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On spatial adaptivity and interpolation when using the
method of lines

Martin Berzins® Philip J. Capon® Peter K. Jimack?

& School of Computer Studies, University of Leeds, Leeds, LS2 9JT, UK
b Tessella Support Services ple, Abingdon, UK

The solution of time-dependent partial differential equations with discrete
time static remeshing is considered within a method of lines framework.
Numerical examples in one and two space dimensions are used to show
that spatial interpolation error may have an important impact on the
efficiency of integration. Analysis of a simple problem and of the time
integration method is used to confirm the experimental results and a
computational test for monitoring the impact of this error is derived and
tested.

Key words: Adaptive remeshing, method of lines, interpolation errors.

1 Introduction

A common approach to finding numerical solutions of time-dependent par-
tial differential equations (PDEs) is to use the method of lines (MOL). This
technique involves reducing an initial boundary value problem (IBVP) to a
system of ordinary differential equations (ODEs) in time through the use of
a discretization in space. This system of ODEs, which takes the form of an
initial value problem (IVP), can then be solved using standard software. The
spatial discretization may take many forms (e.g. finite difference, finite element
or finite volume) but the resulting ODE system can be solved using standard
initial value problem software, which may use a variable time-step/variable
order approach with time local error control.

Although it is possible to use a fixed spatial mesh in such an approach it has
long been recognized, [10,13], that adapting the spatial mesh offers important
advantages as regards the efficiency and accuracy of the solution process,
particularly for problems with moving or highly localized features. There are
in general two approaches used to modify a spatial mesh. One approach is to
continuously move the grid in time, [15,19,20], often by solving an extra set
of differential equations to determine the mesh point positions.
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The alternative approach, often termed static rezoning (e.g. [13]) or discrete
remeshing, is to change the mesh only at discrete times, interpolate the solu-
tion from the old mesh to the new mesh, and then restart the time integration.
This approach has long been used for time dependent PDEs with one of the
earliest methods being that of Bank and Dupont [2]. The approach adopted by
Bank and Dupont in 1976 in their MDTRI code was to use a triangular mesh
and data structures similar to those later used in the well-known PLTMG
steady code [3]. The static rezoning approach was also used in a number of
petroleum engineering codes (see [9] and the references therein) and for more
general problems: [5,13] and the papers in [1], for example.

There are two ways to implement static rezoning. The simplest approach is
to interpolate the solution from the old mesh to the new mesh and restart
the time integrator as though solving a new problem. This may be inefficient
however as the computational overhead associated with starting up an ODE
solver is considerable. For an IBVP in which spatial remeshing will occur quite
frequently these continual restarts of the ODE solver can have an extremely
detrimental effect on the overall efficiency of the computation. Hence an al-
ternative is to interpolate more than just the latest estimate of the solution
from the old spatial mesh to the new one, as in [4] for example. Typically
this means interpolating all of the history vectors that are used by the ODE
solver, as well as carrying over the latest time-step size and order. Computa-
tional results have shown (see section 3) that this approach can reduce the
overhead of the discrete remeshing approach significantly and, should it fail,
it is always possible to restart by only interpolating the solution, [4].

This static rezoning approach is a common form of spatial adaptivity and
general purpose NAG library software is available which implements this us-
ing finite difference semi-discretizations, implicit time integrators , and cubic
splines to perform the interpolation: see [4]. In this particular case the new
mesh is calculated by using an equidistribution principle (as outlined in [4]).
Other related techniques include the use of finite element semi-discretizations

with error estimates and spatial adaptivity via local mesh refinement (see
[14,18] for example).

The motivation for this paper has come from the use of static rezoning in
connection with compressible Navier Stokes calculations [8] in which the choice
of interpolant appeared to have important consequences for the accuracy and
efficiency of the integration. This paper will demonstrate that this is indeed
the case and propose a means of identifying when this occurs for a specific
class of time integration methods. A description of the method of lines discrete
remeshing approach and the time integration algorithm will be given in section
2. Two computational examples will be used in section 3 to illustrate how
the performance of the time integrator may be degraded. The second of these
examples is analyzed in section 4 and the analysis extended to consider a more



general effect of the residual error introduced through discrete remeshing. As
a result of this analysis a means of monitoring the discrete remeshing error is
suggested. The performance of this monitor is illustrated in section 5.

2 Time integration with discrete remeshing

Consider a single time-dependent PDE of the form

ou

Fri L(u(z,t),z,1), (1)

together with appropriate boundary and initial conditions. Suppose that this
PDE is discretized in space on a mesh Xy of NV spatial points leading to the
system of NV ordinary differential equations:

Iy (t7 ZN@)? K?V(t)) =0, ZN(O) = C

where Y () is the exact solution of this ODE system and its ¢th component
corresponds to the solution of the discretized PDE at the ith spatial mesh
point. The initial condition is obtained by assigning the initial value at the
1th mesh point to the :th ODE component, or by projecting the initial PDE
solution onto a finite element space.

In the remainder of the paper it will be assumed that for the finite element or
finite difference semi-discretizations used the ODE system has the form:

Ey(t, Yn(t), Yn(t)) = Ay Yy(t) — Gu(Xn(), 1) = 0, (2)

where the matrix Ay is strictly positive definite in the finite element case or
the identity matrix in the finite difference case.

2.1 Twime integration

In order to integrate the ODE system (2) use will be made of general initial
value ODE integrators, such as those in [4]. For the sake of clarity here however
the time integration method discussed in this paper will be the first/second-
order variable-step, variable-order Backward Differentiation code as outlined

in [6] (which will henceforth be referred to as BDF2). The use of such an

adaptive time-stepping code produces numerical approximations, gN(tj) and



Yy (tj), to the true ODE solution and its derivative, ¥ y(t;) and Yu(t;) re-
spectively, at a set of discrete times ¢;. At these dlscrete times the numerical
solution satisfies the perturbed equation

En(ti, yy(ti), yy(ti) ) = Ba(;), (3)

where Ry(t) is the numerical residual due, for example, to not exactly solving
the nonlinear equations at each time-step. The BDF2 formula will now be used
to explain how the numerical solution is calculated as a necessary precursor to
the analysis of the discrete remeshing case. It is then straightforward to extend
this analysis to multistep formulae of other orders and other implementations.
The BDF2 method applied to the ODE given by equation (2) is given by Skeel
[21] as:

Ay (%) = Galyy (), )

where

= B4 ryy(tic) =iy (tica) + (1 —rj) kj yi (L)

= k;/k;_1, k; is the size of the j'* time-step and ¢; = =S ki

The Nordsieck implementation of this formula makes use of a stored history
array of values for each component, consisting of

yn(t) 5 Ky (ts) k;y;;(ta : (4)

and the predictor-corrector approach outlined below to compute the new so-
lution and its time derivatives at the next time-step (see [24]).

The predicted values yN(t ), yN( ;) and y”P( ;) are defined by:
yh (L) =y (tica) + Ky’ (L) + kQ!lN( i-1)
Yo () =y (tima) + kgl (tio1)

and

Yl (t) =y (L) -



An update vector, «, is then defined by solving the system of nonlinear equa-
tions:

2k;
Ay (Q;]Vj(tj) +a) = QN(QZ(U) + TJQ, ti) .
The predicted values are then corrected according to:
2k;
yn(t) = y(ty) + Tjg, (5)
y(t) = ¥y () + a (6)
and
" 1npP 2
Y (ti) = yy (1) + oo (7)
3k;

The next stage is to ensure that the estimated local error over each time-
step is less than some user-defined tolerance. The standard local error control
requirement is that

cllaflw <1, (8)

where the subscript W refers to a weighted norm whose weights reflect user-
supplied tolerance values and ¢ is a method-dependent constant.

2.2 Restarting the ODFE solver after remeshing

The discrete remeshing procedures used in [4,13,14], along with many other
approaches, all consist of three main components. The first component is an
algorithm for constructing a new mesh of M points X ;; from the existing mesh
of N points X 5 and solution components. Typically the new mesh is defined
by trying to minimize error criteria or certain space derivatives in the solution.
The second component is an interpolation operator which defines the solution
on the new mesh y, (;) in terms of the solution on the old mesh y  (¢;):

ya(ti) = Lyn(yy () (9)

where yx refers to the type of spatial interpolant: y = L being a linear inter-
polant and y = C being a cubic spline interpolant for example. The third
component in the remeshing algorithm is a means of restarting the time inte-
grator.



2.2.1 Full restarts

One approach is to interpolate only the solution from the old mesh to the new
mesh, to recalculate the time derivatives and to restart the time integrator
with a first order method. This method is termed a full restart.

2.2.2  Flying restarts

The second approach (used by [4] and in the associated NAG library routines)
is to interpolate the whole of the history array used by the integrator (e.g.
(4)) and to attempt to continue integration as though the mesh had not been
changed. In this case, as well as (9),

Yar(ti) = Lun(yy(t5)) (10)
Y (t) = Dun(yy(t5)) (11)

and an attempt is made to continue integration with the same step size and
order as would have been used had remeshing not taken place. This “flying
restart” approach tries to ensure that the step size is not needlessly affected
by the spatial remeshing. Should the time integrator meet difficulties it is then
possible to revert to the first approach (i.e. a full restart). In the case of PDEs
in one space dimension this approach appears to work well when cubic spline
spatial interpolation is used with second-order finite difference methods [4,22].
An important side-effect of performing a flying restart is that although the
solution components and time derivatives are interpolated onto the new mesh,
the effect of this on the residual of the ODE system is more complicated and
so in general the current residual is not interpolated onto the new mesh:

Ry (t;) # Lyn(Bn(t;)) .

Here Ry(t;) is given by (3) and

EXM(tj) = EM(tjv g%(tj)v gﬁ(tj) )7 (12)

where Fy/(+,-,-) comes from the spatial discretization of (1) on X, (as op-
posed to Xy) and y¥ (¢;) and y'X(t;) are given by (9) and (10) respectively.
This is explained fully in section 4.



3 Computational examples

The main motivation for this work comes from the need to use discrete time
remeshing when solving time-dependent problems in two and three space di-
mensions on triangular and tetrahedral meshes. The following example illus-
trates this type of calculation and points to a potential problem area.

3.1 A 2-d Navier-Stokes example

In [7] the non-dimensionalized compressible Navier-Stokes equations are pre-
sented in terms of the primitive variables of density, velocity and temperature.
In [8] a method for the solution of these equations is presented based upon
the Galerkin least-squares approach of Hughes et al ([12,23]), along with the
use of adaptive h-refinement in space (this is a particular example of discrete
remeshing, described in more detail in [14,18] for example). Unlike in [12]
however the approach of [8] is to only take finite element discretizations of the
spatial operators, thus yielding a nonlinear set of ODEs in time, which may
be solved using the BDF2 method for example.

Typical results in [8], such as those obtained for the unsteady flow around a
NACAQ012 aerofoil at Re = 5000 with a free stream Mach number, M, of
0.55 and an angle of attack of 8.34°, compare favourably with those reported
elsewhere (see [25] for example). It may be observed however that when piece-
wise linear interpolation is used to transfer solution data from one grid to
another after spatial adaptivity has occurred, the size of the time-step is fre-
quently reduced significantly after each discrete remesh, even when a flying
restart is attempted. This is illustrated in Figure 1 which shows the value
of the time variable, ¢, in the Navier-Stokes equations against the number of
time-steps taken during a typical run. These reductions in the time-step af-
ter mesh refinement has occurred clearly cause a substantial computational
overhead, leading to a significant loss of efficiency in the overall algorithm.

3.2 A simple test problem

Due to the complexity of the above example we now consider a much simpler
test problem, which will then be analyzed in order to try to isolate the cause of
the reductions in the time-step after discrete remeshing has occurred. Consider
the one-dimensional reaction-diffusion equation

ou  0%u

5 9 + f(u) where u(z,t):(0,10) x (0,1.5) — R (13)
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Fig. 1. Plot of time against time-steps taken for the unsteady Navier-Stokes problem.

and f(u) = u?(1—u), with initial and Dirichlet boundary conditions consistent
with the analytic solution

1

wet) = Tt

, (where p = %)

The standard piecewise-linear Galerkin finite element semi-discretization in
space with N + 1 elements (as described in [16] for example) leads to an ODE
system of the form of equation (2):

Ay Yiu(t) — Ky Yn(t) — fy(Yn(t), 1) = 0, (14)

where Ay and Ky are the Galerkin mass and stiffness matrices respectively
and the vector f incorporates both the reaction terms in the PDE and its
time-dependent Dirichlet boundary conditions. The vector Y n (%) contains the
solution values at each of the interior knot points at the time ¢ and, for the
conventional ordering of these unknowns, the matrices Ay and Ky are tridi-
agonal.

In our computational experiments the local spatial error indicator used is
the 1-norm of the gradient of the solution on each element. Although this
is crude, it is sufficient for illustrative purposes. The form of static rezoning
that is used is again simple h-refinement where, in one space dimension, each
element of the mesh may be bisected at the end of each time-step if the local
spatial error indicator exceeds some fixed tolerance. When this occurs a new
degree of freedom is introduced to the ODE system (2) for each element that



is bisected (this being the solution value at its midpoint).

Figure 2 shows plots of the value of the time variable in (13) against the
number of time-steps taken (including those taken but rejected) by the ODE
solver (BDF2) for three different computations, each with the same spatial
and temporal error tolerances. In the first calculation a full restart of the
ODE solver is performed when the mesh is refined, with the initial data taken
from the piecewise linear interpolant of the final value on the old mesh. In the
second case linear interpolation is used in a flying restart for the new ODE
system. Finally, a third run is considered in which cubic spline interpolation
is used before attempting a flying restart.

3 T T T T T T T T

25

time

15

05 |

0 1 1 1 1 1 1 1 1 1

0 50 100 150 200 250 300 350 400 450 500
time-steps

Fig. 2. Plot of time against time-steps taken for the reaction-diffusion problem using

(from left to right): (i) flying restarts after cubic spline interpolation, (ii) flying

restarts after linear interpolation, (iii) full restarts.

Inspection of Figure 2 shows that there is a significant overhead associated
with performing a complete restart of the ODE solver each time the spa-
tial mesh is refined. Whenever the time-step size begins to grow, the spatial
remeshing causes it to be reduced as a new ODE system is tackled. In con-
trast, the flying restart allows the ODE solver to carry on integrating with
the same order and step size as before, even though we are now solving a
different semi-discrete system. It is notable however that when linear inter-
polation is used, there are still occasions where the step size (and order) are
reduced by the ODE solver (in order to satisfy its local error tests). For this
example, this does not occur when cubic spline interpolation is used and thus
only using linear interpolation to transfer between meshes is, in some sense,
not always sufficiently accurate. This observation matches that made for the



Navier-Stokes problem in subsection 3.1 where the same deficiencies appear
to occur when piecewise linear interpolation is used.

4 An analysis of discrete remeshing

In this section the simpler of the two examples above is used to show that
the choice of interpolation method may make a significant difference to the
residual of the ODE system after interpolation onto the new mesh. An analysis
of the more general problem (2) is then used to show how this residual affects
the performance of the time integrator and to suggest a means of monitoring
these effects.

4.1 The ODE residual after interpolation

This subsection demonstrates that for problem (13) (and any other 1-d prob-
lem that leads to a semi-discrete system of the form (14)), the residual which
results from the application of cubic spline interpolation after refinement is
superior to that which results from the application of linear interpolation, at
least in the asymptotic limit as &z — 0.

For algebraic simplicity we consider the specific case of a uniform mesh, con-
taining N +1 elements of size &, being uniformly refined at time ¢; into 2N +2
elements of size % From (2), (3) and (14), we see that the residual of the ODE

system before refinement may be written as

Ry(t;) = An ¥y (1) — Kn yu(t5) — Falyy @), t) (15)

where y . (t;) € RN. Using the notation that Xy = (z1,...,zn)7T, yy(ti) =
y = (y1,...,yn)" and yy(t) =y = (y1, .y yN)T, the ith component of this
residual at time ¢; is

h 1
Ryi= 7 |yl + 49} + vl ] — 3 i = 2yi + yina] =

6

Tkl N4t

| 1Y via)al da, (16)
Ti_1 i=0

where yo and yxn41 are the Dirichlet conditions at the end points zg and zx 14
respectively, and each of the a¥(z) are the usual linear finite element basis
functions on Xy .

10



At this point it is notationally convenient to introduce two continuous func-
tions of z on (2o, xn41): y(x) is a four times differentiable function which takes
the values y at X, and y'(z) is a twice differentiable function which takes
the values y" at X . It then follows that

Ry = hy'(x:) = hyeo(x:) — hf(y:) + O(R?) (17)

where the integral in (16) has been approximated using the trapezium rule on
each subinterval of (2o, 2n41). This residual is O(h) and so if the mesh size is
halved the residual should similarly decrease in size. We now define the linear
interpolation operator lﬁLN : RNV — RM and the cubic spline interpolation
operator LC\VLN RV — RM where M =2N + 1, by

Lyo+y1)

Y1
Y
Lin(yy) = | Yyt vin) |

Yi+1

YN

_%(yN +yny1) |
L(yo + y1) + E(mo — ma)

Y1

Yi
l%,N(yN) = %(yz + yit1) + %(mz — Mit1) ;

Yi+1

YN

L 3(yn 4 ynvgr) + Emy — mvga) |

where gjicf = (y1,.-,YN), Yo and yy41 are known boundary values, and the
terms my, ..., my41, which are the nodal first space derivative values of the

11



spline, are obtained from the solution of the tridiagonal system

210...000 mo 2(y1 — yo)
lal. 000 m a1 (Y2 — ¥o)
0520000 m | | Fi(ys—y1)
000...2210 1 my s (UNt1 —yn-1)
1000...01 2] [mys] | 2(ynvsr—un)

(See [17], for example, for details of how this system is obtained for a natural
spline.) The different vectors that are obtained from using these interpolants
are denoted as in equations (9) and (10), where, again, M = 2N + 1. Using
this notation, the residual after refinement and linear interpolation have taken
place may be defined by:

By (t;) = An yy(t) — Kar yy(t) = £, (g (), 1) (18)

where the components of this vector are given by

h [1 1 1
Rﬁmm’ = 12 [2!/2+1 + 5y + 2!/2 1] T [Yir1 — 2y + yia] —
I""% M+1
Z y 0522
z; -k
h, h 3
=5Y' (@) = Wyaa(2:) = 5 f(y:) + O(17) (19)
and
h Ti41
R%L%-H 12 [3!/24-1 + 33/2 / f )04224-1 dx
holy'(zis1) + y'( yz + yz+1 3
=— O(h
5 |- v o)

N | o~ N|z~

_ﬁl (%)er( z+1)] .

_ lf(yi) + f(Yit1)
2 2

5 ] + O(h%) . (20)

Note that the diffusive terms, [&’Mgﬁ(tj), are, incorrectly, unchanged in size at
the common points of the old and new mesh and are, also incorrectly, absent

12



from the new mesh points. In the other case, where cubic spline interpolation
is used, then

R (t) = Ay (t) — Kar y<,(t5) — £, (05, (i), 15) (21)

where the components of this vector are

h? 1
R]%,Qi = R%L% + 9% m;’—l - mi‘+1] 1 [mi1 — mig] (22)
and
C L h2 ! ! 1 ¢
Rypoivn = Bypgipn + Y [mz - mi—i—l] ts [mi — mita] (23)

and where the m! values are the nodal first space derivatives of the cubic spline
which interpolates the mesh point values y', (;).

The following lemma demonstrates that the size of R,(¢;) is generally much

closer to the size of the residual before refinement took place, Ry(t;), than
that of R% (¢;), at least in the limit as A — 0.

Lemma 1 In the limit as h — 0:

B (1) = 5 Ty (B (1)) + O(KY) (21)

and

1 h
B (1) = S L n(B(1) + Sy, + O() (25)

where the components of the vector y_ are defined by

‘ Y — 2yt Y
yzz‘,Qz - - h2

and

_ Yit2 — Yt — Yi T i

Yoz, 241 = 2h2

PROOF. Note that the cubic spline interpolant of y, S (z) say, is fourth

13



order accurate, therefore at each newly created node, x; + %,

Sy 1) = ylai+ )+ OY)

2 2
and
d? h h 2
However,
d? h —1
therefore
h 3

Hence,

mi_y — Miy1 = (Mi_y —m;) + (Mg — miyq)
h h
= —2hy..(z;) + O(R?) .

Applying linear interpolation to the original residual at time ¢; gives

[]J%LN(EN(U))]% = Ry, .

For notational convenience denote Ry ;11/2 by
Ry ipre = [Ty (B (1))

2i+1

so that, using equation (17),

o [y/@i) +2y'<xz-+1>] L [ymm) +2ym<:u+1>] _
" lf(’yi) +2f(yi+1)] +O(R) .

14



From equations (17), (19), (20), (28) and (29) it now follows that

1 h
Riy o = g fi = g'ym(fm) + O(h®)
and
L 1 h 3
Ry = §RN,2'+1/2 t7 Woo(2i) — Yoo(ziz1)] + O(R7)
1

h h
=-Rnit1/2 + Eymm(rz + 5) +O(h%),

which are equivalent to (25).

Finally, in the case where cubic spline interpolation is used, substituting the
above two expressions, along with (26) and (27), into (22) and (23) gives

1 h h
R]%,% = §RN,2' - g‘ym(l’i) + g‘ym(fﬂi) + O(hS)
and
1 h h h h
RAC“Z-H = §RN,Z'+1/2 + Eyzz(xz + 5) — Eym(% + 5) + O(Rr?%) .

These are equivalent to equation (24) and so the proof is complete.

This lemma shows that if the original residual Ry(%;) is small then it remains
so after refinement and cubic spline interpolation. It also demonstrates that
this is not necessarily true when linear interpolation onto the new mesh is used
since there is an additional term of size O(h) which occurs when a linear inter-
polant is differentiated twice to get zero. In subsection 4.3 below a numerical
example is presented which illustrates this result very clearly. It is also clear
from the proof of the lemma that this result carries across to a simple central
difference discretization in which the matrices Ay and Ay, are replaced by the
identity matrix scaled by h: this is also demonstrated in subsection 4.3. In [§]
C' Hermite cubic interpolation is also considered, where it is demonstrated
that this has similar properties to the cubic spline interpolation considered
here.



4.2 Implications for time integration

4.2.1 Second order backward differentiation formula

Suppose that a remesh has occurred at time ¢; and consider an attempt to
take the next step to ¢;1; with the BDF2 method of section 2. The predicted
values are given by

’!/P (ty+1) = ]MN(yN( )) + k]-l-lIMN(yN(t )) + % kf‘+1 ﬁmN(Z/N( )) (30)

and

yﬂ(tﬂl) ]MN(yN( i)+ kin ]MN(y;(z(tj)) (31)

where the superscript x is again used to indicate either linear (L) or cubic (C')
spline interpolation operators. An update vector, a, is then defined by solving
the system of nonlinear equations:

2kjt1
3

Aut (g (tin) + @) = Gur(ygy (Li+1) + atjp) - (32)

The important observation is that the predicted values indirectly reflect the
residual after interpolation and thus perturbations in these predicted values
will potentially alter a. In order to quantify this effect equation (32) is first
rewritten using (30) and (31), along with expressions (9), (10) and (11). This
is then expanded about (y¥,(¢;),t;) to get

Am(yy, (1) + kyy, (1) + a)
, k2 y 2k
= Gulyy, (i) + kyy, (8) + Sy (4) + e tiv)

3
9Gy  OGy

_ = ! = 2
= Gk |+ TG 0+ 500 + O,

where, for notational convenience, we have replaced k;41 by & and dropped
the superscrlpt X from the y,,, y}, and ¥/ terms. In addition, each of the

terms GM, and 2 M are to be evaluated at (y, (¢;),t;). Hence, using the
definition of EX (t;), (_) and (12), we obtain

2 Gy
A — —F—2 —
lM 3 3y]g

16



SR () + A gyl + T S ) o). @)
This last expression implies that there is a contribution to « from the residual
RY,(t;) that is independent of the time-step k. When no remeshing is done
this residual is kept small through requiring that the nonlinear equations are
solved with sufficient accuracy, however it may be observed from the above
lemma that a poor choice of interpolant may lead to a significant increase
in the size of this residual after mesh refinement. This contribution to o will
perturb the local error estimate and the solution time derivative by an amount

a*, where

. 2 9G]
a :—lAM—g 8—;] Ry, (t5)

and will perturb the solution by an amount %g*. In particular if ¢||a*||w >
c|lajlw (where ¢ is the method-dependent constant in equation (8)) then the
perturbation to the local error test is greater than the local error itself. This
suggests that the value of the ratio

ap = ||a”[lw/|lallw (34)

will be a useful indicator as to whether or not the local error estimate is likely
to be contaminated by the interpolation error after mesh refinement has taken
place. It is fortunate that the size of this ratio may be calculated quite easily
since the decomposition of the Jacobian matrix, [Ay — %kag—yM], is stored by

the BDF code. It is therefore possible to monitor the size of this ratio in a
number of numerical examples to verify that it does indeed vary significantly
from one interpolation method to another, and to observe the effect that this
has on the performance of the ODE code.

4.2.2  Other time integration schemes

In 4.2.1 equation (33) shows that the correction, a, to the solution calculated
by solving the nonlinear equations (32) is dominated by the residual R},(¢;)

as k — 0. In fact, it is actually shown that, to leading order, « is this residual
-1

scaled by the inverse Jacobian matrix [AM — %kag—yM] . Similar results may

be obtained for other implicit time integration formulae such as fully implicit
Runge-Kutta formulae (see [11], for example, for an introduction to these).

It is not just implicit methods that are affected by poor interpolation between
meshes however. For example, explicit Runge-Kutta formulae can also be ad-
versely affected by the discontinuity in the ODE system that is introduced
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when remeshing occurs. To demonstrate this briefly, we consider the simplest
explicit Runge-Kutta method of all, the Euler scheme, and assume that the
matrix Ay in equation (2) is the identity (this simplifies the algebra which
follows and can easily be achieved by incorporating Ay' into the definition of

G).

Without any remeshing at time ¢; the Euler formula is

Ky QN(EN(tj)7 tj)

(Note that the vector K is not related to the stiffness matrix Ky, used in
subsection 4.1.) Alternatively, if remeshing were to occur at time ¢;, the next
time-step would be

Ky = Gulyy (L)1)
Yo (tivr) = oy, (4) + ki Ky

In order to contrast these two formulae we may compare the respective update
vectors K and K ;. This is achieved by interpolating Ky onto the new mesh:

Ky — fMN(KN) = Gy ;‘/XM i)ti) — lﬁ,N(QN(yN(tj)atj))

As with the BDF2 formula we again see that the difference between the up-
dates with and without remeshing is dominated by the residual after interpo-
lation, R},(t;). Unlike the implicit case however the residual is not smoothed
by the inverse Jacobian matrix. Similar results may be obtained for other,
more complex, Runge-Kutta schemes. This demonstrates that the need to use
appropriate spatial interpolation schemes arises almost regardless of the type
of time integration formula used.

4.3 Numerical experiments

This subsection illustrates the results in 4.1 and 4.2 above by way of some
simple numerical examples. In 4.3.1 the results of lemma 4.1 are verified by
using an adaptive finite element solver on equation (13) of subsection 3.2.
Then, in 4.3.2, it is demonstrated that the cubic spline interpolant is indeed
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also superior when using a different spatial discretization to that explicitly an-
alyzed above. Again equation (13) is used, as well as an additional convection-
diffusion example.

4.3.1 A finite element example

In this example we again use the adaptive finite element solver described in
subsection 3.2 to solve equation (13). Unlike in 3.2 however we now start
with a uniform mesh (of 128 elements in this case) and refine this globally
at a fixed time, t=0.2 (see subsection 4.1). The consequences of doing this
are summarized in Table 1 below. In the first column of this table we see the
time-step size, k;, immediately before refinement and also the values of each
of the terms in a single component of the residual, Ry(t;) (see (15)), again
immediately before refinement. In the next two columns are the terms in the
corresponding components of the new residuals immediately after refinement
with linear and cubic spline interpolation (see (18) and (21)). Also given are
the values of kj1;, the next time-steps successfully used by the ODE solver
when flying restarts are attempted.

Table 1

The effects of the linear (L) and cubic (C) spline interpolants after uniform mesh
refinement.

Before refinement After refinement

x=L | x=0C

N 127 M 255 255
k; 3.68E-2 kit 8.85E-4 | 2.84F-2
[Any(ti)les | 980E-4 | [Apy(tj)]izs | 4.90E-4 | 4.90E-4
[Knyy(ti)lea | L.OSE-3 | [Knmyy,(tj)]i2s | 1.08E-3 | 5.39E-4
[y tidlea | -994E-5 | [f, (4%, t5)]1es | -4.9TE-5 | -4.9TE-5
[Rn(t;)]ea | -2.10E-13 [Ry;(tj)]12s | -5.40E-4 | -4.06E-8

It is immediately clear from inspection of this table that the numerical com-
putations are consistent with the results of lemma 4.1. The residual terms are
correctly halved when cubic interpolation is used whereas with linear interpo-
lation the incorrect diffusive term pollutes the residual. As predicted by the
analysis of the BDF2 time integrator in subsection 4.2, this then leads to a
significant reduction in time-step from k; = 3.6791E-2 to k;4; = 8.8546E-4.
It should also be noted, although it is not shown in Table 1, that there is a
reduction in order, from 2 to 1, when linear interpolation is used after refine-
ment at ¢ = 0.2. Neither this order reduction nor this significant drop in the
time-step occur when cubic spline interpolation is used before a flying restart.
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Two final points to note about this example are that even though the attempt
at a flying restart after linear interpolation appears to have failed in this case,
the new time-step (k;41 = 8.8546E-4) is still no worse than that obtained
when using a full restart on this problem. Also, it should be emphasized that
there is a dependence upon the mesh size h and the time-step k in the results
of subsections 4.1 and 4.2. This means that when, for example, the above
numerical experiment is repeated on a much coarser spatial mesh (N = 16
say), even cubic spline interpolation fails to allow a successful flying restart.
Conversely, when an extremely fine spatial mesh is used (e.g. N = 1024) the
flying restart with linear interpolation is significantly more effective than using
a full restart.

4.3.2  An alternative spatial discretization

We complete this section with some further numerical examples to illustrate
the practical advantages of cubic spline over linear interpolation. This is done
by monitoring the behaviour of the ratio ap (defined by (34) above ) for two
test problems using the semi-discretization of Skeel and Berzins [22] and the
remeshing method of [4]. The first test problem is again defined by equation
(13) but this time with a spatial interval of (0,120). The second test problem
is a linear convection-diffusion equation defined by
du *u  Ou

5 0.1@ ~ e where u(z,t): (0,1) x (0,1) — R,

with initial and Dirichlet boundary conditions consistent with the analytic
solution

u(z,t) = ———— (where s = 1 + 201).

Both problems were solved with meshes of between 41 and 81 points with
remeshing on the basis of equidistribution of the second space derivative, as
in [4]. Remeshing occurred every two time-steps. The time error test tolerances
were 0.1E-4 (both absolute and relative). The integration statistics and the
average value of ap over the number of remeshes are given in Table 2 below.
This table shows that when linear interpolation is used there is a substantial
increase in the overall computing cost, a decrease in the final accuracy and that
the average value of the ratio ap is greater than 1.0 (unlike the cubic case in
which it is less than 1.0). The value No. ag > 1 shows how many of the values
of ap were greater than 1.0 after remeshing. Hence for problems 1 and 2 with
linear interpolation this indicator exceeds 1.0 for 84 and 73 percent of the time
respectively after remeshing. This rarely happens with cubic interpolation.
Hence the ap indicator appears to provide useful information about potential
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difficulties due to discrete time remeshing, and once again these difficulties
appear to arise more often when linear rather than cubic spline interpolation
is used between meshes.

Table 2
Integration statistics for the two 1-d test problems.

Problem 1 Problem 2

linear | cubic | linear | cubic
Steps Taken 106 71 195 147
No. of remesh 51 33 97 72
Jacob. evals 56 38 100 76
Func. calls 484 317 847 631
Aver. agr 1.08 0.7 1.04 0.84
No. ar > 1 43 0 71 5
Final Error . | 24E-3 | 3.6E-4 | 2.2E-4 | 8.2E-5

5 Conclusions

This paper has demonstrated that the use of a poor interpolant in discrete time
remeshing is a potential source of inaccuracy and inefficiency. This has been
shown on a practical Navier-Stokes example and on a simple test problem.
Analyses of this test problem and of a more general case in the limits as the
mesh size and time-step size tend to zero have highlighted the source of the
difficulty, and also suggest a way of monitoring it. The effectiveness of this
monitor has been confirmed for typical choices of mesh and time-step size by
further experimental work. Nevertheless, further analysis would be required in
order to guarantee an optimal choice for the interpolant needed for a particular
problem with given values of h and k. In conclusion therefore, it is clear that
significant care must be taken in choosing a suitable interpolant when using
discrete remeshing in one, two or three space dimensions.
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