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a b s t r a c t 

Dynamic contrast-enhanced MRI (DCE-MRI) is increasingly used to quantify and map the spatial distribution 
of blood-brain barrier (BBB) leakage in neurodegenerative disease, including cerebral small vessel disease and 
dementia. However, the subtle nature of leakage and resulting small signal changes make quantification chal- 
lenging. While simplified one-dimensional simulations have probed the impact of noise, scanner drift, and model 
assumptions, the impact of spatio-temporal effects such as gross motion, k -space sampling and motion artefacts 
on parametric leakage maps has been overlooked. Moreover, evidence on which to base the design of imaging 
protocols is lacking due to practical difficulties and the lack of a reference method. To address these problems, we 
present an open-source computational model of the DCE-MRI acquisition process for generating four dimensional 
Digital Reference Objects (DROs), using a high-resolution brain atlas and incorporating realistic patient motion, 
extra-cerebral signals, noise and k -space sampling. Simulations using the DROs demonstrated a dominant influ- 
ence of spatio-temporal effects on both the visual appearance of parameter maps and on measured tissue leakage 
rates. The computational model permits greater understanding of the sensitivity and limitations of subtle BBB 
leakage measurement and provides a non-invasive means of testing and optimising imaging protocols for future 
studies. 

1. Introduction 

DCE-MRI is the most commonly used technique for assessing break- 
down of the blood-brain barrier (BBB) in neurological diseases, such 
as multiple sclerosis, brain tumours, stroke and small vessel diseases. 
By detecting the signal changes following intravenous injection of a 
gadolinium-based contrast agent (GBCA), quantitative estimates ( K Trans 

or PS ) of its leakage across the BBB are obtained. While DCE-MRI is 
long-established in the context of high permeability, application of the 
technique is now rapidly growing in diseases such as cerebral small ves- 
sel diseases (SVD) and dementia, where BBB breakdown is typically very 
subtle. For example, recent studies have shown elevated BBB leakage in 
the normal-appearing white matter (NAWM) of patients with greater 
SVD burden, suggesting a possible role for BBB breakdown in the de- 
velopment of radiological signs and eventual clinical symptoms of the 

E-mail address: m.j.thrippleton@ed.ac.uk (M.J. Thrippleton). 

disease ( Wardlaw et al., 2017 ). In the field of Alzheimer’s disease, an- 
other recent study reported increased BBB leakage amongst APOE4 gene 
carriers, including those without cognitive impairment ( Montagne et al., 
2020 ). 

Such advanced neuroimaging studies are highly valuable for under- 
standing these diseases, whose pathophysiology is poorly understood 
( Wardlaw et al., 2019 ) and which have a major clinical and societal 
impact. However, while DCE-MRI is currently the standard imaging ap- 
proach to investigating BBB dysfunction, the extremely low level of leak- 
age and consequent small signal changes (typically a few percent) limit 
its accuracy and precision. Furthermore, the lack of a convenient ref- 
erence method, and ethical and safety considerations around GBCA ad- 
ministration, make it difficult to assess measurement reliability and im- 
pede protocol optimisation, as summarised in two recent review and 
recommendation papers ( Raja et al., 2018 ; Thrippleton et al., 2019 ). 
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Previous computational studies have attempted to address this problem 

by applying a Monte-Carlo simulation approach to generate synthetic 
one-dimensional time-signal data for tissues with pre-specified leakage 
values, yielding important insights into the effects of pharmacokinetic 
model selection, signal stability and noise on the accuracy and precision 
of “permeability ” mapping ( Armitage et al., 2011 ; Barnes et al., 2016 ; 
Cramer and Larsson, 2014 ; Heye et al., 2016 ). However, this approach 
overlooks spatio-temporal effects, such as patient motion, partial vol- 
ume effect and ringing artefacts, which may have a significant impact 
on the appearance of parameter maps ( Heye et al., 2016 ) and, poten- 
tially, on reported leakage rates. Also, this method omits the contribu- 
tion of extra-cerebral tissues, which typically exhibit a greater signal 
enhancement than brain tissues since they do not have a BBB, to imag- 
ing artefacts. The assessment of these spatio-temporal aspects is more 
conceptually and computationally demanding since both the measure- 
ment process and the participant must be simulated in the three spatial 
dimensions and time. 

In this work, we propose an open-source computational model 
that uses in-vivo volunteer and patient data for mimicking the four- 
dimensional DCE-MRI acquisition process to evaluate the aforemen- 
tioned confounds and enable better protocol optimisation in the future. 
We used a publically available high-resolution atlas to generate realis- 
tic head and neck anatomy ( Iacono et al., 2015 ) and combined it with 
motion parameters and signal enhancement properties obtained from a 
large cohort of SVD patients ( Wardlaw et al., 2017 ). We used the result- 
ing digital reference objects (DROs) to simulate the appearance of leak- 
age maps and measured leakage values in healthy and diseased brain 
tissue under realistic experimental conditions, including k -space sam- 
pling, noise, gross motion and motion artefacts. Finally, we explored 
the potential of image processing methods to enhance the accuracy of 
BBB leakage measurements. 

2. Materials and methods 

2.1. Digital reference object 

We identified two main requirements for devising a realistic com- 
putational model for evaluating subtle BBB leakage measurement. First, 
it should contain both healthy and pathological brain tissues as well as 
non-brain tissues that are commonly excluded in simulations. Second, 
it should simulate aspects of the acquisition process that are known or 
expected to affect the appearance of DCE-MRI parameter maps, such as 
motion and truncation artefacts. 

We simulated the DCE-MRI signal generation, measurement and 
analysis processes via the steps illustrated in Fig. 1 and described in 
detail below. Briefly, we used a high-resolution head model with pre- 
specified MR and ground-truth pharmacokinetic properties to gener- 
ate four-dimensional time-signal data. We applied spatial transforma- 
tions derived from in-vivo scan data to simulate gross motion and mo- 
tion artefacts, resampled the resulting data in k -space and added ran- 
dom noise to yield “acquired ” images at lower resolution. We post- 
processed and analysed these scans to obtain simulated pharmacoki- 
netic parameter maps. Code for generating the DROs is freely available 
at https://doi.org/10.7488/ds/2966 . 

2.1.1. Ground truth 
We developed the signal model based on a three-dimensional high- 

resolution (0.5-mm isotropic), comprehensively-labelled and publicly- 
available human head and neck atlas ( Iacono et al., 2015 ). 1 The at- 
las is particularly suitable for application to DCE-MRI because a wide 
range of segmented tissues including both brain tissues and nearby 
GBCA-enhancing structures, such as vessels and muscle, are labelled 
( Fig. 2 and Figure S1). We combined some of the tissue classes to 

1 The MIDA human head model can be downloaded from 

www.itis.ethz.ch/MIDA/ 

reduce complexity and because the enhancement properties of each 
are not well known. To better represent the ageing brain, we added 
two regions of neuropathology associated with elevated permeability, 
specifically white matter hyperintensities (WMH) and lacunar stroke le- 
sions, using spatial occurrence templates extracted from patient data 
( https://doi.org/10.7488/ds/2716 ). The stroke lesion is based on that of 
a patient with one small recent lacunar stroke lesion in the basal ganglia. 
The total burden of WMH would be classified as Fazekas 2 periventricu- 
lar WMH and Fazekas 1 deep WMH. In total, our computational model 
comprised 16 regions of interest. We assigned values for the equilibrium 

signal intensity S 0 , pre-contrast longitudinal relaxation time T 10 , blood 
plasma volume fraction v P and permeability surface area product PS to 
each tissue class. 

2.1.2. Generation of high-resolution 4D signal 
We simulated the GBCA concentration over time for brain vox- 

els within the high-resolution reference object using the Patlak model 
( Patlak and Blasberg, 1985 ), which has previously been shown to closely 
describe tracer kinetic behaviour in the slow leakage regime at low tem- 
poral resolution ( Heye et al., 2016 ; Larsson et al., 2009 ): 

𝐶 𝑡 [ 𝑡 ] = 𝑣 𝑝 𝑐 𝑝 [ 𝑡 ] + 𝑃 𝑆 ∫
𝑡 

0 
𝑐 𝑝 
[

𝑡 ′
]

d 𝑡 ′, 

where c p [ t ] represents the specified GBCA time-concentration function 
in blood plasma or arterial input function (AIF) and C t [ t ] is the total 
tissue GBCA concentration. Although it would be possible to use a more 
complex pharmacokinetic model to simulate ground-truth concentra- 
tion, by using the Patlak model we ensured that any errors in the fitted 
parameters are caused by the measurement process, which is the focus 
of this work. To simulate signal within tissues that do not have a BBB, 
such as muscle and skull, we used time-signal curves measured directly 
from in-vivo patient data, as described in the Supplementary Material. 

Having computed the concentration-time curves per voxel, we cal- 
culated the corresponding signal-time curves using the spoiled gradient 
echo signal formula: 

𝑆 [ 𝑡 ] = 𝑆 0 

(

1 − 𝑒 − 𝑇𝑅 ∕ 𝑇 1 [ 𝑡 ] 
)

sin 𝜃𝐹𝐴 

1 − 𝑒 − 𝑇𝑅 ∕ 𝑇 1 [ 𝑡 ] cos 𝜃𝐹𝐴 

⋅ 𝑒 
− 𝑇 𝐸∕ 𝑇 ∗ 

2 [ 𝑡 ] , 

where 𝑇 𝑅 and 𝑇 𝐸 represent the repetition and echo times respectively, 
𝜃𝐹𝐴 is the excitation flip angle and 𝑇 

∗ 
2 
[ 𝑡 ] is the effective transverse re- 

laxation time at time 𝑡 . The relaxation rate was assumed to vary linearly 
with the contrast agent concentration: 

1 

𝑇 𝑖 [ 𝑡 ] 
= 

1 

𝑇 𝑖 0 
+ 𝑟 𝑖 ⋅ 𝐶 𝑡 [ 𝑡 ] , 𝑖 = 1 , 2 ∗ , 

where r i is the relaxivity. Time-signal curves were thus generated for 
each location within the three-dimensional high-resolution model. 

2.1.3. Simulation of acquired data and motion effects 
We considered the following steps to simulate DCE-MRI data acqui- 

sition: 
Starting head position : First, we randomised the initial head position 

by applying a rigid-body spatial transform to the high-resolution DRO, 
such that each degree of freedom was randomly distributed with uni- 
form probability over the range ± 5° for rotations and ± 2.5 mm for trans- 
lations. This initial transformation was the same for all time frames. 

Gross patient movement : Second, we simulated gross patient move- 
ment during the subsequent DCE-MRI acquisition by applying a dif- 
ferent rigid-body transformation to the high-resolution DRO at each 
time frame. Movement trajectories for each of 201 simulation runs were 
based on in-vivo patient imaging data as described in Section 2.2.1 . 

k-space sampling : Third, we calculated the k -space representation of 
the high-resolution DRO for each time frame as the three-dimensional 
inverse Fourier transform. We resampled it to obtain k -space data with 
the acquired field of view and spatial resolution. We assumed three- 
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Fig. 1. Proposed computational framework for generating 4D dynamic contrast-enhanced magnetic resonance images and simulating PS mapping under realistic 
conditions. PS: permeability-surface area product. v P : fractional blood plasma volume. 

dimensional Cartesian k -space sampling and suppressed signals from 

outside the field of view in the frequency- and slice-encoding directions 
to simulate band filtering and slab-selective excitation, respectively. The 
finite sampling of k -space results in information loss, which may mani- 
fest as Gibbs ringing artefacts and partial volume effects. 

Motion artefacts : Fourth, we simulated motion artefacts using the ap- 
proach of Shaw et al. (2020) . In a nutshell, we generated a composite 
k -space image for each frame in which a random proportion of the suc- 
cessive k -space lines were acquired with the head in its initial position 
(i.e. that at the end of the previous time frame) and the remaining lines 
acquired with the head in its subsequent position (i.e. that at the start 
of the next time frame). The level of displacement between consecutive 
frames and the time at which the motion occurs determines the severity 
and appearance of the motion artefacts in the resulting image, typically 
manifesting as blurring, ringing and/or ghosting. 

Noise and fourier transformation : Fifth, we added uncorrelated addi- 
tive white Gaussian noise to the real and imaginary channels of the sam- 
pled k -space image, applied a three-dimensional Fourier transform and 
computed the magnitude to yield the “acquired ” four-dimensional DRO 

image including sampling artefacts, gross motion, motion artefacts and 
Rician noise. 

2.1.4. Analysis of simulated DRO images 
We processed the simulated DCE-MRI data following the approach 

described previously in ( Heye et al., 2016 ). Briefly, we spatially re- 
aligned all frames using MCFLIRT ( Jenkinson et al., 2002 ), computed 
enhancement and GBCA concentration profiles for each voxel, and fit- 
ted time-concentration curves to the Patlak model using multiple-linear 
regression to obtain voxelwise maps of estimated v P and PS . We have 
calculated all results by omitting the first three post-contrast time points 
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Fig. 2. Tissue classes included in our computational model and used to generate 4D high-resolution digital reference objects. We considered 16 regions of interest, 
comprising cerebrospinal fluid; normal-appearing white matter; white matter hyperintensities; stroke lesion; cortical grey matter; subcortical grey matter; meninges; 
muscle and cartilage; mandible and vertebrae; skull diploe; skull inner table; skull outer table; blood vessels; skin and connective tissue; adipose tissue; and eyes. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 1 
MR protocol parameters used in our simulations. The 
values of these parameters are the same as those used 
in the Mild Stroke Study 2 ( Heye et al., 2016 ). 

MR protocol parameter Parameter value 

Repetition time 8.24 ms 

Echo time 3.1 ms 

Flip angle 12°

Field of view 24 × 24 × 18.4 cm 

Acquired resolution 0.9375 × 1.25 × 4 mm 

Temporal resolution 73 s 

Pre-contrast acquisitions 1 

Post-contrast acquisitions 20 

from the model fitting, to replicate the in-vivo data analysis process, as 
implemented in our previous study. 

To obtain summary parametric measures for each tissue, we per- 
formed the following steps to generate the segmentation map in the ac- 
quired image space. First, we registered the high-resolution pre-contrast 
T1w image to the acquired one. Second, we applied the resulting affine 
transformation matrix to the binary mask of each tissue class, interpolat- 
ing with a cubic approximation. Third, for each voxel, we assigned the 
label corresponding to the tissue class with the maximum probability, 
resulting in a region of interest (ROI) binary mask for each tissue. 

Using the produced segmentation map, we generated a T 10 map at 
the acquired resolution using the average region-wise values extracted 
from our patient cohort. For each tissue we calculated mean and me- 
dian v P and PS values using two approaches: fitting of the ROI-averaged 
signal and averaging over the parametric maps. 

2.2. In-silico experiments 

2.2.1. MR protocol parameters and input data for generating DROs 
We explored the qualitative impact of experimental factors on leak- 

age mapping and the quantitative impact on parameter estimates using 
DCE-MRI data simulated using the framework described above. As a 
representative MR protocol used for measuring low-level BBB leakage, 
we simulated the acquisition protocol used in a recent DCE-MRI study 
of SVD patients ( Wardlaw et al., 2017 ). Briefly, 201 patients with la- 
cunar or cortical mild stroke recruited prospectively in the Mild Stroke 
Study 2 (MSS2) were scanned at 1.5 T using a 3D T1-w spoiled gra- 
dient echo sequence (21 time points, intravenous bolus injection of 
0.1 mmol/kg gadoterate meglumine) for DCE-MRI, in addition to T 10 
measurement. Specific information about the reference imaging pro- 
tocol is condensed in Table 1 . The patients had a wide range of ex- 
tents of neuroimaging features of SVD and were carefully phenotyped 

at presentation, recruitment and at up to three years of follow-up. The 
in-vivo study was conducted following Research Ethics Committee ap- 
proval (ref. 09/81,101/54) and according to the principles expressed in 
the Declaration of Helsinki; all patients gave written informed consent. 
Full details of the study protocol, image acquisition and processing, and 
results are given in ( Heye et al., 2016 ; Valdés Hernández et al., 2015 ; 
Wardlaw et al., 2017 ). 

We used average S 0 , T 10 , v P and PS values for NAWM, grey matter, 
recent stroke lesion and WMH obtained from this study as ground-truth 
values for generation of DRO signals. The values used in the simulations 
can be found in Table 2 . For vessels, we used PS = 0 and v P = 1-Hct (Hct 
was assumed to be 0.45). Given that the Patlak model does not reflect 
the enhancement over time of extra-cerebral regions, we sampled their 
signal-time curves from in-vivo images manually, under the supervision 
of an experienced neuroradiologist, and fitted the resulting curves us- 
ing exponential or power functions to remove noise. The fitted functions 
can be found in the Supplementary Material. We extracted the signal in- 
tensity profiles of meninges, skin and muscle, mandible and vertebrae, 
eyes, and skull diploe, inner and outer tables from DCE-MRI scans of a 
single patient in the study cohort. We used a population-average vascu- 
lar input function derived from the same data ( Heye et al., 2016 ). 

We used distinct motion trajectories for each run to generate realistic 
motion effects in our simulations, including examples of low, moderate 
and high degrees of motion. The classification of motion trajectories 
based on the MSS2 data can be found in the Supplementary Material. 
A trajectory consisted of 20 rigid-body transformation matrices, where 
each matrix is the inverse of the transformation used to realign each time 
frame in the MSS2. We generated 201 DROs using a different motion tra- 
jectory, randomised starting position and newly-generated spatial noise 
for each run. 

To achieve a realistic spatial noise level, we measured an in-vivo 
spatial signal-to-noise ratio of 91.5 for NAWM and applied the corre- 
sponding noise level (scaled to match the simulated pre-contrast NAWM 

signal) to all voxels in the simulated images. 

2.2.2. Experiments and reporting 
We generated and analysed synthetic DCE-MRI data for a represen- 

tative SVD patient as described above. We first performed in-silico ex- 
periments to investigate the impact of k -space sampling, gross motion, 
motion artefacts and noise on the appearance of parametric maps. To 
further investigate these effects, we performed simulations for different 
initial head positions and degrees of head motion; to investigate the in- 
fluence of non-brain GBCA uptake, we ran additional experiments with 
and without enhancement of extra-cerebral tissues. To evaluate the pos- 
sible impact on study findings, we generated and analysed 201 DROs, 
determining measured PS values for each DRO and tissue, using multi- 
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Table 2 
Tissue parameters used as ground truth values in our simulations. Equilibrium signal, 
S 0 , pre-contrast longitudinal relaxation time, T 10 , blood-brain barrier permeability- 
surface area product, PS , and capillary blood plasma volume fraction, v P are median 
values measured in the Mild Stroke Study 2 ( Heye, 2015 ). To simulate a stroke le- 
sion with high leakage rate, we used the third quartile of the PS and v P distribution 
measured in the same study. 

Tissue class S 0 T 10 (s) PS ( ×10 − 4 min − 1 ) v P ( ×10 
− 2 ) 

Normal appearing-white matter 9726 0.99 2.75 0.57 

White matter hyperintensity 9402 1.20 3.91 0.72 

Grey matter 9298 1.34 3.85 1.20 

Recent stroke lesion 9858 1.27 7.25 1.05 

Fig. 3. PS and v P maps measured using the DRO when affected by k -space sampling, gross motion, motion artefacts and noise progressively. k -space sampling leads 
to sinc-like oscillations in the parameter maps (white arrows in coronal view), which are particularly evident in the z-direction (superior to inferior). Gross motion 
produced noticeable deviations and artefactual features in all brain regions, particularly around tissue interfaces (white dashed rectangle in sagittal view). Motion 
artefacts produced additional ringing artefacts that propagated from the signal-time data to the PS maps (solid white rectangle in axial view). A stroke lesion with 
elevated leakage is visible in the absence of motion (solid white circle in axial view) but obscured due to motion effects. Note that the artefacts observed in the 
PS maps appear at only a low level in the underlying T1w images (second column). Data correspond to a moderate degree of motion. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 

ple processing approaches (statistics: mean signal, median signal, mean 
parameter, median parameter; post-processing: segmentation mask ero- 
sion, spatial realignment, low-pass spatial filtering). For each approach, 
we obtained the PS distribution across all 201 DROs, reporting the me- 
dian and interquartile range (IQR) values (RStudio v1.2.5019 with R 
v3.5.1). 

We ran all experiments on a 189GB RAM computer running Scientific 
Linux 7.3 (Nitrogen; Arch x86 64; 56 CPUs Intel(R) Xeon(R) CPU E5- 
2683 v3 @ 2.00 GHz). Each simulation took approximately 30 min. 

3. Results 

3.1. Qualitative appearance of parameter maps 

Fig. 3 shows parametric maps measured from a generated DRO and 
showing the cumulative effects of sampling (i.e. truncation in k -space), 
gross patient motion, motion artefact and noise. The DRO was gener- 
ated assuming uniform PS and v P within each brain tissue class. Data 
sampling results in ringing artefacts in all three spatial dimensions, par- 
ticularly in the slice direction where the voxel dimension is highest; 
nevertheless, differential leakage between tissues is resolved, including 
elevated PS in the WMHs and stroke lesion and elevated v P in the grey 
matter and stroke lesion. However, inclusion of moderate patient mo- 
tion obscures tissue differences and induces artefactual features close 
to tissue boundaries and vessels, and additional ringing artefacts. The 
additional effect of noise is small, with motion effects dominating the 
visual appearance. It is noteworthy that, while the motion effects on 

parameter maps are severe, the degree of head motion is moderate and 
the impact of artefacts on the underlying T1w images is seen to be small 
in comparison to that on the parameter maps. To further illustrate the 
implications of motion, Fig. 4 shows simulated PS and v P maps in the 
basal ganglia region, where areas of falsely increased (and decreased) 
periventricular leakage appear and become more apparent with increas- 
ing degree of head movement. 

To quantify these effects, we created histograms to show the distri- 
bution of PS and v P within each tissue for a single DRO (simulated with 
low-level patient motion, Fig. 5 ). Although we defined each tissue to 
have a uniform PS and v P , k -space sampling generates a broad distribu- 
tion of values, which becomes broader when we incorporate motion and 
noise in the DRO. In addition to causing a distribution of values, both 
sampling and gross motion affect central tendency values (i.e. mean or 
median), especially for cortical grey matter where the bias in PS and 
v P values was approximately − 0.71 × 10 − 4 min − 1 and − 0.20 × 10 − 2 (–
18.49% and − 16.66%) relative to the ground-truth value, respectively. 
Spatiotemporal imaging considerations affect PS mapping more than v P 
mapping. The effects simulated can also result in non-physical negative 
PS and v P values in some voxels. 

3.2. Effect of head position and extra-cerebral tissue enhancement 

The spatial relationship between the voxel grid and the head po- 
sition determines the appearance of partial volumes and Gibbs ring- 
ing artefacts ( Kellner et al., 2016 ). We simulated the impact of this ef- 
fect on leakage mapping by analysing the error after randomising the 

5 
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Fig. 4. Artefactual periventricular leakage due to sampling and motion effects. The artefactual features are evident around the lateral ventricles (white arrows) and 
in the adjacent supraventricular corona radiata (black arrows), where white matter hyperintensities frequently occur. Such artefacts, caused by sampling and motion 
effects, might potentially be confused with “periventricular BBB dysfunction ” due to subtle pathology. 

Fig. 5. Distribution of measured PS and v P values for each tissue of interest as we induced spatio-temporal effects progressively in a single patient (data correspond 
to ‘Low motion’ images shown in Fig. 4 ). The vertical lines depict the ground truth (grey) and median (red) parameter values. We used the term “sampling ” to refer 
to k -space sampling, which results in information loss and manifests as partial volume effects and Gibbs ringing artefacts. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 

starting head position (without intra- or inter-frame motion or noise). 
Qualitative results of this experiment for two DROs are shown in Fig. 6 . 
The error caused by sampling the signal in k -space propagates differ- 
ently depending on the initial head position, causing both over- and 
under-estimation of the actual parameter values in for the two initial 
positions. 

To address the impact of extra-cerebral tissue enhancement on PS 
and v P parameter maps, we performed simulations with and without 

non-brain signal enhancement. The qualitative results for a single DRO 

shown in Fig. 7 demonstrate that extra-cerebral signal enhancement is 
responsible for the observed sinc-like artefacts as they attenuated when 
we disabled extra-cerebral enhancement. Residual errors persisted in 
tissue proximal to medium and large blood vessels. These findings were 
reproducible across a range of head starting positions. Quantitative tis- 
sue parameter estimates for the individual scan simulated in Fig. 7 were 
affected by up to 17% (note that the errors shown arise from multiple 
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Fig. 6. Gibbs-like artefacts in the PS and v P parameter maps depend on initial head position, consistent with k -space sampling effects. Simulations excluded motion 
and noise effects. 

sources and are not necessarily reduced when extra-cerebral enhance- 
ment is disabled). 

3.3. Accuracy and precision of quantitative parameter estimation 

To predict the accuracy and precision of quantitative PS and v P mea- 
surements, we performed 201 simulations of the same individual, using 
a different motion trajectory, noise contribution and initial orientation 
each time. For each run, tissue parameter values were estimated us- 
ing both a signal-averaging (i.e. analysis of the tissue-averaged signal) 
and parameter-averaging (i.e. averaging over the PS and v P parametric 
maps) approach. The results are shown in Fig. 8 and Table S1. Overall, 
the parameter median approach resulted in comparable or slightly bet- 
ter estimates compared with other approaches. These methods clearly 
overestimated PS and v P for WMH and underestimated PS for cortical 
grey matter, NAWM and stroke lesion. Note these results are consistent 
with the single scan analyses shown in Fig. 5 . Gross motion caused most 
of the quantification error, typically increasing both the systematic bias 
and the spread of values. Although incorporating both motion artefacts 
and noise increased the dispersion, the median value computed was not 
substantially affected. 

3.3.1. Effect of spatial realignment 
Rigid-body spatial realignment is often employed to correct for 

head motion that may have occurred during a lengthy DCE-MRI scan 
( Thrippleton et al., 2019 ). However, not all studies in the field use or 

report using this pre-processing step. We compared simulation results 
obtained with and without spatial realignment ( Fig. 9 and Table S2). 
These indicate that spatial realignment has a large beneficial impact on 
both precision and accuracy of parameter estimation, especially in cases 
of moderate and high motion. We additionally considered the effect of 
two interpolation methods: trilinear (default in MCFLIRT) and sinc in- 
terpolation. Both methods led to comparable estimation errors. 

3.3.2. Effect of mask erosion and low-pass filtering 
Since the results described above indicate a significant error contri- 

bution from partial volume effects and non-local signal due to Gibbs 
ringing, we tested whether the error decreased following erosion of the 
segmentation masks ( Heye et al., 2016 ) using a sphere kernel with ra- 
dius equal to one voxel. The corresponding PS and v P estimates showed 
( Fig. 10 and Table S3) increased accuracy following mask erosion in 
most tissues of interest. For example, when we induced all spatiotem- 
poral effects, the relative PS error for NAWM and cortical grey mat- 
ter was − 18.47 (IQR − 32.35, − 10.01)% and − 15.60 (IQR − 19.92, 
− 10.75)% originally versus − 8.19 ( − 11.41, − 4.76)% and − 6.58 (IQR 
− 9.18, − 4.31)% following erosion. 

We also tested the impact of a Bessel low pass filter (applied to the 
acquired k -space images) on parameter mapping (Figure S4) and esti- 
mation ( Fig. 10 and Table S3). Simulated parameter maps demonstrate 
that low-pass filtering effectively mitigates ringing artefacts, while the 
impact on parameter estimates is similar to that of erosion. 
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Fig. 7. Effect of k -space sampling and extra-cerebral tissue enhancement on parameter mapping. The sinc-like artefacts in the parameter maps disappear when 
non-brain tissue enhancement is disabled, suggesting that such errors are caused by sampling of the high spatial frequencies induced by extra-cerebral enhancement. 
Simulations excluded motion and noise effects. 

4. Discussion 

In this work, we present an open-source computational model for 
mimicking the DCE-MRI acquisition process for quantitative mapping of 
subtle BBB leakage under realistic conditions, including patient motion, 
anatomy and signal enhancement dynamics based on in-vivo clinical 
data. We found that even low levels of motion and image artefact have 
a large impact on both the appearance of parametric leakage maps and 
on quantitative measurements of leakage rates within regions of interest. 

Previous simulation work has examined a number of other factors 
that may affect such measurements. For example, more than one re- 
search group has demonstrated the suitability of the Patlak pharmacoki- 
netic model for measuring low-level PS ( Barnes et al., 2016 ; Cramer and 
Larsson, 2014 ; Heye et al., 2016 ). The researchers also demonstrated 
the effects of noise, impaired cerebral blood flow, the number of pre- 
contrast baseline volumes acquired and the impact of scanner drift on 
the accuracy and precision of PS measurements. While such findings 
have provided essential insights and informed guidance regarding op- 
timal acquisition and processing strategies ( Thrippleton et al., 2019 ), 
they are based on simulations of one-dimensional time-signal data and, 
thus, do not address spatio-temporal factors, which, as we have shown 
here, have a substantial influence, over and above that of noise. 

In summary, we scrutinised the impact of spatio-temporal effects on 
the appearance of leakage maps by progressively inducing them in the 

DRO. The first of these, k -space sampling, has two main consequences: 
partial volume averaging and Gibbs ringing artefact. While the appear- 
ance of Gibbs artefact on the source T1w images was subtle, the effect 
was greatly magnified in the leakage maps. This result can be under- 
stood by considering that, although the magnitude of ringing artefacts 
in the source images is merely a few percent of the signal intensity, 
such a signal contribution is similar to or larger than the signal changes 
caused by slow contrast agent leakage in brain tissue. The effect is par- 
ticularly apparent in the partition direction, where the voxel dimension 
is greatest. Despite the Gibbs artefact, some tissue permeability differ- 
ences remained apparent in the leakage maps. Inclusion of gross patient 
motion in the simulations further degraded the leakage maps, obscur- 
ing tissue differences and introducing artefactual features, particularly 
around vessels, lateral ventricles and tissue boundaries. The inclusion 
of motion artefact had a further impact on the quality of leakage maps, 
primarily in the form of ghosting and blurring features. While the in- 
corporation of noise further degraded the appearance, the additional 
relative impact was small. The oval shape of some of these artefacts im- 
plies that they originate from or close to the surface of the brain, while 
the observed dependence on initial head position is consistent with the 
dependence of Gibbs artefact on the position of tissue boundaries in re- 
lation to the voxel grid ( Ferreira et al., 2009 ). Additional simulations, 
in which we switched off the much larger contrast enhancement occur- 
ring in some extra-cerebral regions, suggest that finite k -space sampling 
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Fig. 8. PS and v P values estimated per tissue as we progressively induced spatio-temporal effects (A: k -space sampling only. B: sampling and gross motion. C: 
sampling, gross motion, and motion artefacts. D: sampling, gross motion, motion artefacts and noise). We produced these results using spatially realigned images 
(and without erosion or filtering). The maximum width of the violin plots was kept constant. The dotted lines represent the true PS and v P values for each tissue. 

Fig. 9. Effect of spatial realignment on parameter estimation per tissue depending on the extent of motion and interpolation method used for realignment. Estimates 
were obtained using the parameter median approach (without erosion or filtering). The maximum width of the violin plots was kept constant. The definition of low, 
moderate, and high motion can be found in the Supplementary Material. These results correspond to simulations including all spatiotemporal effects. The dotted 
lines represent the true PS and v P values for each tissue. 
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Fig. 10. Effect of segmentation mask erosion and low pass filtering on parameter estimation per region of interest as progressively induced spatio-temporal effects 
(A: k -space sampling only. B: sampling and gross motion. C: sampling, gross motion, and motion artefacts. D: sampling, gross motion, motion artefacts and noise). 
Estimates were obtained following spatial realignment of the images and using the parameter map median approach. The width of the violin plots was kept constant. 
The dotted lines represent the true PS and v P values for each tissue. 

of the high spatial frequencies induced by these enhancements has a 
notable impact on measured leakage patterns within the brain and is a 
source of the Gibbs-like artefacts seen in the parametric maps. 

We also assessed the impact of the same spatio-temporal imaging fac- 
tors on quantitative tissue-averaged leakage measurements. We found 
reasonable levels of accuracy in the absence of motion effects, with 
the exception of cortical grey matter and stroke lesion tissues, where 
sampling factors have a proportionately larger effect due to their size 
and morphology. Gross motion combined with k -space sampling had the 
largest effect on the accuracy and precision, consistent with the observed 
impact on individual leakage maps. For example, we observed a bias to- 
wards lower ( − 15.60 [IQR − 19.92, − 10.75]% and − 18.47 [IQR − 32.35, 
− 10.01]%) values for cortical grey matter and normal-appearing white 
matter due to gross motion. Both Gibbs ringing and partial volume ef- 
fects cause the mixing of signals between neighbouring tissues, which 
have different pre-contrast and dynamic signal intensities; in the case of 
motion, the degree of mixing is time-dependant, which may increase the 
impact on PS estimates, particularly if data are not spatially re-aligned. 
For example, the predicted underestimation of PS in white matter could 
be rationalised by the progressive “incursion ” of grey-matter signal into 
the white matter tissue mask due to patient motion, since the size of the 
effect increases with degree of motion, and reduces following spatial re- 
alignment and mask erosion. Simulation of motion artefact and image 
noise was shown to have a much smaller effect. 

Our work has implications for the interpretation of DCE-MRI subtle 
leakage data. First, the use of an appropriate pharmacokinetic model, 
temporal resolution and sufficiently high signal-to-noise ratio are essen- 
tial but not sufficient conditions to obtain reliable results, since spatio- 
temporal considerations have a major impact on the accuracy and pre- 
cision. Secondly, leakage maps in individual patients may be an un- 
reliable source of information, as they are highly distorted by imag- 
ing artefacts and motion; such maps should be interpreted with cau- 
tion, since artefactual leakage features are likely to be present, even (as 
simulated here) if the true leakage rate is uniform within each tissue. 
Therefore, it is important to acknowledge that apparent features such 
as leakage “hotspots ”, “rims ”, negative leakage rates and shifts in the 

distribution can be caused by patient motion and data sampling effects. 
This consideration is particularly relevant to studies of ageing where key 
pathological features, such as periventricular WMH, may coincide with 
regions where the artefact level is high. Post-processing techniques de- 
signed to denoise leakage maps or identify voxels with significant leak- 
age ( Raja et al., 2018 ; Taheri et al., 2011 ; van de Haar et al., 2017 ) could 
also be potentially confounded by these effects, which distort the cen- 
tral value, width and shape of the measured voxel leakage distribution. 
Third, quantitative leakage rates estimated for each tissue may also be 
subject to substantial systematic biases and random error as a result of 
these effects. Since the degree of patient motion is likely to be related 
to severity of neurodegenerative disease, there is therefore a possibility 
of inferring false associations between leakage rate and disease. 

Our work also has implications for the design of future studies tar- 
geting subtle BBB leakage. The computation framework for generating 
DROs presented here, which is freely available as source code, provides 
a convenient means to evaluate and compare proposed DCE-MRI proto- 
cols including the influence of spatial and temporal resolution param- 
eters. The critical impact of motion revealed by our experiments also 
argues for the following recommendations. First, the use of spatial reg- 
istration is essential as its omission can lead to greatly increased system- 
atic and random estimation errors, even in cases of low motion. Second, 
measures to reduce motion in the first place, such as padding of the 
head will be beneficial, as previously recommended ( Thrippleton et al., 
2019 ). Third, even though we obtained comparable estimates across lev- 
els of motion after spatial realignment, abrupt movements during scan- 
ning may result in image distortion, which may affect parameter map- 
ping and estimation. Thus, we recommend checking realignment was 
successful in each case. Fourth, the appearance of parametric maps is 
improved through application of a low-pass spatial filter, albeit at the 
cost of image blurring. Fifth, the accuracy of quantitative parameter 
estimates can be improved by eroding tissue masks or regions of inter- 
est, thereby reducing signal contamination from neighbouring signals 
due to partial volume, Gibbs ringing and gross motion effects. Sixth, we 
observed similar accuracy and precision regardless of whether averag- 
ing was performed over the parameter maps or over the MR images. 
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Nonetheless, when using parameter averaging, we recommend param- 
eter median as it showed slightly improved estimation compared with 
parameter mean and it is more robust against outliers. 

Future studies should evaluate the effect of motion-resistant acquisi- 
tion techniques, such as optical prospective motion compensation, pro- 
vided temporal resolution, signal stability and other key technical ele- 
ments are not compromised. Equally, the value of post-processing tech- 
niques, such as retrospective spatial artefact reduction methods target- 
ing truncation ( Kellner et al., 2016 ) and motion artefacts can now also 
be explored. 

Our work has some limitations. First, although the DROs are gener- 
ated using a high-resolution (0.5-mm isotropic) brain atlas to synthesise 
the MRI signal, it may not be sufficient to model all anatomical struc- 
tures and tissue boundaries accurately. To our knowledge, the MIDA 
atlas is the highest resolution head and neck atlas with comprehensive 
labelling available at present, however higher resolution (e.g. based on 
7-T MRI) atlases could be used in future. Second, we simulated data us- 
ing a number of necessary assumptions and simplifications. For exam- 
ple, dynamic brain tissue signals were generated using the Patlak model, 
since this ensures that any errors we identified are a consequence of the 
spatio-temporal factors investigated here and not due to physiological 
limitations of the model, which have been investigated extensively else- 
where. Third, our technique for simulating motion effects resulted in 
motion artefacts with realistic appearance within an acceptable com- 
putation time; simulating continuous patient motion (and signal en- 
hancement changes) throughout the acquisition would generate more 
realistic data but at the cost of increased computation time. Fourth, 
the results presented herein correspond to a specific DCE-MRI proto- 
col and would likely be quantitatively different for a different protocol. 
Nevertheless, the protocol simulated is typical of those described in the 
literature, concerning spatial resolution, acquisition time and pulse se- 
quence. It would be straightforward to simulate alternative protocols 
and pulse sequences (e.g. saturation recovery spoiled gradient echo) us- 
ing our framework. Fifth, we simulated a DRO including small vessel dis- 
ease features seen in the ageing brain, such as WMH and stroke lesions. 
However, study populations typically comprise a range of disease bur- 
dens and other features, such as lacunes, enlarged perivascular spaces, 
micro-haemorrhages (i.e., micro-bleeds), sulcal widening and ventricu- 
lar enlargement amongst others; future work could address the impact 
of brain ageing and neurovascular health on the accuracy of leakage 
measurements. 

In conclusion, we have developed and made publicly-available a 
novel DRO for simulating DCE-MRI measurement of subtle BBB leakage 
( https://doi.org/10.7488/ds/2966 ). This development is timely, given 
the rapidly growing interest in neurodegenerative diseases, such as small 
vessel disease and dementia, which are linked with subtle BBB dysfunc- 
tion, and the growing interest in applying DCE-MRI in this area. Our 
work reveals reasons to be careful when interpreting such data, and 
provides a means to estimate and optimise the reliability of measure- 
ments. 
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