2
k − ω2

Ai) = −
̟ 2

k (ρi − ρe)2

4ρeρi

, (49)

and the expression for G̃n(t − θ ) defined by equation (A4), we obtain

that the last term on the left-hand side of equation (47) is equal to

L̂[ηn] = −
n5̟ 2

k (ρi − ρe)2

2R(ρi + ρe)2

∫ R(1+ℓ/2)

R(1−ℓ/2)

ωA dr

×

∫ t

−∞

exp
(
− n2(t − θ )3/t3

d

)
sin[nωA(t − θ )]ηn(θ ) dθ, (50)

where

td =

[
ν

6

(
dωA

dr

)2
]−1/3

. (51)

The ratio of the first term on the right-hand side of this equation to

the second term is of the order of ℓ meaning that the first term can

be neglected. We also can neglect ℓ in comparison with unity in the

second term. Then finally we reduce equation (47) to

d2ηn

dt2
+ n2̟ 2

k ηn + L̂[ηn] = −
2

πn

d2f

dt2
. (52)

5 H A R M O N I C D R I V I N G

In this section, we consider the excitation of kink oscillations of a

magnetic tube by harmonic driving of its footpoint. This problem was

extensively studied for a few decades (see e.g. Goossens, Erdélyi &

Ruderman 2011 and references therein). Hence, we will present only

a very brief analysis.

When we took the plasma displacement and the magnetic pressure

perturbation proportional to eiφ , we implicitly assumed that these

quantities are complex variables. Hence, only their real parts have

the physical sense. This implies that we can also take f(t) to be

complex. In accordance with this, we take

f (t) = aeiωd t , (53)

where a and ωd are real constants. Now, we look for the solution to

equation (50) in the form ηn = Aneiωd t . With the aid of the variable

substitution θ = t − td θ̃ (3n2)−1/3, we obtain
∫ t

−∞

exp
(
− n2(t − θ )3/t3

d

)
sin[nωA(t − θ )]eiωdθ dθ

= iψn(ωd )eiωdt , (54)

where

ψn(ω) =
td

2(3n2)1/3

[
F
(
td (3n2)−1/3(−ω − nωA)

)

− F
(
td (3n2)−1/3(−ω + nωA)

)]
, (55)

F (x) =

∫ ∞

0

exp(ixθ − θ3/3) dθ. (56)

This function was first introduced by Goossens, Ruderman &

Hollweg (1995) (see also Goossens et al. 2011). When deriving

equation (54) we dropped the tilde. Substituting ηn = Ane
iωd t in

equation (50) yields

An

[
−

in5̟ 2
k (ρi − ρe)2

2R(ρi + ρe)2

∫ R(1+ℓ/2)

R(1−ℓ/2)

ωAψn(ωd) dr

+
(
n2̟ 2

k − ω2
d

)]
=

2aω2
d

πn
. (57)

Below we only consider moderate values of n implying that n can

be considered as a quantity of the order of unity. First, we assume

that there is no resonance between the driver and the nth harmonic.

Moreover, we assume that |ωd − n̟ k| ∼ ̟ k. It is easy to show that

the ratio of the first term to the second term in equation (57) is of the

order of ℓ. Then we obtain

An =
2aω2

d

πn
(
n2̟ 2

k − ω2
d

) + O(ℓ). (58)

Hence, in this case the amplitude of the nth harmonic is of the order

of the driver amplitude.

It is instructive to compare the results of our analytical study with

those obtained in the numerical modelling by Afanasyev et al. (2019).

It is difficult to make the quantitative comparison for many reasons,

not least because in the numerical modelling by Afanasyev et al.

(2019) the loop was only driven for a few periods of the fundamental

mode. It seems that after this time the system is in the state of quasi-

stationary oscillation. To reach the state of stationary oscillation,

one needs to drive the loop for longer time. Still the amplitude

dependence on the driving frequency is qualitatively similar to that

given by equation (58). The amplitude takes maximum when the

driving frequency is equal to the fundamental frequency of kink

oscillations, which is in the agreement with the result obtained below.

The oscillation amplitude decays when ωd > ̟ k and increases,
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3022 M. S. Ruderman and N. S. Petrukhin

although in fig. 2 in Afanasyev et al. (2019) this decay is non-

monotonic.

Now, we consider the case where |ωd − n̟ k| ∼ ℓ̟ k. In this case,

the first and second terms in the square brackets on the left-hand side

of equation (57) are of the same order and we can expect that An is

of the order of a/ℓ. We only consider the case of the exact resonance

where ωd = n̟ k. It is shown in Appendix B that in this case

An =
4aR(ρi + ρe)2

πn5(ρi − ρe)2

(
P

∫ R(1+ℓ/2)

R(1−ℓ/2)

ω2
A dr

̟ 2
k − ω2

A

+
iπ̟k

4�

)−1

,

(59)

where

� = −
dωA

dr

∣∣∣∣
r=rA

, ωA(rA) = ̟k, (60)

rA is the point of Alfvén resonance andP indicates that the integral is

calculated in the sense of Cauchy principal part. Since the first term

in the brackets in equation (59) is over the interval with the length

ℓR, it follows that this term is of the order of ℓR. The characteristic

scale of variation of ωA in the transitional layer is ℓR. Since ωA is

of the order of ̟ k, we conclude that � is of the order of ̟ k(ℓR)−1.

Then it follows that the second term in the brackets in equation (59)

is also of the order of ℓR. Using these estimates we obtain that An

is of the order of a/ℓ as it was expected. The driver amplitude a is

multiplied by a complex quantity. This implies that there is the phase

shift of the kink oscillation in comparison with the driver phase. This

phase shift is related to the presence of the Alfvén resonance.

We note that in this section we only considered the steady state of

driven oscillation and did not study the transition to this state. When

the driving begins the oscillation amplitude in the dissipative layer

starts to grow. This growth continues until the amount of energy

dissipated due to viscosity per one period of oscillation matches the

amount of input energy. In this state, the oscillation amplitude is of

the order of Re1/3 times the driver amplitude (e.g. Goossens et al.

1995, 2011).

6 STO C H A S T I C D R I V I N G

6.1 General analysis

Now, we proceed to the main aim of this paper which is the stochastic

driving of kink oscillations. We assume that f(t) is a stationary random

function. We introduce the Fourier transform

ĥ(ω) = F (h) ≡

∫ ∞

−∞

h(t)e−iωtdt,

h(t) =
1

2π

∫ ∞

−∞

ĥ(ω)eiωtdω. (61)

Stationary random functions do not possess the Fourier transform.

Hence, following Champeney (1973) we introduce the truncated

function

fT (t) =

{
f (t), T1 < t < T + T1,

0, otherwise.
(62)

Now we solve equation (50) with fT(t) substituted for f(t). It is shown

in Appendix C that

F
(
L̂[ηn]

)
= iη̂n(ω)K(ω), (63)

where

K(ω) = −
n5̟ 2

k (ρi − ρe)2

2R(ρi + ρe)2

∫ R(1+ℓ/2)

R(1−ℓ/2)

ωAψn(ω) dr (64)

and ψn(ω) is defined by equation (55). We denote the corresponding

solution to equation (50) as ηTn. It is shown in Appendix C that

equation (64) reduces to

K(ω) =
n6̟ 2

k (ρi − ρe)2

2R(ρi + ρe)2

(
πω

4n2�n

− P

∫ R(1+ℓ/2)

R(1−ℓ/2)

iω2
A dr

ω2 − n2ω2
A

)
(65)

for ω ∈ [nωAi, nωAe], and

K(ω) = −
n6̟ 2

k (ρi − ρe)2

2R(ρi + ρe)2
P

∫ R(1+ℓ/2)

R(1−ℓ/2)

iω2
A dr

ω2 − n2ω2
A

(66)

for ω �∈[nωAi, nωAe], where

�n = −n
dωA

dr

∣∣∣∣
r=rn(ω)

, nωA(rn) = ω. (67)

We note that equations (65) and (66) are only valid when ω is not

very close to nωAi and nωAe, that is when |ω − nωAi| ≫ ̟ k(ℓ2Re)−1/3

and |ω − nωAe| ≫ ̟ k(ℓ2Re)−1/3.

Applying the Fourier transform to equation (50) with fT(t) substi-

tuted for f(t) and using equation (63), we obtain

η̂T n

[
n2̟ 2

k − ω2 + iK(ω)
]

=
2ω2

πn
f̂T . (68)

Now, we define the power spectrum Pf(ω) as (Champeney 1973)

Pf (ω) = lim
T →∞

1

2T
|f̂T (ω)|2. (69)

When f(t) is a stationary random process this limit is independent

of T1. The amplitude of the nth harmonic, ηn, is also a stationary

random process. Its power spectrum is defined by

Pηn
(ω) = lim

T →∞

1

2T
|η̂T n(ω)|2 = |ϒn(ω)|2Pf (ω), (70)

where

ϒn(ω) =
2ω2

πn[n2̟ 2
k − ω2 + iK(ω)]

. (71)

6.2 Linear density profile

We now introduce the characteristic scale of variation of Pf(ω), ωch,

and assume that ωch ≫ ℓ̟ k. This condition is equivalent to the

inequality

∣∣∣∣
dPf

dω

∣∣∣∣ ∼
|Pf |

ωch

≪
|Pf |

ℓ̟k

. (72)

In particular, this condition is satisfied for white noise because in this

case dPf/dω = 0. It follows from the condition imposed on Pf(ω) that

we can take Pf(ω) ≈ Pf(n̟ k) in the interval centred at n̟ k and with

the length of a few ℓ̟ k. In accordance with this, we introduce

�(ω) =
Pηn

(ω)

Pf (n̟n)
= |ϒn(ω)|2. (73)

Then we assume that the plasma density variation in the transitional

layer is linear,

ρ(r) =
ρi

2ℓζR
[ℓR(ζ + 1) − 2(r − R)(ζ − 1)], (74)
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Excitation of decayless kink oscillations 3023

Figure 1. Dependence of � on σ for ζ = 3. The left, middle, and right-hand panels correspond to n = 1, 2, and 3, respectively. The solid, dashed, and

dash–dotted curves correspond to ℓ = 0.1, 0.15, and 0.25. The dotted horizontal lines show the levels corresponding to the half maximum of �(σ ). We did not

put the dotted line for the dash–dotted curve on the right-hand panel because the dash–dotted curve does not go below half of the maximum on the right-hand

side on the figure.

where ζ = ρ i/ρe. A simple calculation yields

P

∫ R(1+ℓ/2)

R(1−ℓ/2)

ω2
A dr

ω2 − n2ω2
A

=
ℓR(ζ + 1)

2σ 2(ζ − 1)
ln

∣∣∣∣
2ζσ 2 − n2(ζ + 1)

2σ 2 − n2(ζ + 1)

∣∣∣∣, (75)

where σ = ω/̟ k. Substituting this expression in equations (65) and

(66), we obtain

K̃(σ ) = −
ℓn6(ζ − 1)

4σ 2(ζ + 1)

(
π

2
+ i ln

∣∣∣∣
2ζσ 2 − n2(ζ + 1)

2σ 2 − n2(ζ + 1)

∣∣∣∣
)

(76)

for

σ ∈

[
n

(
ζ + 1

2ζ

)1/2

, n

(
ζ + 1

2

)1/2]
, (77)

K̃(σ ) = −
iℓn6(ζ − 1)

4σ 2(ζ + 1)
ln

∣∣∣∣
2ζσ 2 − n2(ζ + 1)

2σ 2 − n2(ζ + 1)

∣∣∣∣ (78)

for

σ /∈

[
n

(
ζ + 1

2ζ

)1/2

, n

(
ζ + 1

2

)1/2]
, (79)

where K̃(σ ) = ̟−2
k K(σ ). The condition given by equation (77)

means that σ is in the Alfvén continuum of the nth harmonic of

kink oscillations. It is obvious that |ϒn(σ )| takes a minimum when σ

is sufficiently close to n, which implies that σ satisfies equation (77).

In this case, we have

|ϒn(σ )|2 =
4σ 4

π
2n2

[
π

2ℓ2n12(ζ − 1)2

64σ 4(ζ + 1)2
+

(
n2 − σ 2

+
ℓn6(ζ − 1)

4σ 2(ζ + 1)
ln

∣∣∣∣
2ζσ 2 − n2(ζ + 1)

2σ 2 − n2(ζ + 1)

∣∣∣∣
)2]−1

. (80)

Since the first term in the square brackets is of the order of ℓ2 and

the second term is zero when σ = n, it follows that |ϒn(σ )|2 takes a

maximum when σ = n + O(ℓ) and this maximum is

max[�(σ )] =
256(ζ + 1)2

ℓ2π4n6(ζ − 1)2
+ O

(
ℓ−1

)
. (81)

The dependence of � on σ given by equations (73) and (80) is shown

in Figs. 1 and 2 for n = 1, 2, 3. Fig. 1 corresponds to ζ = 3, and

Fig. 2 to ζ = 10, where ζ = ρ i/ρe.

We now calculate the width of the graph of �(σ ) at the half of its

height. It is defined by

δσ = σ+ − σ−, �(σ±) =
1

2
max[�(σ )]. (82)

We put σ± = n + ℓσ̃± and assume that σ̃± is of the order of

unity. Then, using equations (73), (80), and (81), we obtain from

equation (82) in the leading order approximation

σ̃± ±
πn3(ζ − 1)

16(ζ + 1)
. (83)

As a result, we obtain

δσ = ℓ(σ̃+ − σ̃−) =
πℓn3(ζ − 1)

8(ζ + 1)
. (84)

We observe in Figs. 1 and 2 that �(σ ) takes maximum at σ = 1

and equation (81) is quite accurate for n = 1. However, this is not the

case for n = 2 and n = 3. The point where �(σ ) takes local maximum

is shifted to the right from σ = n when n = 2 and n = 3. This shift

is more pronounced for n = 3 and it increases with the increase in

ℓ, which is not surprising because the ratio of the second term on

the right-hand side of equation (81) increases with the increase in ℓ.

Finally, the shift of the point where �(σ ) takes a local maximum and

the deviation of this maximum from the value given by equation (81)

is also more pronounced for smaller values of ζ .

When a kink oscillation of a coronal loop is caused by an impulsive

excitation like a nearby solar flare, the ratio of frequency of the

first overtone to that of the fundamental harmonic must be 2 if the

loop is homogeneous in the longitudinal direction. Verwichte et al.

(2004) reported the first observation of both fundamental mode and

first overtone of coronal loop kink oscillations. They found that

the frequency ratio was less than 2. Andries, Arregui & Goossens

(2005) suggested that this deviation of the ratio from 2 was caused

by the variation of the density along the loop (see also Arregui et al.

2007). They then developed a method for estimating the atmospheric

scale height using the ratio of frequencies of the first overtone and

fundamental harmonic. Later this method was extended to take the

loop expansion into account (Ruderman, Verth & Erdélyi 2008;

Verth & Erdélyi 2008; Verth, Erdélyi & Jess 2008; see also the review

by Andries et al. 2009). Recently, Duckenfield et al. (2018) reported

the detection of the first overtone in decayless kink oscillations of

coronal loops. This implies that decayless kink oscillations can also
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3024 M. S. Ruderman and N. S. Petrukhin

Figure 2. Dependence of � on σ for ζ = 10. The left-hand, middle, and right-hand panels correspond to n = 1, 2, and 3, respectively. The solid, dashed, and

dash–dotted curves correspond to ℓ = 0.1, 0.15, and 0.25. The dotted horizontal lines show the levels corresponding to the half maximum of �(σ ).

be used for estimating the coronal atmospheric scale height. When

doing so one must take into account the result obtained in this paper

that the ratio of the first overtone and fundamental mode deviates

from 2 even when there is no density variation along the loop. We

recall that we neglected the term proportional to ℓ on the left-hand

side of equation (47). However, it is straightforward to see that the

account of this term results in the multiplication of eigenfrequencies

of both the fundamental harmonic and all overtones by the same

multiplier that is slightly different from the unity. Hence, its account

cannot change the ratio of frequencies.

We now calculate the average value of |η|2 with respect to z. Using

η = f (t)
L − z

L
+

∞∑

n=1

ηn(t) sin
πnz

L
, (85)

we obtain

|η|2 =
1

L

∫ L

0

|η|2 dz =
1

2

∞∑

n=1

|ηn(t)|2 +
1

3
|f (t)|2

+
1

πn

∞∑

n=1

(−1)n[f ∗(t)ηn(t) + f (t)η∗
n(t)], (86)

where the asterisk indicates complex conjugate. We introduce the root

mean square of η as ηR =
(
|η|2

)1/2
. This quantity can be considered

as the measure of the coronal loop displacement. Now, it follows

from equation (86) that

PηR
(σ ) =

1

2

∞∑

n=1

Pηn
(σ ) +

1

3
Pf (σ )

+
2

πn

∞∑

n=1

(−1)nℜ[Pf ηn
(σ )], (87)

where R indicates the real part of a quantity and Pf ηn
is the cross-

correlation function of f(t) and ηn(t). We now estimate the terms on

the right-hand side of equation (87). We are mainly interested in the

value of PηR
(σ ) in the vicinity of resonances, that is in the vicinity

of σ = n. We have already seen that Pηn
(σ )/Pf (σ ) = O(ℓ−2) for

n = 1, 2, 3. Using the estimate |Pf ηn
|2 ≤ Pηn

Pf , we obtain that the

ratio of the third term to the first term is of the order of ℓ when

σ is in the vicinity of resonances. On the bases of these estimates,

we can neglect the second and third terms on the right-hand side of

Figure 3. Dependence of ln(d−2PηR
) on σ for ζ = 3 and ℓ = 0.15. The

dashed line is the graph of function ln(d−2Pf ) = − 5
3

ln σ .

equation (87) and take

PηR
(σ ) ≈

1

2

∞∑

n=1

Pηn
(σ ) =

1

2
Pf (σ )

∞∑

n=1

|ϒn(σ )|2. (88)

In the numerical modelling of decayless kink oscillation using

the wave equation with damping Afanasyev et al. (2020) assumed

that the footpoint displacement is described by a power law with the

index −5/3. We make the same assumption and take

Pf (σ ) = d2σ−5/3, σ ≥ σ0, (89)

where d is a quantity with the dimension of length, d ≪ R, and

σ 0 is sufficiently small, definitely smaller than 1
2
. Fig. 3 shows the

dependence of ln(d−2PηR
) on σ for ζ = 3 and ℓ = 0.15, together with

the dependence of the input power on sigma, ln(d−2Pf ) = − 5
3

ln σ .

To draw the graph of PηR
(σ ), we used equations (76) and (78). At the

boundaries of intervals where there are transitions from expression

for K̃(σ ) given by equations (76) to that given by equation (78),

or vice versa, this graph contained unphysical spikes. The presence

of these peaks is related to the fact that the expressions for K̃(σ )
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Excitation of decayless kink oscillations 3025

given by equations (76) and (78) are not valid near the boundaries of

the intervals defined by equation (77). To remove these unphysical

spikes, we smoothed out the graph near the boundaries of the

intervals. We see that the graph has three peaks. The first peak is near

σ = 1. It corresponds to the fundamental mode. The second peak

is near σ = 2. It corresponds to the first overtone. Finally, the third

peak is to the right of σ = 3. It corresponds to the second overtone

and it is very weakly pronounced. The first peak is much larger than

the second one, and the second peak is in turn much larger than

the third one. This is an expected result. What is also worth noting

is that the power in the frequency ranges near the fundamental

mode frequency and the frequency of the first overtone is strongly

enhanced. In contrast, it is not enhanced near the frequency of

the second overtone. Rather the power at frequencies slightly

different from the frequency of the second overtone is substantially

suppressed.

Ruderman & Roberts (2002) and Goossens, Andries & Aschwan-

den (2002) suggested a method of obtaining the information on the

internal structure of coronal loops using the observed damping of

kink oscillations. This method is based on the fact that the relative

thickness of the transitional layer ℓ is inversely proportional to

the damping time. On the basis of results obtained in this article,

we can suggest the second method for estimating ℓ based on the

observation of decayless kink oscillations. If using the fundamental

mode of decayless kink oscillation (n = 1), we reproduce its power

spectrum then we will be able to estimate δσ . Then it follows from

equation (84) that

ℓ =
8(δσ )(ζ + 1)

π(ζ − 1)
. (90)

It would be especially interesting to apply this method when large-

amplitude decaying and small-amplitude decayless kink oscillations

of the same coronal loop are observed, like in the case reported

by Nisticò et al. (2013). In this case, ℓ can be estimated using two

different methods and then the results can be compared.

When dealing with observations, we cannot obtained the exact

expression for Pηn
(σ ) because, in accordance with the definition

given by equation (70), for this we need to observe oscillations for

infinite time. In reality, the decayless oscillations are only observed

during a finite-time period, something between 5 and 10 periods

of fundamental kink mode. Hence, we should use the approximate

expression for Pηn
(σ ) given by equation (70) with PηT n

(σ ) substituted

for Pηn
(σ ), where T is of the order of a few periods of the fundamental

mode. However, this will not affect the estimate for ℓ given by

equation (90) because it only depends on ϒn(ω).

Since we aim to study the excitation of kink oscillations we do not

investigate the plasma motion in the transitional layer. However,

it is worth providing a brief discussion of this motion. When

the driving is random, there is no single resonant surface. If the

spectrum of the driver covers all Alfvén spectrum corresponding

to the variation of the Alfvén frequency in the transitional layer,

then we can say that any magnetic surface in this layer is a resonant

surface. Consequently, there are large gradients in the radial direction

in the whole transitional layer. Similar to the case of harmonic

driver when the driving begins the oscillation amplitude starts to

increase. This increase continues until the average energy dissipation

matches the average energy input. However, since now the energy

dissipation occurs not in a narrow dissipation layer but in the

whole transitional layer, the typical oscillation amplitude is much

smaller than that in the case of harmonic driving. Ruderman et al.

(1997) studied the direct excitation of torsional Alfvén waves by

a harmonic footpoint driving. They found that in the steady state

the oscillation amplitude at the resonant surface where the local

Alfvén frequency matches the driving frequency is of the order of

Re1/3 times the driver amplitude. Ruderman (1999) studied the same

problem but with a random driving. He found that in that case the

typical oscillation amplitude in the whole transitional layer is of the

order of Re1/6 times the driver amplitude. Comparing the driven kink

and torsional oscillations, we can make a viable conjecture that the

typical oscillation amplitude in the whole transitional layer is of the

order of Re1/6 times the driver amplitude also in the case of kink

oscillations.

7 SU M M A RY A N D C O N C L U S I O N S

In this paper, we studied the excitation of kink oscillations of a

magnetic tube by the footpoint driving. We considered the simplest

model of a straight magnetic tube homogeneous in the longitudinal

direction. There is a thin boundary layer where the density mono-

tonically decreases from its value inside the tube to the value in the

surrounding plasma. We used the thin tube and thin boundary (TTTB)

approximation. We also used the cold plasma approximation.

The plasma motion is described by the linear ideal MHD equations

in the tube and surrounding plasma. However, phase mixing related

to the local Alfvén density variation creates large gradients in the

radial direction in the boundary layer. This implies that dissipation

is important in the boundary layer. Hence, we took viscosity into

account when describing motion in this layer. We found an approxi-

mate solution to the viscous linear MHD equations in the boundary

layer valid for very large Reynolds number. Using this solution, we

derived the integro-differential equation governing the magnetic tube

kink oscillations.

We used the governing integro-differential equation to study both

the harmonic and stochastic driving of the footpoint. In the case

of harmonic driving, we reproduced a well-known result that the

oscillation amplitude of kink oscillation is of the order of the

driver amplitude when the driver is not in resonance with either the

fundamental mode or one of the overtones. On the other hand, when

there is resonance the oscillation amplitude of kink oscillation is of

the order of the driver amplitude divided by the relative thickness of

the boundary layer.

In the case of stochastic driving, we assumed that the displacement

of the footpoint is described by a stationary random function.

This function is characterized by the power spectrum. The tube

displacement is the sum of the fundamental mode and all overtones.

The amplitudes of the fundamental mode and each overtone are also

stationary random functions. We derived the formulae relating the

power spectra of the fundamental mode and overtones with the power

spectrum of the driver. We assumed that the characteristic scale of

variation of the driver power spectrum is of the order of or larger

than the fundamental frequency ωk. This assumption enabled us to

take the driver power spectrum to be approximately constant in the

vicinity of ωk and the frequencies of overtones nωk, n = 2, 3, . . .

We plot the power spectra of the fundamental mode and the first and

second overtones for two values of ratios of the density inside and

outside the tube. We also calculated the width of the graph of power

spectrum at the height of half of its maximum value and showed that

it is proportional to the relative thickness of the transitional layer.

On the basis of this result, we suggested a new method of estimation

of the transverse structure of coronal loops using the observation of

decayless kink oscillations.

First, applications of observations of decayed large-amplitude kink

oscillations to coronal seismology used the direct expressions for the
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3026 M. S. Ruderman and N. S. Petrukhin

observed quantities. In particular, this approach was used to obtain the

information about the transverse structure of coronal magnetic loops

using the observed period and damping time of kink oscillations.

However, even when the simplest model of a coronal magnetic loop

is used, which is a straight magnetic tube where the density only

varies in the radial direction, there are three unknown quantities.

These are the internal travel Alfvén time, the density contrast, and

the ratio of the transitional layer thickness to the loop radius. Since

there are only two observed quantities, the oscillation period and

damping time, it is only possible to obtain the relation among the

three unknown loop parameters. Hence, to estimate the transitional

layer thickness the authors made ad hoc assumption about the density

contrast.

This fact inspired Arregui & Asensio Ramos (2011) to use

Bayesian analysis to improve the reliability of seismological results.

Later this method was used by many authors dealing with the coronal

seismology (e.g. Arregui, Asensio Ramos & Dı́az 2013; Pascoe et al.

2017, 2018; Arregui 2018). I would be convenient to use Bayesian

analysis when applying the new method of determination of the

internal structure of coronal loops as well. In this way, it would be

possible to take into account, for example, the noise and possible

temporal variation of the loop parameter. However, the detailed

description of application of Bayesian analysis to the seismological

method suggested in this paper is only relevant when this method is

applied to particular observations.

Finally, we make one comment. For simplicity, we assumed that

the loop is driven only at one footpoint. Of course, in the reality the

loop is driven at both footpoints as it was considered in the numerical

modelling (e.g. Karampelas et al. 2019; Afanasyev et al. 2020). If

we consider the loop driving at both footpoints and use the boundary

conditions

η = f1(t) at z = 0, η = f2(t) at z = L,

then equation (9) would be changed to

ξ̃r = ξr +
f1(t)(Z − R) − f2Z

R
.

After that again ξ̃r = 0 at both footpoints. Equation (9) would be

changed in a similar way. The first term on the right-hand side of

equation (13) would be

Z − R

R

d2f1

dt2
−

Z

R

d2f2

dt2
,

while the first term on the right-hand side of equation (14) would be

given by the same expression multiplied by i. As a result, we would

obtain the same expressions for various quantities but with f1(t) −

f2(t) substituted for f(t). In particular, if we make a viable assumption

that the stochastic characteristics of f1(t) and f2(t) are the same, then

the results obtained in the case of random driving would remain the

same.
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Nisticò G., Nakariakov V. M., Verwichte E., 2013, A&A, 552, A57
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APP ENDIX A : EVA LUATION O F THE

R I G H T- H A N D S I D E O F E QUAT I O N (4 7 )

In this section, we transform the right-hand side of equation (47).

Using equations (41) and (45), we rewrite the expression given by

equation (35) as

δηn = −n2W1 −
2

π

W2, (A1)

where

W1 =
n2(̟ 2

k − ω2
Ai)

R

∫ R(1+ℓ/2)

R(1−ℓ/2)

ρi

ρ
dr

×

∫ t

−∞

G̃n(t − θ )ηn(θ ) dθ, (A2)

W2 =
1

πnR

∫ R(1+ℓ/2)

R(1−ℓ/2)

dr

∫ t

−∞

G̃n(t − θ )
d2f

dθ2
dθ, (A3)

and G̃n(t − θ ) is defined by

G̃n(t)=exp
(

− n2(t/td )3
) sin(nωAt)

nωA

, t−3
d =

ν

6

(
dωA

dr

)2

.

(A4)

Differentiating this expression, we obtain

G̃′
n(t) = exp

(
− n2(t/td)3

)
cos(nωAt) −

3n2t2

t3
d

G̃n(t), (A5)

G̃′′
n(t) = −n2ω2

AG̃n(t) +
3n2t

t3
d

[
G̃n(t)

(
3n2t3

t3
d

− 2

)

−2t exp
(

− n2(t/td )3
)

cos(nωAt)

]
, (A6)

where the prime indicates the derivative. We will also use the prime

to indicate the derivative of G̃n(t − θ ) with respect to the argument.

Below we use the relation

∂G̃n(t − θ )

∂θ
= −

∂G̃n(t − θ )

∂t
= −G̃′

n(t − θ ). (A7)

Using the integration by parts and equations (A4) and (A7), we

obtain
∫ t

−∞

G̃n(t − θ )
d2f

dθ2
dθ =

∫ t

−∞

G̃′
n(t − θ )

df

dθ
dθ. (A8)

Again using the integration by parts and equations (A5) and (A7)

yields

∫ t

−∞

G̃′
n(t − θ )

df

dθ
dθ = f (t) +

∫ t

−∞

G̃′′
n(t − θ )f (θ ) dθ. (A9)

With the aid of equations (A6), (A8), and (A9), we obtain

∫ t

−∞

G̃n(t − θ )
d2f

dθ2
dθ = −n2ω2

A

∫ t

−∞

G̃n(t − θ )f (θ ) dθ

+ f (t) +
3n2

t3
d

∫ t

−∞

f (θ )(t − θ )

{
G̃n(t − θ )

×

(
3n2(t − θ )3

t3
d

− 2

)
− 2(t − θ )

× exp
(

− n2(t − θ )3/t3
d

)
cos[nωA(t − θ )]

}
dθ. (A10)

It is straightforward to show that the ratio of the third term to the

second one on the right-hand side of this equation is of the order of

Re−1. Hence, we can neglect the third term and use the approximate

relation

W2 ≈
ℓf (t)

n
−

n

R

∫ R(1+ℓ/2)

R(1−ℓ/2)

ω2
A dr

∫ t

−∞

G̃n(t − θ )f (θ ) dθ. (A11)

Differentiating this expression, we obtain

d2W2

dt2
=

ℓ

n

d2f

dt2
−

n

R

∫ R(1+ℓ/2)

R(1−ℓ/2)

ω2
A dr

[
f (t)

+

∫ t

−∞

f (θ )G̃′′
n(t − θ )

]
dθ. (A12)

Using equation (A7) twice yields

∫ t

−∞

f (θ )G̃′′
n(t − θ )

]
dθ =

∫ t

−∞

f (θ )
∂2G̃n(t − θ )

∂θ2
dθ. (A13)

Using the integration by parts and equation (A5), we obtain

∫ t

−∞

f (θ )
∂2G̃n(t − θ )

∂θ2
dθ = f (t) −

∫ t

−∞

∂G̃n(t − θ )

∂θ

df

dθ
dθ.

(A14)

Using again the integration by parts and equation (A4) yields

∫ t

−∞

∂G̃n(t − θ )

∂θ

df

dθ
dθ = −

∫ t

−∞

G̃n(t − θ )
d2f

dθ2
dθ. (A15)

With the aid of equations (A13)–(A15), we obtain

∫ t

−∞

f (θ )
d2G̃n(t − θ )

dt2
dθ =

∫ t

−∞

G̃n(t − θ )
d2f

dθ2
dθ − f (t). (A16)

Substituting equation (A16) in equation (A12) yields

d2W2

dt2
=

ℓ

n

d2f

dt2
−

n

R

∫ R(1+ℓ/2)

R(1−ℓ/2)

ω2
A dr

×

∫ t

−∞

G̃n(t − θ )
d2f

dθ2
dθ. (A17)

Next, using equation (A7) twice, and equations (A4) and (A5), we

obtain

d2

dt2

∫ t

−∞

G̃n(t − θ )ηn(θ ) dθ = ηn(t) +

∫ t

−∞

∂2G̃n(t − θ )

∂θ2
ηn(θ ) dθ.

(A18)

Using the integration by parts twice, and equations (A4) and (A5)

yields

∫ t

−∞

∂2G̃n(t − θ )

∂θ2
ηn(θ ) dθ =

∫ t

−∞

G̃n(t − θ )
d2ηn

dθ2
dθ − ηn(t). (A19)

Finally, using equations (44), (A18), and (A19), we arrive at

d2

dt2

∫ t

−∞

G̃n(t − θ )ηn(θ ) dθ =

∫ t

−∞

G̃n(t − θ )
d2ηn

dθ2
dθ

≈−n2̟ 2
k

∫ t

−∞

G̃n(t − θ )ηn(θ ) dθ. (A20)

It follows from this result that

d2W1

dt2
= −n2̟ 2

k W1. (A21)
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Now using equations (A1)–(A3), (A17), and (A21) yields

d2δηn

dt2
+ ω2

Aen
2δηn =

n6

R
ρi(̟

2
k − ω2

Ae)(̟ 2
k − ω2

Ai)

×

∫ R(1+ℓ/2)

R(1−ℓ/2)

dr

ρ

∫ t

−∞

G̃n(t − θ )ηn(θ ) dθ −
2ℓ

πn

d2f

dt2

−
2n

πR

∫ R(1+ℓ/2)

R(1−ℓ/2)

(ω2
Ae − ω2

A) dr

∫ t

−∞

G̃n(t − θ )
d2f

dθ2
dθ. (A22)

A P P E N D I X B: C A L C U L AT I O N O F IN T E G R A L

I N E QUAT I O N (5 7 )

In this section, we calculate the integral in equation (57) in the case

when the driver is in resonance with one of harmonics, ωd = n̟ k.

Using equation (52), we obtain the estimate

tdωd (3n2)−1/3 ∼ (ℓ2Re)1/3. (B1)

We assume that ℓ2Re ≫ 1. Using the integration by parts we easily

obtain that

F (x) =
i

x
+ O

(
1/x2

)
(B2)

for |x| ≫ 1. It follows from equation (59) that td(3n2)−1/3(ωd + nωA)

≫ 1. This implies that we can use the approximate expression given

by equation (B2) to calculate the second term in the square brackets

in the expression for ψn given by equation (54). Since ̟ k ∈ (ωAi,

ωAe), it follows that there is such a point r = rA that nωA(rA) = ωd =

n̟ k. This is the point of Alfvén resonance. Hence, td(3n2)−1/3|ωd −

nωA| ≫ 1 only for r not very close to rA. The exact condition is |r −

rA| ≫ ℓR(ℓ2Re)−1/3. When this condition is satisfied we have

ψn ≈
iωA

n(̟ 2
k − ω2

A)
. (B3)

This quantity is singular at r = rA. We introduce (ℓ2Re)−1/3 ≪ χ ≪

1. equation (B3) is valid when |r − rA| ≥ χ lR. When |r − rA| ≤ χℓR

all quantities in the integrand in the integral in equation (57) can be

approximated by the first term of its expansion in the Taylor series.

In particular,

nωA − ωd ≈ −n�(r − rA), � = −
dωA

dr

∣∣∣∣
r=rA

. (B4)

Then for |r − rAℓ| ≤ χℓR, we have

ψn(ωd ) ≈ −
i

4n̟k

−
t̄d

2(3n2)1/3
F
(
t̄d (n/3)1/3�(rA − r)

)
,

(B5)

where t̄d is the value of td calculated at r = rA. Now, we obtain an

approximate expression
∫ R(1+ℓ/2)

R(1−ℓ/2)

ωAψn(ωd ) dr ≈
i

n

(∫ rA−χℓR

R(1−ℓ/2)

+

∫ R(1+ℓ/2)

rA+χℓR

)
ω2

A dr

̟ 2
k − ω2

A

−
iχℓR

2n

−
t̄d̟k

2(3n2)1/3

∫ rA+χℓR

rA−χℓR

F
(
t̄d (n/3)1/3�(rA − r)

)
dr. (B6)

Using the expression for F(x) given by equation (56) and changing

the order of integration in the last integral yields
∫ rA+χℓR

rA−χℓR

F
(
t̄d(n/3)1/3�(rA − r)

)
dr =

−1

t̄d |�|(n/3)1/3

×

∫ ∞

0

e−θ3/3 sin
(
χt̄dℓR|�|(n/3)1/3θ

)dθ

θ
. (B7)

It follows from equation (B1) and the inequality χ ≫ (ℓ2Re)−1/3 that

ε−1 = χt̄dℓR|�|(n/3)1/3 ≫ 1. (B8)

Then we obtain
∫ ∞

0

e−θ3/3 sin
(
χt̄dℓR|�|(n/3)1/3θ

)dθ

θ

=

∫ ∞

0

sin θ

θ
e−ε3θ3/3dθ =

∫ ∞

0

sin θ

θ
dθ + O(ε3) ≈

π

2
. (B9)

Using equations (B7) and (B9) and taking formally χ → 0, we obtain

from equation (B6)

∫ R(1+ℓ/2)

R(1−ℓ/2)

ωAψn(ωd) dr

≈
i

n
P

∫ R(1+ℓ/2)

R(1−ℓ/2)

ω2
A dr

̟ 2
k − ω2

A

+
π̟k

4n|�|
, (B10)

where P indicates that the integral is calculated in the sense of the

Cauchy principal part. Substituting this expression in equation (57)

with ωd = n̟ k, we arrive at equation (59).

A P P E N D I X C : C A L C U L AT I O N O F TH E

FOURI ER TRANSFORM O F L̂[ηn]

We rewrite equation (51) as

L̂[ηn] = −
n5̟ 2

k (ρi − ρe)2

2R(ρi + ρe)2

∫ R(1+ℓ/2)

R(1−ℓ/2)

ωA�(t) dr, (C1)

where

�(t) =

∫ t

−∞

exp
(
− n2(t − θ )3/t3

d

)
sin[nωA(t − θ )]ηn(θ ) dθ.

(C2)

We calculate the Fourier transform of �(t):

�̂(ω) =

∫ ∞

−∞

e−iωtdt

∫ t

−∞

exp
(
− n2(t − θ )3/t3

d

)

× sin[nωA(t − θ )]ηn(θ ) dθ. (C3)

Changing the order of integration in this double integral yields

�̂(ω) =

∫ ∞

−∞

ηn(θ ) dθ

∫ ∞

θ

e−iωt exp
(
− n2(t − θ )3/t3

d

)

× sin[nωA(t − θ )] dt . (C4)

Using the variable substitution t = t̃ + θ and dropping the tilde

yields

�̂(ω) =

∫ ∞

−∞

ηn(θ )e−iωθ dθ

×

∫ ∞

0

exp
(

− iωt − n2t3/t3
d

)
sin(nωAt) dt . (C5)

The substitution t = td(3n2)−1/3θ reduces this expression to

�̂(ω) = iψn(ω)η̂n(ω). (C6)

It follows from equations (C1) and (C6) that

F
(
L̂[ηn]

)
= iη̂n(ω)K(ω), (C7)

where

K(ω) = −
n5̟ 2

k (ρi − ρe)2

2R(ρi + ρe)2

∫ R(1+ℓ/2)

R(1−ℓ/2)

ωAψn(ω) dr. (C8)

Now, we simplify the expression for K(ω) valid for ℓ2Re ≫ 1. We can

use the same derivation as in Appendix B with the only difference
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Excitation of decayless kink oscillations 3029

that there is the point rn(ω) defined by nωA(rn) = ω only when ω ∈

[nωAi, nωAe]. When this condition is satisfied, we obtain the equation

similar to equation (B10) but with ω/n substituted for ̟ k and �n

substituted for �, where �n = −ndωA/dr calculated at rn. When ω

∈ [nωAi, nωAe], the term similar to the second term on the right-hand

side of equation (B10) is absent. Hence,

∫ R(1+ℓ/2)

R(1−ℓ/2)

ωAψn(ωd ) dr ≈ −
πω

4n2�n

+ inP

∫ R(1+ℓ/2)

R(1−ℓ/2)

ω2
A dr

ω2 − n2ω2
A

, ω ∈ [nωAi, nωAe], (C9)

∫ R(1+ℓ/2)

R(1−ℓ/2)

ωAψn(ω) dr ≈

≈ inP

∫ R(1+ℓ/2)

R(1−ℓ/2)

ω2
A dr

ω2 − n2ω2
A

, ω /∈ [nωAi, nωAe]. (C10)

Substituting equations (C9) and (C10) in equation (64), we obtain

equations (65) and (66).

This paper has been typeset from a TEX/LATEX file prepared by the author.
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