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Abstract 

The first step in the development of Helicobacter pylori pathogenicity is the receptor-mediated 

adhesion to the gastric epithelium. Inhibition of outer membrane proteins of H. pylori (e.g. 

BabA) by antiadhesive drugs will contribute to reduced recolonization and infection. Pectin 

from apple inhibits the BabA and LPS-mediated adhesion of H. pylori to human stomach cells. 

Pectin-coated liposomes with encapsulated amoxicillin were characterized for polydispers ity, 

zeta potential, encapsulation efficiency, stability and amoxicillin release. Coated liposomes did 

not influence the viability of AGS and HT29-MTX cells up to 100 μg/mL but exert cytotoxic ity 

against H. pylori at 10 μg/mL. Pectin-coating of liposomes provoked direct interaction and 

subsequent binding of the particles to surface structures of H. pylori, and interaction with mucus 

from porcine stomach and mucus secreted by HT29-MTX cells. Laser scanning microscopy of 

H. pylori and AGS cells together with liposomes indicated co-aggregation. The mucoadhesive 

effect seems interesting as stomach cells are covered by a mucus layer. H. pylori is able to 

penetrate and cross the mucin rapidly to reach pH-neutral epithelium to escape the acidic 

environment, followed by interaction with epithelia cells. Summarizing, all experimenta l 

evidence is consistent with a specific interaction of pectin-coated liposomes with mucins and 

surface structures of H. pylori. As the coated liposomes show mucoadhesion to the negative ly 

charged mucins, docking to stomach mucin, mucus penetration, recognition of and adhesion to 

H. pylori they can be considered as a novel type of multi- functional drug carriers for local 

antibiotic therapy against H. pylori. 
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Introduction 

H. pylori infection rate is estimated worldwide with approximately 44 % of the human 

population, with highest prevalence in Africa and Latin America (Zamani et al., 2018). Standard 

therapy of the infection is clinically performed by a combination of different antibiot ics, 

bismuth and proton-pump inhibitors, but high recurrence rates and increasing bacterial 

resistance against the standard antibiotics strongly limit the eradication (Malfertheimer et al, 

2017). Development of resistant H. pylori can be related to improper use of the antibiotics, a 

short half-life time of the used antibacterial agents in the gastric compartment and also to the 

fact that the antiproliferative effects of these drugs is suboptimal against H. pylori which are 

mostly hidden in the mucus layer of the stomach, which is not easy to be penetrated by most 

antibiotics. It has to be pointed out that World Health Organization (WHO) lists clarithromyc in-

resistant H. pylori with a high priority for development of new antibiotics (WHO, 2017). 

Most H. pylori-positive patients remain asymptomatic, but the infection is associated with an 

increased risk for peptic ulcer diseases, adenocarcinoma, and gastric lymphoma. Thus, in 1994, 

the WHO classified this bacterium as a group I carcinogen (International Agency for Research 

on Cancer IARC 1994). 65 to 80 % of gastric cancers are reported to test positive for H. pylori 

in non-cardia cancers (Helicobacter and Cancer Collaborative Group 2001; Sitarz et al. 2018), 

emphasising the pathogenicity of this bacterium.  

Interestingly, recent reports have indicated that H. pylori in the gastrointestinal system can 

interact with orally administered drug medication. For example, levodopa, used for the 

treatment of Parkinsons’s disease can be bound to outer membrane proteins of the bacterium, 

thus reducing the amount of the drug and therefore changing bioavailability and 

pharmacokinetics in H. pylori-positive patients (Niehues and Hensel 2009; Narożańska et al. 

2014).  Thus, novel treatment strategies or innovative drug delivery systems are required. 

Outer membrane proteins (OMP), the so-called adhesins of H. pylori, are responsible for the 

specific recognition of the host cells and for the subsequent adhesion (for review see Ansari 

and Yamaoka, 2019). OMPs interact also specifically with the extracellular polymers of the 

mucin layer, anchoring the bacterium into the pH neutral area of the stomach. Adhesins can be 

targeted within new and innovative antiadhesive and cytoprotective strategies against the 

infection. 

Initiation of the infection is mediated by bacterial recognition and adherence to the gastric 

epithelium, thus, antiadhesive compounds that inhibit this crucial docking process can be a 

promising and new approach.  
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Anti-adhesive compounds present a promising alternative for the prophylaxis and protection 

against H. pylori infections as they intervene in the first step of the development of its 

pathogenicity. However, the removal of already attached bacteria from the host cells is in 

general not possible solely under this approach. Thus, an antiadhesive strategy can only be 

considered for prophylaxis or for cytoprotection against recurrent H. pylori infections, but until 

now, no clear alternative to the current standard eradication regimen has been described. On 

the other hand, antiadhesive treatment could prevent new infections or recurrence, which is still 

a big problem in H. pylori clinical treatment, even after positive eradication therapy. For this, 

new strategies and targets should be considered, using innovative formulations, which increase 

the residence time of the antibacterial drug cargo in the stomach by interaction with the mucus 

layer, specifically interacting with bacterial virulence factors (Menchicchi et al. 2019). Previous 

studies have shown that both anionic polysaccharides such as dextran sulfate and cationic ones 

such as chitosan can interact with mucins (Menchicchi et al. 2015a) and some of these can also 

modulate adhesive interactions with H. pylori (Menchicchi et al. 2015b). 

Historically, the identification of antiadhesive compounds against H. pylori is based on the 

initial findings on the antiadhesive properties of 3′-sialyllactose (Mysore et al. 1999). 

Unfortunately, this compound failed to prevent bacterial colonization of the human stomach in 

a clinical pilot study (Parente et al. 2003), because of a rapid degradation of the compound 

under physiological conditions in the stomach. The search for other antiadhesive compounds 

has yielded peptides (Niehues et al. 2010), N-phenylpropenoyl-L-amino acids (Hensel et al. 

2007), polyphenols (Shmuely et al. 2004; Wittschier et al. 2007, 2009), and polysacchar ides 

that interact specifically with carbohydrate-binding, lectin-like OMPs of H. pylori (Gottesmann 

et al. 2020); for review see (Menchicchi et al. 2015b). Interestingly, some antiadhesive, pectin-

like polysaccharides additionally exert mucoadhesive properties (Gottesmann et al. 2020). This 

leads to the hypothesis that these polyfunctional compounds can in an initial first step stick to 

the mucus layer of the stomach, followed by mucus-penetration; subsequently the 

polysaccharide can get into physical contact with H. pylori, which in most cases are hidden in 

the pH-neutral mucin layer, followed by binding to the polysaccharide-sensitive OMPs (e.g. 

BabA, SabA, LPS). This again leads to the inhibition of the specific recognition and interaction 

with the eukaryotic host cell. This concept of combined mucoadhesive-antiadhesive compounds 

has recently led to the development of dextran sulfated nanocapsules, which inhibit the adhesion 

of H. pylori to human stomach cells under in vitro conditions. Follow-up studies in our group 

have pinpointed mucoadhesive and antiadhesive properties of a special apple pectin. To explore 

the potential of this rhamnogalacturonan, the present study aimed to evaluate the potential 
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performance of pectin-coated, antibiotic-loaded liposomes to interact with mucin, bind to H. 

pylori, release the antibiotic cargo and inhibit the bacterial adhesion to the host cells. From our 

point of view, such “smart” liposomes can provide an effective, cheap and innovative way for 

improved treatment of H. pylori infections. Therefore, the present study describes an effective 

technology for a multi-functional “smart” drug delivery system, which interacts specifica l ly 

with the pathogen and releases a bactericidal drug in its direct surrounding so that the antibiot ic 

dosage can be reduced. For this purpose, amoxicillin- loaded liposomes, coated with a 

negatively charged pectin have been developed. 
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Materials and Methods 

Solvents, reagents, general experimentation procedures 

If not stated otherwise, solvents, reagents, and consumables were obtained from VWR 

(Darmstadt, Germany, now Merck) or Merck KGaA (Darmstadt, Germany). Apple pectin 

(degree of esterification 38 %) was obtained from Carl Roth (Karlsruhe, Germany). Analyt ica l 

characterization of the pectin was performed according to the methodology described elsewhere 

(Sehlbach et al. 2013; Herrmann et al. 2012). Sheep blood (defibrinated) was obtained from 

Oxoid (Wesel, Germany), fetal calf serum (FCS) was from Merck (Berlin, Germany). 

 

Preparation of liposomes 

Liposomes were prepared by thin-film hydration method, as described by (Weissman et al. 

1965). Lecithin, cholesterol and didodeclydimethylammonium bromide (DDAB) (40:80:20) 

were dissolved in 6 mL chloroform/methanol (1:1, v/v). The organic solvent was evaporated by 

a rotavapor (150 mbar, 40 °C). The formed dry lipid film was resuspended in 10 mL phosphate 

buffered saline (PBS) and stirred in a water bath for 30 min at 40 °C. Finally, the liposomal 

suspension was sonicated for 30 min in an ultrasonic bath (Bandelin Sonorex RK102H, 

Bandelin, Berlin, Germany). The so formed uncoated liposomes (UCL) were dialysed 

(cellulose membranes, molecular weight cut off MWCO 300 kDa, Spectrum, Laguna Hills, 

USA) for 24 h against Aqua Millipore® (Merck, Darmstadt, Germany) and their size 

distribution and zeta-potential were characterised (see below). UCLs were stored at 2 to 8 °C 

for further use.  

Coating of liposomes: UCL were coated with apple pectin solution (2 mg/mL) in a ratio of 1 of 

liposome suspension and 5 parts of the pectin solution (v/v). UCL suspension was added 

dropwise to the coating solution under continuous stirring (450 rpm). The resulting coated 

liposomal suspension (CL) was sonicated for further 15 min. To prove the successful coating, 

the size and zeta potential of CL were characterised (see below). 

The absolute mass of the liposomes in suspension was determined by a gravimetric method. 

Briefly, 20 µL of the dispersion was transferred into a micro weighing vessel and dried at 80 °C 

for at least 4 h. For every liposomal suspension, a technical triplicate was performed. 

Drug loading of liposomes: For drug loading of liposomes, the liposomes were prepared as 

described above, with a modified resuspension step. Instead of using only PBS for the hydration 

process, PBS containing 100 µM amoxicillin was used, thus resulting in the formation of 

uncoated-amoxicillin liposomes (UCL_A) and coated-amoxicillin liposomes (CL_A).  
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Fluorescence labelling of liposomes: UCL and CL were labelled with the fluorescence dye 1,1-

dioctadecyl-3,3,3,3-tetramethylindodicarbocyanin (DiD, Thermo Scientific, Waltham, USA) 

(0.047 mM). Due to the lipophilic properties of DiD, the dye was incorporated into the 

hydrophobic phase of the liposomes after the addition of the dye to the organic solvent. The 

liposome preparation and the respective characterisation was performed as described above. In 

order to confirm the successful incorporation of DiD into the lipophilic part of the liposomes, 

free DiD was separated from the embedded dye by ultrafiltration (30 min, 12,000 × g) using 

Vivaspin® 500 centrifugal concentrators (MWCO 30 kDa, Sartorius, Göttingen, Germany). 

Unbound DiD that passed through the membrane of the Vivaspin® was determined by 

fluorescence spectroscopy.  

 

Determination of size distribution and zeta potential 

The size (hydrodynamic diameter) and the polydispersity index (PDI) were determined by 

dynamic light scattering with non-invasive back scattering (DLS-NIBS) at an angle of 173°, 

and the effect of the coating on the surface charge was determined by measuring the zeta 

potential by mixed-laser Doppler electrophoresis and phase analysis light scattering (M3-

PALS). Both measurements were acquired using a Malvern Zetasizer Nano ZEN 3600 

(Malvern Instruments, Malvern, UK) at 22 °C fitted with a laser output of 4 mW He/Ne 

operating at λ = 633 nm. Ten microliter of the test suspension were diluted with 990 µL Aqua 

Millipore®. The Zetasizer Software 7.13 was used to compute the Z-average hydrodynamic 

diameter and PDI by processing the correlograms and fitting the corresponding autocorrelat ion 

function.  

 

Encapsulation efficiency (EE) of amoxicillin (by UPLC) 

Non-encapsulated amoxicillin was separated from 500 µL of liposomal suspensions UCL_A 

and CL_A by Vivaspin® 500 (MWCO  30 kDa) centrifugal concentrators (2  30 min, 12,000 

× g). Free amoxicillin that passed through the membrane of the Vivaspin® was quantified by 

UPLC. UPLC settings: Acquity™  Ultra Performance LC (Waters Milford, USA); stationary 

phase: HSS T3, 1.8 µm, 2.1 × 100 mm, 40 °C; mobile phase: binary gradient of (A) 0.1 % 

formic acid in water and (B) 0.1 % formic acid  

in acetonitrile, run time: 15 min, flow rate: 0.4 mL, λmax = 254 nm. 

 

The EE was calculated as: 
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Encapsulation efficiency [%] = 
𝑇𝑜𝑡𝑎𝑙𝑎𝑚𝑜𝑥 -𝐹𝑟𝑒𝑒𝑎𝑚𝑜𝑥𝑇𝑜𝑡𝑎𝑙𝑎𝑚𝑜𝑥  × 100 

 
 

In vitro release study of amoxicillin 

For characterization of the drug release from the liposomal delivery system, UCL_A and CL_A 

were incubated at 37 °C under shaking conditions (600 rpm) over 24 h in AGS cell culture 

medium. After different time intervals (15 min, 30 min, 1 h, 2 h, 4 h, 6 h and 24 h), samples 

were centrifuged at 20,000 × g for 16 - 18 h at 17 °C to separate liposomal components. The 

respective supernatant was used for quantification of released amoxicillin using UPLC (see 

above). 

 

Stability of liposomes 

UCL, CL, UCL_A and CL_A were stored in aliquots over three months at different 

temperatures (8 °C, room temperature (RT, 20 - 25 °C), and 37 °C). Every 4 weeks the size, the 

PDI and the zeta potential were determined. 

Furthermore, the stability of UCL_A and CL_A in simulated gastric fluid (SGF, pH 1.2; 0.2 g 

NaCl, 0.32 purified pepsin (activity 800-2000 U/mg protein), 0.7 mL HCl, ad 10 mL water, 

adjust pH with hydrochloric acid) was tested over 24 h. Ten microliters of each suspension were 

mixed with 990 µL SGF and incubated for 1, 2, 3, 4, 6, and 24 h at 37 °C under shaking (300 

rpm), followed by determination of particle size and PDI. 

 

Cell culture 

Human adherent gastric adenocarcinoma epithelial cells (AGS, ATCC CRL-1739™) were 

cultivated as described by Messing et al. (2014). HT29-MTX-E12 mucus-secreting epithelia l 

cells (ECACC 12040401) were kindly donated by Prof. Dr. K. Langer (University of Münster, 

Germany) and cultivated at 5 % CO2, 37 °C in HT29-MTX cell culture medium (Dulbecco’s 

Modified Eagle’s MediumDMEM 500 mL, FCS 10 % (v/v), Pen/Strep 1 %, gentamycin 1 % 

(v/v), non-essential amino acids 1 % (v/v).  In case of HT29-MTX-E12 cells, experiments were 

carried out by either using 24 h cultured cells (exponential growth phase) or using 2 weeks old 

cells (confluent mucus-secreting monolayers).  

 

Determination of cell viability 
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The cytotoxic influence of liposomes on AGS cells and HT-29 MTX cells was determined by 

a colorimetric assay for assessing cell metabolic activity by use of 3-(4,5-dimethylthiazol-2-

yl)-2,5-diphenyltetrazolium bromid (MTT) (Mosmann 1983) with minor modifications to avoid 

decomposition of the liposomes, as the used surfactant DDAB, used for liposome preparation, 

interferes with eukaryotic cell membranes. The liposomal suspensions were diluted in 

Dulbecco’s phosphate buffered saline (PBS) with Ca2+ and Mg2+ (PBS+/+) instead of the non-

supplemented medium-/-, and the incubation time of the AGS cells with the test samples was 

reduced to 2 h.  

 

Bacteria growth conditions, fluorescent-labelling 

H. pylori J99 (ATCC 700824, identification for quality control by PCR for vacA, accession 

number AAD06400, and cagA, accession number AAD06073), were cultivated according to 

Messing et al. (2014) for two or three passages to minimise the risk of phase-variable switching 

of OMP genes. Bacteria were grown under microaerophilic conditions on tryptic soy agar 

supplemented with 5 % defibrinated sheep blood for 48 h at 37 °C. Labelling of H. pylori with 

fluorescein isothiocyanate (FITC) was performed as described by Messing et al. (2014). 

Standard cultivation was routinely performed at 10 % CO2, while test assays were performed 

at 5 %. CO2. This reduced CO2 concentration did not influence the viability of H. pylori J99, as 

the assay duration under these conditions was maximum 90 min. Additionally, these changed 

conditions will not have an influence on the outcome of the results, as all measured values were 

related to the untreated controls, which had been treated the same way as the test samples. 

 

Determination of cytotoxicity against H. pylori (agar diffusion test) 

Agar grown bacteria were harvested and suspended in PBS. This suspension was adjusted to an 

OD550 of 0.2 and spread on an agar plate. The inoculated plate was zoned into 4 to 5 areas. One 

BD Sensi-Disk® (BD Biosciences, Heidelberg, Germany) was placed in the middle of each 

zone. Twenty microliters of an amoxicillin solution (2.5 µg/mL) served as positive control. 

Incubation time was 72 h under microaerophilic conditions. 

 

Mucin interaction study by microviscosimetry (Menchicchi et al. 2014) 

Preparation of mucin solution: Pig gastric mucin type III (Merck KGaA, Darmstadt, Germany) 

was purified as described elsewhere (Menchicchi et al. 2014). Briefly, mucin powder was 

hydrated in ultrapure water (30 mg/mL) under vigorous stirring for 12 h at RT. Insoluble 

https://en.wikipedia.org/wiki/Di-
https://en.wikipedia.org/wiki/Di-
https://en.wikipedia.org/wiki/Thiazole
https://en.wikipedia.org/wiki/Phenyl
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particles were removed by centrifugation (30 min, 18,000 × g, 15 °C). The supernatant (soluble 

mucin) was used for all further experiments. 

Preparation of polysaccharide-mucin mixtures: The relative viscosity (ηrel) of polysacchar ide 

test solutions and a mucin solution was determined at 37 °C using an automated rolling ball 

microviscometer AMVn (Anton Paar, Ostfildern, Germany) with an inclination of 50 °.  

Solutions were diluted to a  ηrel  of ~ 2.0  (stock solutions). To achieve different composition 

ratios for the mass fraction of mucin relative to the total mass (ƒ), the stock solutions of 

polysaccharide and mucin were mixed in respective proportions in the range from 

ƒ = 0 (only polysaccharide) to ƒ = 1 (only mucin). The resulting polysaccharide - mucin 

mixtures were allowed to equilibrate at 37 °C for 20 min by gentle shaking (400 rpm).  

Viscosity of polysaccharide-mucin solutions: The dynamic viscosity of the different composed 

mixtures was determined as described above. To assess the potential interaction between the 

polymers, a theoretical additive line (line of no interaction) (Hassan and Gallo 1990; Goycoolea 

et al. 1995) was calculated according to (Menchicchi et al. 2014). The difference between the 

theoretical viscosity and the viscosity determined experimentally (ηexp(ƒ)) was expressed as a 

percentage deviation from the line of no interaction (Menchicchi et al. 2014):  

Deviation [%] = 
ηt(ƒ)-ηexp(ƒ)

ηt(ƒ)
 × 100. 

Interaction of liposomes with HT-29 MTX cells 

To investigate the interaction between liposomes and mucus in an in vitro model, the mucus-

secreting cell line HT29-MTX was used. The development of this assay was inspired by 

(Adamczak et al. 2016). HT29-MTX cells were cultivated for 7 days in a black 96-well plate 

with a transparent bottom. The cell culture medium was changed every day. Seven days after 

the formation of a substantial mucus layer, the cells were washed with 200 µL PBS/well and 

with 200 µL Hanks’ Balanced Salt Solution (HBSS) per well. Subsequently, 100 µL DiD-

labelled liposomes (coated and uncoated, concentration 0.01 to 1 mg/mL) were added per well 

and incubated for 2 h at 37 °C, 60 rpm, under direct light exclusion. After 2 h, the test 

dispersions were removed and each well was washed with 200 µL HBSS to remove 

non-interacting liposomes to exclude false positive interaction between the mucus layer and the 

liposomes. The interaction was determined by fluorescence (λex = 646 nm, λem = 678 nm). Cell-

free wells, incubated with fluorescence- labelled liposomes, served as negative control to 
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monitor the adhesion of the liposomes to the abiotic surface. The relative mucus-interac t ion 

was calculated as follows: 

Relative mucus-interaction [%] = [F1

F0
 × 100]-[FA

F0A
 x 100] 

F1 fluorescence of liposomes interacting with mucus (after incubation and  

 after washing) 

F0  fluorescence of liposomes in wells with cells before incubation 

FA  fluorescence of liposomes in wells without cells after incubation and after washing 

F0A  fluorescence of liposomes in wells without cells before incubation 

Fluorescence microscopy 

FITC labelled H. pylori J99 (OD550 = 0.1 in PBS) were added to DiD-labelled UCL and CL in 

a ratio of 1:4000. Five microliter of FITC-labelled bacteria, 5 µL of DiD-labelled liposomes, 

and 5 µL of the bacteria-liposome composition were mixed with 5 µL of Fluoromount™  

mounting medium (Sigma Aldrich, St. Louis, USA). The suspension was transferred onto 

microscopy glass slides, which had been thoroughly cleaned with EtOH, and then sealed with 

a coverslip and nail polish. Microscopy samples were analysed by a Keyence BZ-9000 

fluorescence microscope (Kyence, Neuisenburg, Germany). Unlabelled bacteria and unlabe lled 

liposomes were prepared in the same manner to exclude auto-fluorescence of the samples. 

Confocal laser scanning microscopy (CLSM) 

Microscopy glass slides with a special microscopy 8-well chamber were coated (1 h, RT) with 

200 µL/well collagen type 1 (BD, Heidelberg, Germany) solution. Each well was washed twice 

with 200 µL PBS. Depending on the experimental design either (A) 200 µL of an AGS cell 

suspension (5 × 105 cells/mL) or (B) 200 µL of a FITC-labelled H. pylori suspension 

(OD550 = 0.3 in blocking buffer) was added to each well. 

A. The microscopy chambers containing AGS cells were incubated for 48 h at 37 °C. Cells 

were washed once with PBS+/+ and non-supplemented medium-/- was added. 

200 µL/well of FITC-labelled H. pylori suspension (optical density OD550 = 0.1 in PBS) 

were added and incubated with AGS cells (1 h, 37 °C). Non-attached bacteria were 

removed by 2  washing with 200 µL/well medium-/-. Coated and uncoated DiD-

labelled liposomes were added in a ratio of 4000 : 1 (liposomes : bacteria). Therefore, 

the liposomal suspensions were diluted with medium-/-. After 2 h incubation at 37 °C, 

unbounded liposomes were removed by washing twice with 200 µL/well PBS+/+. 
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B. Two hundred microliter of a H. pylori suspension (OD550 = 0.1 in PBS) were incubated 

on collagen coated microscopy glass slides for 1 h at 37 °C. Prior to the addition 

of DiD-labelled liposomes (4000 : 1), each well was washed with 200 µL medium-/- to 

remove unbounded bacteria. The liposomes were incubated with the bacteria for 2 h at 

37 °C and subsequently washed with 200 µL PBS+/+. 

 

For fixation of the samples, 200 µL of a paraformaldehyde solution (4 %) were added (15 min, 

RT). After 2 washing steps with 200 µL PBS+/+, cells were stained for 30 min at RT in the dark 

with DAPI (1 µg/mL). Before the samples were covered with cover glasses, each well was 

washed again twice with 200 µL PBS+/+ to remove unbounded dye. The microscopy chamber 

was removed carefully and the glass slide was washed once with Aqua Millipore® (Merck, 

Darmstadt, Germany). Once the slide was dry, Mowiol 4-88 served as mounting medium and 

was placed dropwise on every sample well, before the cover slide was put on. The preparations 

were kept overnight in the dark at 2 - 8 °C. 

Microscope:  LSM 800 with airyscan (Carl Zeiss, Jena, Germany) equipped with the objective 

Plan-Apochromat x63/1.4 oil; Microscopy slide: μ-slide 8well (Ibidi, Martinsried, Germany). 

Excitation and emission wavelengths  [nm]: DAPI 405, 420-480; DiD 633, 665; FITC 488, 

500-580. 

 

Statistical analysis 

Results are expressed as mean value (MV) ± standard deviation (SD).  Mean values were 

compared by a one-way ANOVA test followed by a Tukey’s test for multiple comparisons. A 

p-value < 0.05 compared to the negative control was considered statistically significant. IC50 

values were calculated with GraphPad Prism® Vers. 7 (GraphPad Software, Inc., La Jolla, 

USA). 

 

Results 

Preparation and characterisation of liposomes 

Liposomes were prepared by hydration of a lipid film and subsequent extrusion (Weissman et 

al. 1965). For this, a lipid film, composed of soy lecithin, cholesterol (for improvement of 

stability and reduced permeability of water-soluble molecules through the liposomal 

membrane) and DDAB was prepared by controlled evaporation of the chloroform/methano l 

solvent. Upon the addition of the aqueous dispersion medium (PBS), a liposomal suspension 
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was formed, from which after sonication homogenous, cationic DDAB liposomes were 

obtained (Supplementary Data Fig. S1). In the following sections, this preparation was named 

as UCL. 

To obtain mucoadhesive liposomes with a conferred specific affinity against BabA of H. pylori, 

UCL were coated with apple pectin.  The pectin was characterised by a galacturonic acid 

content of 84 %, degree of acetylation of 0.4 % and a degree of methyl ester content of 12.4 % 

using standard methods of polysacharide chemistry (Sehlbach et al. 2013; Herrmann et al. 

2012). The full characterisation data (neutral and acidic carbohydrates, molecular weight, 

protein content, linkage analysis) are summarized in Supplementary Table S1. Using this 

polysaccharide for UCL coating, so-called CL were prepared. Additionally, amoxicillin was 

encapsulated either in UCL or in CL (named in the following as UCL_A or CL_A). Table 1 

summarises the physicochemical properties of the so obtained liposomal formulations. 

Both CL and CL_A had an appreciable higher hydrodynamic diameter (≥ ~500 nm) compared 

to UCL and UCL_A (≥ ~150 nm), thus reflecting the presence of the polymeric coating. 

Furthermore, inversion of charge was observed from positively charged UCL to negative ly 

charged CL after covering the particles with the anionic rhamnogalacturonan. The PDI of UCL 

and CL was ≤ ~ 0.3, indicating a homogenous particle distribution (Dragicevic-Curic et al. 

2008; Danaei et al. 2018).  

Similar tendencies were obtained for DiD-labelled UCL and CL formulations used for further 

fluorescence microscopic investigations (Table 1). The so obtained particles were named in the 

following as UCL_DiD and CL_DiD.  As expected, the size of the liposomes increased from 

~140 nm to about ~430 nm after coating, while the respective PDI remained ≤ ~0.3 in both 

cases. Additionally, the surface charge changed from positive (+ 43.4 ± 5.0 mV for UCL_DiD) 

to negative (- 24.1 ± 0.9 mV for CL_DiD) values.  

After labelling with DiD, the liposomes were, as expected, blue coloured. In order to confirm 

the successful association of DiD into the lipophilic part of the liposomes, free DiD was 

removed by ultrafiltration. Subsequently, the fluorescence within the remaining liposome pellet 

and the filtrate solution was quantified (data not shown), indicating that DiD has been 

incorporated completely into the liposomal formulations. 

 

Stability of liposomes 

In order to evaluate the short-time stability of liposomes during storage, the particles were 

stored over 3 months at different temperatures (8, 25 and 37 °C). As displayed in the 

Supplementary Fig. S2 and S3, uncoated liposomal formulations did not show any relevant 
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changes over the test period. The hydrodynamic diameter of UCL remained constant over the 

storage time (range 125 to 135 nm). The size of the corresponding amoxicillin- loaded liposomes 

was in the range of 140 to 160 nm. PDI for both, uncoated and coated formulations was ≤ 0.2 

and the zeta potential remained stable over the storage time (range about + 50 ± 5 mV).  

For pectin-coated liposomes the respective particle size was slightly affected by the three 

months storage period, while no noticeable changes of PDI (≤ 0.3) and zeta potential (- 32 ± 5 

mV) were observed. After one month of storage at 8 °C, the size of CL increased from 400 to 

430 nm (+ 7.5 %), while the size of CL_A increased from 410 to 470 nm (+ 14.6 %). After 

further storage at 8 °C, the liposome sizes decreased (CL after 3 months storage: 380 nm; 

CL_A: 440 nm). Storage at RT or 37 °C resulted in a constant, but moderate decrease of size 

over the 3 months period, which might be due to the coating solution being partially sheared 

off.  

Furthermore, changes in the size of UCL_A and CL_A liposomes during incubation in SGF 

were determined by an in vitro assay to infer about the potential stability of the liposomal 

formulations in the gastrointestinal tract. As displayed in Fig. 1 the size and the respective PDI 

of UCL_A were not affected by the simulated gastric conditions over 24 h of incubation. 

However, the size of CL_A decreased within 60 min from 520 to 480 nm. Within 24 h the 

particle size of the coated formulation was reduced to 300 nm, while the PDI simultaneous ly 

increased, indicating liposomal decomposition.  

 

 

Encapsulation efficiency (EE) and in vitro release of amoxicillin 

For determination of the concentration of amoxicillin incorporated into the formulat ion, 

non-encapsulated, free amoxicillin was separated from the liposomes by ultrafiltration and was 

quantified by UPLC at λ = 254 nm against external calibration. EE was calculated from the 

difference in the total amount of amoxicillin used for manufacture of the liposomes and the 

amount of non-encapsulated, free amoxicillin, removed from the liposomes by ultrafiltrat ion. 

The determined amoxicillin EE values for UCL_A and CL_A were 66 and 83 %, respectively.  

Subsequently, the in vitro release of the drug from the liposomes was determined by referring 

the data to their respective EE. Uncoated (UCL_A) and polymer coated (CL_A) amoxicill in 

delivery systems are characterized by an initial burst release profile (Supplementary Data Fig. 

S4). After 1 h, UCL_A released 85 % of the total drug cargo, followed by a plateau. 85 % 

release of UCL_A referred to 66 % EE corresponds to 56.1 µM amoxicillin. Coated 

formulations released about 75 % of the encapsulated amoxicillin after 60 min. Within this 
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time, CL_A also reached a plateau of release. The maximal release of CL_A corresponds to 

62.3 µM amoxicillin.  

Concluding, CL_A released ~10 % more amoxicillin compared to UCL_A, even though the 

curves in Supplementary Data Fig. S4 may seem to indicate a higher amoxicillin release of 

UCL_A. In fact, the observed differences lied within the experimental error of the 

determination. 

 

Influence of liposomes on viability of HT29-MTX and AGS cells 

The different liposomal formulations were investigated for their influence on the viability 

(Mosmann 1983) of human gastric AGS cells and human intestinal, mucin-secreting HT29-

MTX cells (Lesuffleur et al. 1993). 

Independent of the amoxicillin´s EE, uncoated and coated liposomes showed similar results on 

the viability of AGS cells (Fig. 2). A concentration of 0.5 mg/mL UCL and UCL_A 

significantly reduced the cellular viability to ~ 60 %, while liposomes at lower concentrations 

(0.01 and 0.1 mg/mL) had no influence on viability. A similar result was also obtained for CL 

and CL_A. It was observed that coating of the particles with the polysaccharide resulted in a 

slightly reduced decrease of cell viability compared to the uncoated formulations (≥ 70 % cell 

viability for 0.5 mg/mL CL and CL_A). Thus, for all further experiments liposomes 

concentrations < 0.5 mg/mL were used. 

Fig. 3 displays the influence of the different nanocarriers on the cell viability of HT29-MTX 

cells. Different stages of growth of HT29-MTX cells were studied. Considering the init ia l 

exponential growth phase of the cells (Fig 3A), none of the liposomal formulations at 

≤ 0.1 mg/mL did exert cytotoxic effects. Concentrations ≥ 0.5 mg/mL reduced the viability 

significantly. Testing amoxicillin loaded and unloaded UCL and CL in a concentration range 

of 0.01 to 1 mg/mL on mucus-secreting HT29-MTX cells (Fig 3B) did also not provoke 

significant cytotoxic effects, except for UCL and CL_A at a concentration of 1 mg/mL. 

 

Direct cytotoxicity of liposomes against H. pylori 

In order to evaluate the different lipidic nanocarrier systems in regards to their potential 

cytotoxic effects against H. pylori, disk diffusion assay was performed. UCL_A and CL_A 

were tested in a concentration range of 1 mg/mL to 0.01 mg/mL. For both formulations, a 

concentration-dependent effect on bacterial growth was observed. The zone of inhibit ion 

determined was comparable for both, coated as well as for uncoated formulat ions 

(Supplementary Data Table S2). 
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No cytotoxic effects were observed for the antibiotic-free liposomes UCL and CL.  As expected 

amoxicillin- loaded liposomes provoked a concentration-dependent inhibition of H. pylori.  

 

Interaction between liposomes and mucin 

Stomach epithelial cells are covered by a mucus layer. H. pylori is able to penetrate and cross 

this viscous mucus layer of the gastric mucosa rapidly to reach the pH-neutral epithelium 

surface below the mucus layer, so that the pathogen can escape the acidic environment of the 

stomach and can interact with the stomach epithelia cells (Algood and Cover 2006).  

To investigate if the liposomes are able to interact with the mucus, and thus reach the dormant 

H. pylori located in the mucus layer or on the host cell surface, the potential interaction between 

the nanoparticles and mucus was examined. To this end, both soluble mucin from porcine 

stomach and mucus secreted by HT29-MTX cells, were incubated during two hours with the 

liposomal formulations and the changes in size and zeta potential were evaluated.  

Fig 4 displays changes in size and zeta potential resulting from the interaction between porcine 

mucin and amoxicillin- loaded liposomes. The corresponding values are displayed in the 

Supplementary Table S3. Within protocol 1 the liposomal suspensions were mixed at room 

temperature with a mucin solution (0.4 mg/mL) in a ratio of 1:1 (v/v) (Fig. 4A, B), followed by 

determination of the size and the zeta potential. In the second protocol 2, UCL_A and CL_A 

were incubated with 0.2 mg/mL mucin solution (ratio 1:1) for 2 h at 37 °C under gentle shaking 

(Fig 4C, D) to mimic the physiological conditions prior to the determination of physicochemica l 

properties by DLS.  

Both protocols indicated similar tendencies. Using protocol 1, the size of UCL_A increased 

from 151 to 624 nm. Within protocol 2, the size increased from 160 to 404 nm. For CL_A the 

initial size was already ~500 nm. After mixing CL_A with artificial mucin solutions, the size 

increased in both protocols to ~ 710 nm, which means an increase by a factor of 1.4. 

Interestingly, the PDI from UCL_A doubled after incubation with mucin in both protocols, 

while the PDI for CL_A remained stable.  

Besides the size and PDI, the changes in the zeta potential were pronounced. Mucin is 

negatively charged at neutral pH and the saccharide chains of mucin polymers are characterised 

by a high amount of sialic acid (pKa ~ 2.6) and sulfate (pKa ~ 1) (Waigh et al. 2002), while 

glutamic and aspartic acid residues are present in the protein backbone (pK a ~ 4) (Cao et al. 

1999). The zeta potential of the mucin was determined with - 15 mV. Irrespective of the 

protocol performed, the surface charge of UCL_A was strongly reduced after contact with the 

different mucin preparations from ≥ + 40 mV to ≤ +10 mV. For CL_A the zeta potential 
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changed by ~50 %. After incubation with mucin, the negatively charged CL_A showed a zeta 

potential of -16 mV, which is similar to that of the pure mucin solution used. Essentially similar 

results were obtained regardless of the used protocol. 

In summary, contact of UCL_A or CL_A with porcine mucin resulted in a notable increase of 

size and a pronounced change of the zeta potential, both results providing unequivocal evidence 

of an interaction between both partners.  

Subsequently, an in vitro model with HT29-MTX cells was used to study potential 

mucus-interacting properties of the liposomal formulations. This model allows the 

measurement of interactions between human cellular mucus, secreted from HT29-MTX cells 

and fluorescently labelled UCL and CL. (UCL_DiD and CL_DiD). Fig. 5 represents the 

interaction between HT29-MTX cells and different concentrations of DiD-labelled UCL and 

CL. As expected, the positively charged UCL_DiD interacted in a concentration-dependent 

manner with the HT29-MTX mucus. In addition, the negatively charged CL_DiD showed clear 

interaction with the mucins in a concentration-dependent manner, although not as intensive ly 

as determined for UCL_DiD. Comparing both formulations, CL_DiD interacted ~50 % less 

with the mucus than UCL_DiD at all concentrations used.  

 

Interaction study between liposomes and H. pylori 

To achieve a specific targeting of H. pylori by the liposomes, an interaction between the drug 

delivery system and the pathogen is a prerequisite. Fluorescence microscopic investigat ions 

were performed to determine if a specific targeting can be obtained by the liposome particles. 

The necessity of the coating with pectin was of particular interest, as it is known that the 

rhamnogalacturonan strongly and specifically interacts with the bacterial surface via BabA and 

LPS (Gottesmann et al. 2020).  

In order to obtain an estimate on a possible interaction between the pectin-coated liposomes 

and H. pylori fluorescence microscopy imaging was performed, using DiD-labelled UCL and -

CL together d with FITC-labelled H. pylori.  Fig. 6 displays representative fluorescence images 

of bacteria in combination with the liposomes. FITC-labelled bacteria get obvious as green-

coloured spots, while DiD-labelled liposomes are coloured in red. Co-localisation of liposomes 

together with bacteria should result in typical yellow colour. As expected, the combination of 

UCL_DiD together with bacteria revealed no specific interaction between pathogen and 

liposomal formulations, as only individual red and green spots were detected. In contrast, 

mixtures of CL_DiD and H. pylori revealed yellow spots, evidencing co-localisation and thus 

supports the assumption of a direct interaction between pectin-coated liposomes and bacteria. 
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More detailed investigations on the interaction between the liposomes and H. pylori were 

performed using confocal laser scanning microscopy (CLSM) using two different protocols. 

Under the first one, AGS cells were directly grown on microscopy slides and incubated with   

FITC-labelled H. pylori, followed by incubation with DiD-labelled UCL and CL. Fig 7 displays 

representative orthogonal projection CLSM images obtained during this experiment. In case of 

UCL no co-localisation between bacteria and liposomes was observed, as the fluorescence 

signals of liposomes and H. pylori are clearly separated. In contrast, bacteria, which had been 

incubated with CL, showed a mixed yellow colour, thus indicating an interaction between 

pectin-coated liposomes and H. pylori, attached to the AGS cells. These findings are in 

alignment with the previous insights obtained by the conventional wide-field microscopy. 

 

Optical sectioning was used to generate a three dimensional image of the specimen, which 

clearly confirmed the above described results, as co-localisation of liposomes and bacteria was 

only observed in case of CL formulations; uncoated liposomes did not at all interact with H. 

pylori (Fig. 8). 

Under the second protocol (Fig 9) no interaction of UCL with the bacteria were detected: After 

a 2 h incubation of H. pylori together with UCL and removal of unattached liposomes, no red 

colour was visible, indicating the absence of any interaction. In contrast, under identical assay 

conditions, the red-dyed CL could be clearly detected and presented the same shape as the blue -

dyed bacteria. Consequently, a direct interaction between CL and H. pylori was obvious. 

 

 

  

Discussion 

Liposomes are sphere-shaped aqueous-core vesicles consisting of one or more lipid bilayers, 

with phospholipids (e.g. lecithin in our study) as building blocks. In order to modulate lipid 

composition and charge cholesterol and the quaternary ammonium DDAB had been embedded 

into the lipid bilayer. The addition of cholesterol reduces the permeability of the lipid bilayer 

and increases fluidity and stability of the membrane (Guyer and Bloch 1983). The addition of 

DDAB results in a positively charged particle surface, interacting more effectively with the 

negatively charged pectin. The successful coating was demonstrated by an increase in size and 

inversion of charge compared with UCL.  

Charged liposomes, positively or negatively, have several advantages compared to neutral 

liposomes. The lack of surface charge (neutral liposomes) increases the aggregation and 
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flocculation of liposomes, as their physical stability is reduced. Thus, surface characterist ics 

have a great impact on the stability of liposomes. In the literature, positive or negative zeta 

potential ≥ 30 mV have been reported to be sufficient for electrostatically stabilised suspensions 

(Cho et al. 2000). Within the present study, the stability of liposomes was monitored by 

controlling the physicochemical properties, such as size, PDI, and zeta potential. The liposomal 

formulations prepared within this study had cationic (uncoated) or anionic (coated) surface 

characteristics.   Ideally, liposomes are designed to be stable during systemic circulation until 

they reach the target site (e.g., in cancer therapy). Upon interaction with the appropriate 

compartment in the target cells, the cargo should be rapidly released. In the case of liposomal 

formulations targeted to H. pylori, the stomach is the site of action. Therefore, an oral 

administration of the liposomes is to be preferred, as the formulation directly reaches the gastric 

environment. The stability of the liposomal formulations in the stomach was confirmed by 

assessing their size during incubation in simulated SGF. Interestingly, the uncoated system was 

stable under these acidic conditions over a 24 h period, while the coated liposomes showed a 

significant decrease in size and an increase in PDI after 2 h. We assume that under the acidic 

conditions and in the presence of pepsin, the pectin coating is sheared off from the lipid bilayer. 

The instability of liposomal vesicles in the gastrointestinal tract often limits the application of 

liposomal drug delivery systems as oral delivery carriers. It is known that gastric acid, bile salts 

and lipases reduce concentrations of intact liposomes and can therefore lead to uncontro lled 

cargo leakage (Rowland and Woodley 1980). On the other side bile and lipases are only relevant 

in the intestinal phase, not in the gastric area, where H. pylori is located. As the lipid bilayer 

itself was stable under the simulated gastric conditions, changes in lipid composition would 

probably not improve the stability of the pectin-coated liposomes in SGF, thus other strategies 

have to be considered. 

Nevertheless, the site of action for the liposomes targeting against H. pylori is the acidic 

stomach, thus, a release of active compound in this compartment is desirable. Active 

ingredients, either encapsulated in the aqueous core of the liposomes (hydrophilic cargo) or 

integrated into the bilayer (lipophilic active ingredient), can be released from the liposomal 

formulations via erosion of the membrane, osmotic pumping or diffusion (Fredenberg et al. 

2011). Therefore, a degradation within this environment is acceptable as it supports the release 

of the active agent. Within this study, the release of encapsulated amoxicillin from uncoated 

and coated liposomal formulates was compared. The results revealed that in total, coated 

liposomes released ~10 % more amoxicillin during a 24 h period compared to UCL. This 

apparently higher released amount of active drug, however, showed no differences regarding 
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the bactericidal activity of liposomes against H. pylori. Even though the anti-H. pylori activity 

was comparable, one reason for the increased release of amoxicillin from CL might be the 

destabilisation of the coated liposomes under acidic conditions; however, it has to be considered 

that the total EE of amoxicillin was higher and less variable in the polymer-coated system than 

in the uncoated one. It seems that the polymer coating has a positive effect on the capability of 

the liposome to encapsulate amoxicillin. It can be assumed that the polymer coating hinders a 

potential drug leakage from the inner core by forming an additional layer on the lipid 

membrane. Another reason for the greater encapsulation efficiency might be caused by the 

additional entrapment of the hydrophilic active drug into the polar pectin layer, which would 

lead to a two-staged release, initially a release of the active ingredient from the coating layer, 

followed by the release of the drug material, incorporated in the inner core. This additiona l 

embedding mechanism can be disregarded, as the in vitro release data of coated liposomes 

exhibit the same profile as that observed from the uncoated liposomes.  

Another aspect that needs to be considered during the development of liposomes is their 

biocompatibility. In the case of the liposomes, this was assessed using viability test with 

different cell lines. UCL as well as CL at concentrations ≥ 0.5 mg/mL significantly reduced the 

viability of AGS and HT29-MTX cells. This might be due to degradation of the liposomal 

systems, leading to a release of the cell toxic quaternary ammonium salt DDAB. Nevertheless, 

it has to be considered that the gastric epithelial cells are covered by a thick mucus layer, hence 

direct contact between liposomes and cells is unlikely to occur. Furthermore, the mucus layer 

forms a physical barrier and has cell-protective qualities (Cornick et al. 2015). This 

characteristic was confirmed within this study, as no cytotoxic effect on HT29-MTX cells was 

observed when their self-secreted mucus layer covered them after 7 d of cultivation. 

For a specific targeting of H. pylori, the interaction between the bacterium and the drug delivery 

system is important. For this, electrostatic interactions may also play an important role. 

(Nogueira et al. 2013) studied the effects of the gastric environment on H. pylori and showed 

that in acidic conditions the bacterium exhibits a positively charged surface (+ 20.0 mV at pH 

2.6), while with increasing pH the surface became less positively charged (+ 0.7 mV at pH 4; 

- 6.6 mV at pH 6). The stomach presents an acidic environment even though H. pylori is 

colonised, thus negatively charged nanocarrier systems would be preferred for creating 

electrostatic interactions with the bacterial cells. However, H. pylori normally increases the pH 

in its direct surrounding by means of its urease until it reaches the more or less neutral mucos a 

close to the gastric epithelial cells, where it resides. Thus, the bacterium is generally exposed 

to neutral zones, which comes along with a slightly negative surface potential. Based on these 
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findings, positively charged drug delivery systems seem to present a better option for an 

electrostatic H. pylori targeting, as is has been demonstrated in previous studies between 

chitosan-coated nanocapsules and Escherichia coli (Qin et al. 2017). Nevertheless, within the 

present study, the pectin-coated, anionic liposomes have shown a clear co-localisation with the 

bacteria as determined by fluorescence microscopy. This had not been observed in case of the 

uncoated liposomes. Electrostatic interactions alone are not sufficient for a specific interaction 

between bacteria and nanocarrier. We assume that the interaction of the rhamnogalacturonan 

from the liposome-coating with the bacterium is not mainly due to electrostatic or ionic 

interactions, but much more related to a specific carbohydrate-protein interaction with the 

carbohydrate-binding “crown” of BabA, which normally interacts with the neutral 

carbohydrates of the blood group antigene Lewis(b) (Hage et al 2015). Bardonnet et al. (2008) 

proposed that besides electrostatic interactions, the presence of cholesterol is essential for an 

interaction between liposomes and H. pylori, as a specific affinity of the bacterium to this 

steroid has been described previously (Trampenau and Müller 2003). This cannot be the 

decisive factor for a specific interaction as in the present study both systems contain cholesterol, 

while only the coated one shows a significant interaction with H. pylori. Thus, a direct 

interaction with the bacterial surface, as it was shown for pectin, seems to be critical. So far, 

published studies have used fucosyled glycolipids (Bardonnet et al. 2008), fucose-conjugated 

chitosan (Lin et al. 2013) or the lectin concanavalin A (Ramteke et al. 2008) in order to achieve 

a specific interaction with H. pylori by interacting with the BabA adhesin (fucose) or by binding 

to carbohydrates on the surface of H. pylori (lectin). A recent study also investigated AGS cell 

membranes (Angsantikul et al. 2018) as coating system for nanosystems to achieve a specific 

targeting of H. pylori. This coated nanoformulation might be highly specific for H. pylori 

infections, however, the production is laborious and possible side effects have to be considered. 

The cost efficient and biocompatible apple pectin, used in the present study, represents a 

potential alternative for specific targeting of H. pylori. It is available in large scale and does not 

only interact with the BabA adhesin, but also interferes with the LPS of the bacterium. 

Furthermore, it exerts mucoadhesive properties, which supports the targeting of bacteria in the 

gastric mucosa.  

From these experiments, evidence is consistent with a specific interaction of pectin-coated 

liposomes with surface structures of H. pylori. As the coating of the liposomes with pectin 

additionally provokes mucoadhesion to the negatively charged mucins, docking of the 

nanoparticles to stomach mucin followed by mucus penetration, recognition of and adhesion to  

H. pylori as well as release of the amoxicillin cargo, Summarizing, the mucoadhesive liposomal 
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formulation developed here presents an effective and novel type of multi- functional drug carrier 

system promising carrier system to deliver antimicrobial drugs specifically to H. pylori.  It has 

several advantages over other nanoformulations that have been published so far. However, 

further studies with the apple pectin coated liposomes are yet to be conducted, especially the 

modification of the coated liposomes with an additional chitosan layer. The anti-adhesive 

formulations could also be used to facilitate eradication quadruple therapy, by making it more 

difficult for the bacteria (in the presence of antibiotics) to hide underneath the mucus layer 

where antibiotics do not penetrate effectively, thus making them more sensitive to current 

therapeutic doses. 
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Figures and Table Captions 

 
Captions to Figures 

 

 

Fig 1 Stability of (A) uncoated, amoxicillin loaded liposomes (UCL_A) and (B) coated, 

amoxicillin loaded liposomes (CL_A) in simulated gastric fluid (SGF; pH = 1.2) over 24 h at 

37 °C. Data represent the mean ± SD from n = 2 independent experiments with 3 technical 

replicates. ***: p < 0.001, **: p < 0.01, *: p < 0.05 

 

Fig 2 Relative cell viability of AGS cells after incubation with different concentrations of 

liposomes for 2 h, as determined by MTT assay. UC: untreated control: AGS medium without 

supplementation, PC: positive control: AGS medium, supplemented with 10 % FCS, NC:  

negative control (AGS medium, supplemented with 20 % DMSO); values are mean ± SD, n = 

3 independent experiments with 6 technical replicates each. ***: p < 0.001, **: p < 0.01 

 

Fig 3 Influence of different liposome formulations on the relative cell viability of HT29-MTX 

cells during their growing phase (A) and in the respective mucus-secreting phase (B), as 

determined by MTT assay. UCL, CL, UCL_A, CL_A were tested at different concentrations 

and incubated with cells for 2 h. UC: untreated control: PBS+/+, PC: positive control: PBS+/+ 

supplemented with 10 % FCS, NC: negative control: PBS+/+ supplemented with 20 % DMSO; 

values are mean ± SD, n = 3 independent experiments with 6 technical replicates each. 

***: p < 0.001, *: p < 0.05 

Fig 4 Influence of porcine mucin on size and PDI (A, C) and zeta potential (B, D) of 

uncoated, amoxicillin loaded liposomes (UCL_A) and coated, amoxicillin loaded liposomes 

(CL_A). Liposomes were mixed with mucin (0.4 mg/mL) in a ratio of 1:1 at RT (A, B) or 

liposomes were incubated with mucin (0.2 mg/mL) for 2 h at 37 °C under shaking (C, D). 

Results are obtained from a single experiment with three technical replicates 

 

Fig 5 Relative mucus interaction (% related to untreated control, UC = 100 %, corresponds to 

the total fluorescence of DiD-labelled liposomes UCL_DiD and CL_DiD) of uncoated DiD-

labelled liposomes (UCL_DiD, left) and coated, DiD-labelled liposomes (CL_DiD, right) 

with mucus, secreted by HT29-MTX cells. Cells were incubated at 37 °C for 2 h together with 

liposomes in a concentration range from 0.01 to 1 mg/mL 
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Fig 6 Representative fluorescence microscopy images of FITC-labelled H. pylori (A), 

UCL_DiD liposomes (B), UCL_DiD mixed with H. pylori (C), and CL_DiD mixed with 

H. pylori (D). 

 

Fig 7 Orthogonal projection of CLSM images of AGS cells incubated with H. pylori and 

liposomes (UCL: uncoated liposomes; CL: coated liposomes). Cell nuclei are stained with 

DAPI (blue), bacteria with FITC (green), and liposomes with DiD (red); scale bar: 5 µm 

 

Fig 8 3D image reconstructions from CLSM image series of AGS cells and H. pylori, 

incubated with uncoated UCL_DiD (A) and coated CL_DiD (B) liposomes. DNA is coloured 

blue (DAPI), bacteria green (FITC), and liposomes red (DiD) 

 

Fig 9 Representative CLSM images of potential interactions between H. pylori and uncoated 

UC_DiD (A) and coated CL_DiD (B) liposomes. DNA of bacteria was stained with DAPI 

(light blue) and liposomes with DiD (red). Scale bar: 5 µm 
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Figure 1. 
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Figure 2.  
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Figure 3.  
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Figure 4. 
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Figure 5. 
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Figure 6. 
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Figure 7. 
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Figure 8. 
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Figure 9. 

 
 

 
 
 
 

 
 

 
 
 

 
 


