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Prediction and mechanistic analysis of
drug-induced liver injury (DILI) based on
chemical structure
Anika Liu1* , Moritz Walter1, Peter Wright1, Aleksandra Bartosik1, Daniela Dolciami1,2, Abdurrahman Elbasir1,3,

Hongbin Yang1 and Andreas Bender1*

Abstract

Background: Drug-induced liver injury (DILI) is a major safety concern characterized by a complex and diverse

pathogenesis. In order to identify DILI early in drug development, a better understanding of the injury and models

with better predictivity are urgently needed. One approach in this regard are in silico models which aim at

predicting the risk of DILI based on the compound structure. However, these models do not yet show sufficient

predictive performance or interpretability to be useful for decision making by themselves, the former partially

stemming from the underlying problem of labeling the in vivo DILI risk of compounds in a meaningful way for

generating machine learning models.

Results: As part of the Critical Assessment of Massive Data Analysis (CAMDA) “CMap Drug Safety Challenge” 2019

(http://camda2019.bioinf.jku.at), chemical structure-based models were generated using the binarized DILIrank

annotations. Support Vector Machine (SVM) and Random Forest (RF) classifiers showed comparable performance to

previously published models with a mean balanced accuracy over models generated using 5-fold LOCO-CV inside a

10-fold training scheme of 0.759 ± 0.027 when predicting an external test set. In the models which used predicted

protein targets as compound descriptors, we identified the most information-rich proteins which agreed with the

mechanisms of action and toxicity of nonsteroidal anti-inflammatory drugs (NSAIDs), one of the most important

drug classes causing DILI, stress response via TP53 and biotransformation. In addition, we identified multiple

proteins involved in xenobiotic metabolism which could be novel DILI-related off-targets, such as CLK1 and DYRK2.

Moreover, we derived potential structural alerts for DILI with high precision, including furan and hydrazine

derivatives; however, all derived alerts were present in approved drugs and were over specific indicating the need

to consider quantitative variables such as dose.

Conclusion: Using chemical structure-based descriptors such as structural fingerprints and predicted protein

targets, DILI prediction models were built with a predictive performance comparable to previous literature. In

addition, we derived insights on proteins and pathways statistically (and potentially causally) linked to DILI from

these models and inferred new structural alerts related to this adverse endpoint.
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Background
Drug-induced liver injury (DILI) is a major safety con-

cern and one of the leading causes of drug failure in

clinical drug development and market withdrawal, which

can be found across nearly all classes of medication [1].

DILI may occur either as hepatitis or cholestatic injury

or a mixed form of both and can be further distin-

guished between intrinsic and idiosyncratic DILI [1]. If a

drug is hepatotoxic in a dose-dependent manner both in

preclinical models and humans (e.g. acetaminophen) it is

considered to cause intrinsic DILI. Idiosyncratic DILI,

on the other hand, is characterized by the lack of a clear

dose-dependency and its rarity (usually less than 1 of 10,

000 treated patients develops DILI symptoms). In con-

trast to intrinsic DILI, idiosyncratic DILI is the result of

a patient’s rare combination of genetic and non-genetic

risk factors, which is responsible for their susceptibility

towards the drug [2]. Consequently, in most cases, idio-

syncratic DILI cannot be detected in preclinical studies

[3]. The idiosyncratic nature of DILI also impedes its

prediction with quantitative structure-activity relation-

ship (QSAR) models, as idiosyncrasy implies that the

underlying cause lies beyond inherent compound prop-

erties. Due to the low incidence of DILI, revealing causal

links between the use of a drug and an observed liver in-

jury is a difficult task [4], which decreases the confidence

in provided DILI labels and further complicates the

building of QSAR models with high predictivity.

The limited capability of animal models to detect hep-

atotoxic compounds raises the need for alternative test-

ing strategies including in vitro and in silico models, as

well as a better understanding of the underlying biology.

Major challenges associated with the prediction of DILI

using in vitro approaches lie in identifying relevant as-

says [5] and extrapolating from assay concentrations to

in vivo blood concentrations associated with a hepato-

toxic risk [6]. Numerous in silico models have been gen-

erated based on molecular structure [7–13] and in vitro

readouts, such as bioactivity [14], gene expression [15]

in cell culture or combinations of readouts [16], which

are able to predict DILI better than random, but with a

performance not yet sufficient for decision making in

practice.

In the case of computational predictions, DILI is often

simplified to a classification problem, i.e. separating

compounds with or without this annotation in a data set

[7–9, 11, 14]. These labels, however, do not provide in-

formation on important factors such as dose-

dependency or affected patient population, and conse-

quently, the practical applicability of such models is lim-

ited. While more detailed information on quantitative

compound toxicity is difficult to retrieve, the weight of

evidence for DILI is often provided in the available data-

sets. Paying attention to the quality of the data used for

model generation has previously been shown to be rele-

vant; for example, Kotsampasakou et al. (2017) [9] dem-

onstrated that better models can be derived with

smaller, but higher quality datasets.

The present work is derived from participation in the

Critical Assessment of Massive Data Analysis (CAMDA)

“CMap Drug Safety Challenge” 2019 (http://camda2019.

bioinf.jku.at) where the aim was to develop more pre-

dictive models for DILI from different descriptor spaces.

In this study, we retrieved compound hepatotoxicity an-

notations from the DILIrank [17] and SIDER [18] data-

bases which were used as labels to generate compound-

based DILI classifiers. The annotations in DILIrank were

assigned by considering DILI-related market withdrawals

and warnings in drug labels in combination with asses-

sing causal links between the use of the drug and the oc-

currence of DILI. The drug is annotated as “DILI

positive” in two different severity classes (“vMost-DILI

concern” and “vLess-DILI concern”) only if casual links

to DILI could be confirmed. Drugs with existing concern

but lack of causal proof were annotated as “Ambiguous

DILI concern”, whereas drugs without concern were an-

notated as “vNo-DILI Concern”. The task set by the

CAMDA challenge was to predict the labels of 55 drugs,

which were previously annotated as “Ambiguous DILI

concern” and recently re-classified by the FDA. To this

end, multiple descriptors were derived from chemical

structure which were used to build classification models

for DILI: chemical fingerprints [19] describing the 2D

compound structure, as well as Mordred molecular de-

scriptors [20], and predicted protein targets inferred with

PIDGIN [21–23]. The predictivity of the resulting

models was evaluated using two different external test

sets. Models were also built using the L1000 gene ex-

pression data provided by CAMDA, but these did not

perform significantly better than random and were not

analysed further (Additional file 1).

In addition to predictive performance, we also fo-

cused on two practically relevant aspects of DILI pre-

diction, namely the ability of models to extrapolate in

chemical space, as well as the interpretation of relevant

molecular and biological factors underlying DILI since

interpretable models are more trusted, for example by

regulatory agencies [24]. To gain insights into biological

processes, the protein targets with significantly higher

binding probability in DILI compounds and the highest

information for DILI classification were extracted from

the protein target-based machine learning models.

Based on these, we identified biological processes asso-

ciated with DILI labels in the current dataset using gen-

esets derived from MSigDB [25] to show that

mechanistic understanding of the biology underlying

DILI can be obtained from this chemical structure-

based feature space.
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From the purely chemical side, we derived interpret-

able structural alerts related to DILI with the Molecular

Substructure miner algorithm (MoSS) implementation

of graph-based Molecular Fragment miner algorithm

(MoFa) [26] and the fragment-based SARpy package

[27], which could guide lead optimization to reduce the

risk of DILI, as is currently standard practice for other

toxicities [28]. We then compared the quality of the de-

rived structural alerts against the recent review of DILI

related structural alerts by Liu et al. (2015) [29].

Results
Predictive modeling

We first compared the performance of Support Vector

Machine (SVM) and Random Forest (RF) models trained

using different input descriptors to predict DILI positive

compounds. To this end, three datasets with differing

levels of DILI label confidence and size were compared

(summarized in Table 1): “DILIrank (−vLessConcern)”,

comprising DILIrank compounds labelled as either

vMostConcern or vNoConcern (high confidence),

“DILIrank” which additionally contains compounds from

the DILIrank vLessConcern class (low confidence), and

“DILIrank (+SIDER)” which additionally includes inac-

tives from the SIDER database (low confidence).

It can be seen in Fig. 1 that models trained using Ex-

tended Connectivity Fingerprints of diameter 4 (ECFP4)

descriptors show similar predictive performance for both

the Leave-One-Cluster-Out cross-validation (LOCO-

CV) and the external test set across all datasets for both

the RF and SVM algorithms. For example, RF models

trained using the DILIrank (−vLessConcern) dataset had

a mean balanced accuracy of 0.734 ± 0.044 during cross-

validation and 0.746 ± 0.032 for the external test set

(Table S1). Secondly, all models achieved higher predic-

tion accuracy than y-scrambling models (Fig. 1), demon-

strating they all had a predictive power exceeding that of

pure chance [30]. Thirdly, for LOCO-CV and external

test set a slightly better predictive performance was

found using the highest confidence dataset in compari-

son to the lower confidence datasets, although it should

be noted that these models are not directly comparable

given the varying dataset sizes (Fig. 1 and Table 1). For

example, for the SVM models the LOCO-CV mean bal-

anced accuracy decreased from 0.714 ± 0.058 on the

DILIrank (−vLessConcern) to 0.671 ± 0.043 (DILIrank)

and 0.643 ± 0.045 (DILIrank (+SIDER)). Moreover, the

mean external test set balanced accuracy decreased from

0.759 ± 0.027 (DILIrank (−vLessConcern)) to 0.697 ±

0.048 (DILIrank) and 0.709 ± 0.036 (DILIrank (+SIDER)).

These three findings were also observed for models

trained using Mordred molecular descriptors [20] and

protein target descriptors [21, 22] (see Table S1, and

Figs. S1 and S2).

A significant drop in performance is seen for the ma-

jority of models on the FDA validation set with a bal-

anced accuracy of below 0.6 (Fig. 1), which indicated

that the models were less capable of generalizing to the

FDA validation set than to the external test set. These

findings were also observed for models trained using

Mordred molecular descriptors [20] and protein target

descriptors [21, 22] indicating the limited generalization

of models occurred irrespective of descriptor space. The

best performing model across the most metrics was the

SVM model trained using the DILIrank (−vLessConcern)

dataset which utilized a linear kernel, a C parameter of

0.1, and a ‘one vs. rest’ decision function. This model

achieved a mean balanced accuracy of 0.759 ± 0.03 and

0.655 ± 0.00 on the external test set and FDA validation

set, respectively, thus demonstrating relatively high pre-

dictive power across the two independent test sets com-

pared to all other models generated (Fig. 1 and Table

S1).

We next investigated the relationship between a com-

pounds’ Tanimoto similarity to its 5 nearest neighbors

in the training set and its classification performance for

the external test set (Fig. 2a). This was achieved by gen-

erating a SVM model (with the same hyperparameters as

the best model noted previously) where within each fold

of a Leave-One-Out cross-validation (LOO-CV) scheme

a compound’s predicted DILI label and Tanimoto simi-

larity to the training set were retrieved (see Methods).

Note that such an analysis for the FDA validation set

was not possible as the DILIrank labels for this set of

compounds were withheld. It was found that 65% of the

compounds with a mean Tanimoto similarity to their 5

nearest neighbors in the training set between 0.0–0.2

were correctly classified (already comparable to the pre-

dictive performance on the FDA validation set for the

same model - mean accuracy 0.673 ± 0.000), and this in-

creased to 89% for compounds with 0.4–0.5 Tanimoto

Similarity, and subsequently to 100% for compounds

Table 1 Datasets used to generate predictive DILI models

Dataset Name Data samples Binary class

vLessConcern (n = 260) vMostConcern (n = 174) vNoConcern (n = 227) SIDER (n = 262) n (DILI) n (NoDILI)

DILIrank (−vLessConcern) – DILI NoDILI – 174 227

DILIrank DILI DILI NoDILI – 434 227

DILIrank (+SIDER) DILI DILI NoDILI NoDILI 434 489
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Fig. 1 DILI label prediction performance (balanced accuracy) of RF and SVM models trained using ECFP4 descriptors. Models were trained using

the datasets described in Table 1. Performance is stable between the 5-fold LOCO-CV and external test set, but a distinct drop in predictive

accuracy is observed when predicting the FDA validation set. Hence, despite demonstrating a capability to generalize to new compounds (not

seen during training) in the external test set, models lacked the capability to generalize to the new compounds in the FDA validation set

Fig. 2 Analysis of the link between chemical similarity and classification performance. a Classification rate during LOO-CV vs. mean 5 NN

Tanimoto compound similarity. A clear link between correct classification rate (%) and chemical similarity is observed in the DILIrank

(−vLessConcern) dataset. The only exception from this was the first bin, which was defined by only a single compound (n = number of correctly

classified compounds) and hence not a representative rate), and indicated that external test set compounds that are more structurally similar to

the training set were predicted better. b Distribution of the mean 5 nearest neighbour inter-similarities between the DILIrank (−vLessConcern)

training dataset and the corresponding test sets. It was found that the 55 FDA validation set compounds had comparable structural similarity to

the training set (orange) as the compounds within the external test set (blue). Both histograms are left-closed
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with a Tanimoto similarity greater than 0.5 (Fig. 2a). As

similar inter-similarity distributions were found between

the training dataset and both the external test and FDA

validation sets (Fig. 2b), one could have naively antici-

pated a higher predictive performance (in line with the

external test set) for the FDA validation compounds

than seen in practice (Fig. 1).

Biological interpretation of protein targets

We next compared the median feature importance of

proteins in the RF and SVM model based on the DILIr-

ank (−vLessConcern) dataset which showed the best

classification performance with protein target descrip-

tors across LOCO-CV, external test set and FDA valid-

ation set (Fig. S2). The Pearson correlation between the

models' absolute respective feature importance is low

(0.29) indicating that overall they identify different pro-

tein targets as being important for DILI classifica-

tion. (Fig. 3)

Given that the focus is set on proteins with bioactivity

related to DILI risk, we only further examined those that

were significantly enriched in DILI-related compounds

as determined by a Wilcoxon rank test. This included al-

dose reductase AKR1B1 which has been linked to

APAP-induced oxidative stress and hepatotoxicity [31],

the CYP enzymes CYP1A2 and CYP2C9 which are in-

volved in xenobiotic metabolism in the liver [32], and

the p38 kinase MAPK11 which is known to mediate

stress-related signals in hepatotoxicity [33]. Moreover,

aldo-keto reductase family 1 member C3 (AKR1C3) is

essential for Phase II drug metabolism pathways and

Transmembrane prolyl 4-hydroxylase (P4HTM) inacti-

vation has reported to have a protective role against

DILI [34–36].

However, novel proteins were also identified such as

Dual specificity protein kinase (CLK1) and dual-

specificity tyrosine-phosphorylation related kinase 2

(DYRK2). Interestingly, one of the identified novel pro-

teins, namely Adenosine A1 Receptor (ADORA1), is a

Fig. 3 Distribution of protein feature importance in the best performing RF and SVM models. Proteins significantly enriched in the DILI class are

labelled in orange, while all other proteins are colored in blue. Among the proteins with high feature importance are many whose involvement in DILI

has been established before, such as AKR1B1, CYP1A2 and MAPK11, and this analysis might give further hints at novel proteins involved in DILI
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member of the same protein family as ADORA2A,

which is known in liver damage [37, 38]. In fact, the ad-

enosine receptors ADORA1 and ADORA2 share physio-

logic functions [39, 40] and ADORA1 has been found to

contribute to renal dysfunction associated with acute

liver injury in rats, supporting a plausible involvement of

this target in DILI [41]. A full list of the proteins identi-

fied as containing the highest feature importance for

classification of the current dataset with the RF and

SVM methods and their known or potential links to

hepatotoxicity are shown in Table S2.

In a next step, over-represented pathways were deter-

mined among the top protein targets, which were signifi-

cantly enriched in the DILI positive compounds (false

discovery rate (FDR) < 0.05) and showed high feature im-

portance in either the RF or SVM models. While results

across different feature importance thresholds are shown

in Figs. S3 and S4, representative results of this analysis

based on the 19 targets with the highest feature import-

ance, respectively, are shown in Fig. 4. From both the RF

and SVM models, biotransformation and Cytochrome

P450 were identified as significantly overrepresented

processes, each based on multiple genesets (see Table

S3, Fig. S3 and Fig. S4), and the involvement of these

two pathways in liver damage has been extensively char-

acterized, especially for injuries related to drug metabo-

lites [42–46]. Moreover, arachidonic acid metabolism

and metabolism of lipids were retrieved by the SVM

models, which play a well-established role in DILI, espe-

cially for injuries induced by acetaminophen [47, 48]. In

contrast, RF identifies p53 signaling and prostaglandin

synthesis as characteristic for DILI from the data (Fig.

4), which are key regulators of cellular stress response

with a specific protective role against liver damages [49,

50]. Of note, prostaglandin synthesis and arachidonic

metabolism are strictly related processes and have been

identified by both RF and SVM at different feature im-

portance thresholds (Fig. S3 and Fig. S4). In fact, prosta-

glandins are metabolites of arachidonic acid, whose

production is controlled by cyclooxygenase (COX),

which, in turn, is inhibited by NSAIDs, involved in DILI

as stated above [51, 52]. Progesterone-mediated oocyte

maturation is also over-represented in SVM and proges-

terone itself has a protective role against DILI [53]. More

specifically, the proteins in this geneset point to cell

cycle (M-phase inducer phosphatase 1 CDC25A, as well

as the cyclins CCNB2 and CCNB3) and cell growth

(RPS6KA6) with a reported role in DILI for Cyclin B2

CCNB2 [54]. Hence, both algorithms prioritize proteins

known to be involved in key processes in DILI. The

same analysis with the lower-performing models based

on the DILIrank and DILIrank (+SIDER) datasets did

not retrieve as many relevant proteins and pathways (re-

sults not shown).

Structural alerts

Two hundred thirty-three MoSS structural alerts (SAs)

and 20 SARpy SAs were derived from the DILIrank

(−vLessConcern) dataset, of which 23 and 11 were

deemed significant (p-value ≤0.05), respectively. The

Fig. 4 DILI-related processes inferred from predicted targets and pathway annotations. Processes were based on SVM (red) and RF (yellow)

models or both (orange) on the DILI (−vLessConcern) dataset. All processes are linked to the corresponding over-represented proteins in grey (19

proteins with highest feature importance). Multiple highly similar genesets were combined to arachidonic acid metabolism, Cytochrome P450

and biotransformation with the individual genesets being mapped in Table S3. Biotransformation and Cytochrome P450 are identified by both

methods, while additional pathways identified by SVM point to lipid metabolism and cell cycle, and TP53 regulation is identified by RF. Moreover,

arachidonic acid metabolism (SVM) and prostaglandin synthesis (RF), two biologically closely related processes, are identified
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number of derived SAs was sensitive to the parameters

chosen and reflects the implementation of both algo-

rithms (Methods). The quality of the inferred SAs,

alongside 12 derived from the recent review literature of

Liu et al. (2015) (5 of them were significant) [29], was

assessed using multiple metrics (Table S4), with a par-

ticular focus on precision and coverage among com-

pounds labelled as DILI positive (Fig. 5), with a

summary of metrics per structural alert source in

Table 2. Furthermore, an analysis of the occurrences of

SAs in DrugBank [55] approved compounds was

conducted.

Overall, for both data- and literature-derived SA a

common trade-off between precision and coverage was

observed i.e. if a substructure had a high precision it

rarely had a high coverage (Fig. 5). For example, the SAs

benzene derivative (SARpy) and aniline derivatives

(SARpy) had relatively low precision (0.47 and 0.65) rela-

tive to the mean precision of 0.85 ± 0.18 for SARpy SAs,

but conversely had relatively high coverage (77.59 and

31.61%) relative to the mean coverage of 14.11 ± 22.54%

for SARpy SAs. Table 2 affords a comparison between

the precision and coverage of SA from each of the three

sources analyzed in this study. In particular, it was noted

that the SAs extracted by Liu et al. [29] had lower cover-

age than those generated by MoSS and SARpy, but that

SAs from all sources had high precision on average. Fur-

thermore, it was seen that SAs from all methods were

found in at least some approved compounds from the

DrugBank database.

A maximum precision of 1 occurred for 29 out of 39

of the significant SA, of which hydrazine derivative was

seen for all three sources and had the highest coverage

in DILI positive compounds (7.47%). Thus, despite the

fact, for example, that SARpy could generate SAs with a

precision of 1, the analyzed SAs were overly specific and

only occurred in a very small proportion of DILI positive

compounds.

Discussion
Predictive modeling

Overall, the most predictive model generated in this

study was an SVM model (linear kernel, C = 0.1, ‘one vs.

rest’ decision function) trained using the DILIrank

(−vLessConcern) dataset, and ECFP4 chemical structure

descriptors. In contrast to non-linear models such as

those generated using RF, the linear kernel utilized by

this SVM model ensured a lack of interaction between

input variables which may have facilitated the model’s

improved generalization properties. This model ranked

third and first for cross-validation (0.714 ± 0.058) and

external test set (0.759 ± 0.03), respectively, by balanced

accuracy, across a compendium of studies that sought to

develop classification models for DILI, despite the sig-

nificantly smaller dataset used for model training in this

study (Table 3). It should be noted that datasets, fea-

tures, and cross-validation schemes used across these

studies vary and therefore performance metrics can

hardly be compared directly. Among others, a LOCO-

CV scheme was implemented in the present study to

avoid predicting compounds with high Tanimoto simi-

larity to the training data, which is more conservative

than the random splits used by Kotsampasakou et al. [9]

Fig. 5 Precision and percentage coverage of significant DILI-related structural alerts (SAs) (p-value ≤0.05). The maximum coverage of SAs was

77.6% (benzene derivative generated by SARpy), however the average coverage was much lower - 6.68%. All MoSS-derived SAs had a precision

of 1, the precision of SARpy SAs was lower on average but still relatively high - mean precision 0.85, and literature-derived alerts had a mean

precision of 0.88

Liu et al. Biology Direct            (2021) 16:6 Page 7 of 15



(Table 3) and translated to a more rigorous evaluation of

internal model performance.

Two key trends relating to training data quality and

model bias were identified. Firstly, a large proportion of

models, irrespective of descriptor type, showed consist-

ent performance between cross-validation and the exter-

nal test set, but then observed a steep drop in

performance on the FDA validation set (Figs. 1, S1, and

S2) despite showing similar chemical similarity distribu-

tion to the training set as seen for the external test set

(Fig. 2b). One explanation for this is that both test sets

populate different regions of chemical space with the

model showing better performance in one area, or that

while populating similar regions of chemical space, these

are not clearly attributed to one of the DILI classes and

intrinsically difficult to predict. An alternative explan-

ation for the lack of generalization could also be attrib-

uted to the fact that compounds in the training data and

external test set were labeled with higher confidence and

hence the model might be able to distinguish between

DILI positive and DILI negative compounds well. In

contrast, the compounds of the FDA validation set, ori-

ginally being labeled as ambiguous due to lack of clear

evidence, might be inherently more difficult to predict.

Deriving accurate DILI labels for compounds is a com-

plex process given the uncertainty of causality assess-

ment and the difficulty in trying to incorporate

administration factors such as dose and patient popula-

tions. Moreover, phenomena such as idiosyncratic DILI

which cannot usually be detected even in preclinical

studies and occur only in subpopulations make the task

of accurate DILI labeling even harder [3].

Secondly, across all descriptor types (ECFP4, Mordred

molecular descriptors, and predicted protein targets) bal-

anced accuracy in the cross-validation and on the exter-

nal test set decreased as the training dataset was

expanded from the high confidence dataset (DILIrank

(−vLessConcern)) to either of the lower confidence data-

sets - DILIrank or DILIrank (+SIDER) (Figs. 1, S1, and

S2). This indicated that the inclusion of compounds

from the vLessConcern class from DILIrank i.e. those

with lower annotated evidence for DILI risk, as well as

inactives derived by text-mining of package label inserts

of marketed drugs (SIDER), harmed predictive perform-

ance despite increasing the number of training samples.

While this is consistent with previous studies [9] which

demonstrated that careful data curation can lead to im-

proved performance, it should be noted that the sample

Table 2 Metrics for DILI-related significant structural alerts (p-value ≤0.05)

Source Mean precision Mean coverage (%) Min. compound presence in DrugBank Max. compound presence in DrugBank

Liu 0.88 ± 0.11 6.09 ± 1.55 25 89

MoSS 1.0 ± 0.0 18.73 ± 10.73 3 41

SARpy 0.85 ± 0.18 14.11 ± 22.54 11 1400

Mean precision and coverage (%) of significant structural alerts from MoSS, SARpy, and Liu et al. (2015) indicated that highly precise SAs alerts were generated

from all three sources, but that these observed varying degrees of coverage. The minimum and maximum presence of SAs for each source in DrugBank approved

compounds demonstrated that all SAs were found in at least some approved compounds, but that the absolute frequency varies significantly between SAs

Table 3 Comparison of performance indicators to several DILI classification models reported in the literature

Model algorithm Number of
Compounds

CV scheme CV
Balanced
accuracy

CV
Sensitivity

External test set
Balanced
accuracy

External test
set
Sensitivity

References

RF 996 (541+/
455-)

10-fold, random splits 0.645 0.680 0.588 0.536 Kotsampasakou
et al. (2017) [9]

SVM 1317 (571+/
407-)

5-fold, splitting
scheme unknown

0.767 0.948 0.597 0.848 Zhang et al.
(2016) [10]

Ensemble of RF and SVM
models (5 total)

1241 (683+/
558-)

5-fold, splitting
scheme unknown

0.701 0.799 0.719 0.909 Ai et al. (2018)
[7]

Ensemble of eight different
algorithms derived models (8
total)

1254 (636+/
618-)

10-fold, splitting
scheme unknown

0.783 0.818 0.716 0.773 He et al. (2019)
[8]

SVM 401 (174+/
227-)

5-fold, Tanimoto
similarity based
GroupKFold

0.714 ±
0.06

0.697 ±
0.08

0.759 ± 0.03 0.724 ± 0.08 Present study

Literature model performance derived from He et al. (2019) [8]. External test values quoted for the model developed in the present study are for the external test

set. Despite being trained on the fewest compounds (401) and using a conservative LOCO-CV cross-validation scheme, the SVM model developed in the present

study demonstrated robust predictivity between cross-validation and external test set
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size of the external test set and in particular the FDA

validation set (49 compounds) were small. This makes it

difficult to accurately evaluate model performance and

accordingly also to confidently compare models (Fig. 1).

Larger datasets would be required to allow for en-

hanced fine-grained sampling of chemical space and the

establishment of a model applicability domain. In the

present study, the poor generalization to the FDA valid-

ation set demonstrated that the relationship between

chemical structure and the propensity to cause DILI is

too complex for the model to learn from the small train-

ing dataset used (401 compounds). However, it must be

noted that even if larger and higher quality datasets were

acquired, model predictivity would still be limited as

relevant information that may relate to the manifestation

of DILI such as dose or the influence of metabolism in

the formation of hepatotoxic prodrugs were not consid-

ered in the descriptors used in the present study.

Protein targets

From the models which used predicted protein targets

as features, we extracted biological processes by incorp-

orating prior knowledge on bioactivity using PIDGIN

and the functional contexts of proteins based on path-

way maps from multiple databases derived from MSigDB

[25]. SVM and RF both identified biotransformation and

Cytochrome P450, two important pathways involved in

drug metabolism and elimination and strictly related to

DILI [42–46]. Moreover, arachidonic acid metabolism

and prostaglandin synthesis are identified, which are

physiologically involved in the inflammation process [49,

50] and the mechanism of action and toxicity of NSAI

Ds, one of the most common causes for DILI [51, 52].

While the inferred biological processes have been known

to be associated with DILI, this is not true for many of

the proteins identified by feature importance themselves

(Table S2), such as CLK1 and DYRK2. Given that the

analysis was based on target binding probabilities, it can

be hypothesized that these proteins might be off-targets

directly (or indirectly) involved in the pathogenesis of

DILI. The described workflow hence was able to derive

functional hypotheses on biological processes from com-

pound DILI annotations, which can subsequently be in-

vestigated experimentally.

Structural alerts

In this study, structural alerts (SAs) related to DILI were

derived using the SARpy [27] and MoSS [26] algorithms

using the DILIrank (−vLessConcern) dataset. Both MoSS

and SARpy derived SA were found to be comparable to

those reviewed by Liu et al. (2015) [29] in terms of preci-

sion and coverage. It should be noted that in contrast to

the SA of SARpy and MoSS which were explicitly de-

rived and subsequently tested on the dataset used in this

study, the SA of Liu et al. (2015) were derived using data

from different sources, mainly LiverTox [56].

Of the significant SA obtained by SARpy, MoSS, and

Liu et al. (2015) only hydrazine derivative (NN) was

found to overlap between all of them (Table 4) and this

obtained a precision of 1. However, a DrugBank [55]

database search of the significant SA showed that all of

the significant SA derived using MoSS occurred in at

least 3 approved drugs, and those from SARpy and by

Liu et al. (2015) occurred in at least 10 approved drugs

(Table S4). For example, aniline derivative (SARpy) and

carbamide derivative (SARpy), were present in 422 and

80 marketed drugs, respectively (Table S4). From the

methodological angle it illustrated that whilst SA can be

informative about an increased probability of a com-

pound being toxic, the presence of all structural alerts

analyzed in this study in DrugBank approved com-

pounds demonstrated they are not diagnostic of DILI in

isolation. Administration dose is a key consideration to

make when developing therapeutics and is not taken

into account when simply screening for the presence of

a structural alert. For example, hydrazine derivatives

(shared between SARpy, MoSS, and Liu et al. (2015))

can increase muscle, neural, kidney, liver, blood and

spleen toxicity [57], however, it is present in e.g. procar-

bazin, which is a registered antineoplastic agent used in

Hodgkin’s disease treatment and is an orphan drug for

glioma [58]. This example demonstrates that it can be

beneficial to accept an increased toxicity risk in favor of

prolonging the patient’s life.

SAs can play a supportive role in initial screening and

exploratory analysis by flagging potentially toxic com-

pounds early [59, 60] and guiding lead optimization by

medicinal chemists [61]. Their main advantage is that

they are easy to understand and implement [62]. How-

ever, one should be cautious when interpreting fre-

quency analysis results in the case of complex endpoints

as SAs might not capture sufficiently the underlying bio-

logical mechanisms resulting in high false positive and

false negative rates [63].

Conclusions
In this study, DILI classifiers were trained using data

from the DILIrank and SIDER databases, by employ-

ing the SVM and RF algorithms with either ECFP4

fingerprints, Mordred molecular descriptors, or pre-

dicted protein targets as chemical structure-derived

descriptors. The best predictive performance was seen

when using more reliable data (excluding the DILIr-

ank vLessConcern class and SIDER text-mined inac-

tives). This underlines the importance of data quality

for such approaches, although it should be noted that

a true comparison is difficult given the difference in

size between datasets, and the generally small number
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of samples. The best model achieved comparable per-

formance in cross-validation and on the external test

set to models reported in the literature (Table 3). On

the other hand, performance on an additional test set

provided by CAMDA (http://papers.camda.info/) was

much lower, underlining the difficulty of accurately

validating DILI models given the low number of la-

beled compounds. In the present study, the datasets

used to evaluate the DILI model were both small,

consisting of 80 (for the high confidence dataset) and

49 compounds respectively, with the latter proving

much more difficult to predict despite the comparable

structural similarities of the two datasets to the model

training dataset.

Protein target descriptors achieved inferior predictive

performance, but their advantage, compared to Mordred

molecular descriptors and ECFP4 fingerprints, is that

each individual feature corresponds to a protein and is

hence interpretable from a biological perspective. Based

on the feature importances in predictive models, it was

hence possible to identify known and potentially novel

key proteins involved in DILI, as well as important bio-

logical processes in drug-induced liver apoptosis, such as

biotransformation and the mechanism of action and tox-

icity of NSAIDs, which are known to be a common

cause for DILI.

Moreover, we inferred structural alerts with compar-

able precision and coverage to previously derived ones.

However, due to the high structural diversity of DILI an-

notated compounds, the derived alerts were found to

have rather low compound coverage by themselves.

Moreover, all alerts were found to be present in ap-

proved drugs further highlighting the challenge in deriv-

ing practically useful structural alerts for DILI, and

underlining the importance of quantitative factors such

as dose when screening compounds for DILI. Hence,

overall, this work achieved similar results as seen in pre-

vious studies with respect to performance of predicting

DILI; on the other hand it introduced the utilization of

biologically interpretable predicted protein targets to the

field and underlined the importance of large and reliable

dataset annotations when developing predictive models

for DILI.

Methods
Data preparation

Compounds’ SMILES strings were retrieved from the

DILIrank database (1036 compounds) [17], and the

SIDER 4.1 database (1430 compounds) [18]. Side effects

are recorded in SIDER using the preferred terms of the

MedDRA (Medical Dictionary for Regulatory Activities),

which provides a hierarchical organization of adverse

events. Starting with the entire SIDER dataset (SIDER

4.1), all compounds with at least one reported side effect

contained in the MedDRA’s System Organ Class hepato-

biliary disorders were discarded to keep only drugs for

which no liver-related side effects have been reported.

The SMILES retrieved from DILIrank and SIDER were

standardized using the Python package Standardiser of

Atkinson et al. (2016) [64]. This involved the removal of

counterions and solvents and the neutralization of the

remaining fragments if necessary. Moreover, tautomers

were standardized according to the rules implemented

in the standardizer. Subsequently, compounds that fell

into at least one of the following categories were dis-

carded: mixtures of more than one active ingredient, in-

organic molecules, metal-organic compounds, and

compounds with a molecular weight above 1 kDa. If

compounds were present in both the DILIrank and the

SIDER dataset, the compound from the SIDER inactive

dataset was removed to avoid duplicate entries. The final

set contained 923 compounds composed as follows:

DILIrank: 174 vMost-DILI-Concern, 260 vLess-DILI-

Concern, 227 vNo-DILI-Concern, SIDER: 262 com-

pounds without reported liver-related side effects.

ECFP4 [17] hashed to 2048 bits were generated using

the Python library RDKit (version 2019.03.1.0) [65]. One

thousand one hundred eighty-nine 1D and 2D molecular

descriptors were generated using the Python package

Mordred [20]. For the generation of models, the values of

the molecular descriptors were scaled to a Gaussian distri-

bution with zero mean and unit variance using the Stan-

dardScaler function in the scikit-learn Python library

(version 0.21.2) [66]. Bioactivity for 1673 human protein

targets was predicted using the PIDGINv3 software [21–

23]. 10 μM was chosen as the bioactivity cut-off to con-

sider highly and marginally active compounds. To get a

Table 4 DILI-related significant structural alerts (p-value ≤0.05) with the highest precision and coverage (%)

Source Substructure Name Precision Coverage
(%)

p-
value

Presence in
DrugBank

DrugBank compound with SA

Liu, SARpy,
MoSS

Hydrazine derivative
(NN)

1 7.47 0.00001 37 testosterone enantate benzilic acid
hydrazone

MoSS Hydrazine derivative
(N(−N)-C)

1 6.32 0.00009 33 testosterone enantate benzilic acid
hydrazone

SARpy Furan derivative
(c1ccco1)

1 5.75 0,0002 19 diloxanide furoate

The following quality metrics are shown for the best substructures from MoSS, SARpy, and Liu et al. (2015): Precision, coverage in DILI positive compounds (%), p-

value, as well as the number of approved compounds in Drugbank [44] which contain the substructure, alongside an example of such a structure
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prediction for every compound-target pair, no threshold

for the applicability domain was applied. For 6 out of the

923 drugs (4 of them from SIDER) no protein target pre-

diction was made, since their structures could not be stan-

dardized internally in the PIDGINv3 software.

In order to implement a LOCO-CV scheme (to ensure

similar compounds were not in different folds), we per-

formed hierarchical clustering of compounds. Based on

pairwise Tanimoto similarities calculated using ECFP4, a

tree was generated using hierarchical clustering with the

Nearest Point Algorithm implemented in SciPy (version

1.2.1) [67]. Clusters were generated by cutting the hier-

archical tree at a distance of 0.5, which resulted in com-

pounds with a Tanimoto similarity of at least 0.5 being

in the same cluster.

Model generation

Overview

We chose SVM and RF as methods as they have demon-

strated good and robust performance, and are less prone

to overfitting in comparison to more sophisticated

methods. For both methods, we used the scikit-learn Py-

thon library (version 0.21.2) implementations to train

binary classification models for DILI. Models were devel-

oped for all three input feature spaces (ECFP4 finger-

prints, protein targets, and Mordred molecular

descriptors). In addition, we generated models using dif-

ferent subsets of data considering different DILIrank

classes as well as additional inactives from the SIDER

database (Table 1).

Model Hyperparameter grid search

Firstly, for SVMs [68] we used a classifier as implemented

in the sklearn Python library and performed a hyperpara-

meter grid search over the following parameters: Kernel:

[‘linear’], Class weight: [‘balanced’], Decision function:

[‘one vs. rest’], Shrinking: [‘True’], C: [0.05, 0.1, 0.2, 0.3,

0.4, 0.5, 1]. Of the possible SVM kernels implemented

sklearn, we only evaluated ‘linear’ as it alone allows for

easy interpretation of model feature importances. Sec-

ondly, for RFs [69] we used a classifier as implemented in

the sklearn Python library and performed a hyperpara-

meter grid search over the following parameters: Boot-

strap: [‘True’], Class weight: [‘balanced subsample’], Max.

Tree depth: [10, 15, None], Min. samples per leaf: [1–3],

Number estimators: [100, 200, 300, 400, 500, 750, 1000].

Training procedure

The predictive performance of models was evaluated

using a 5-fold cross-validation inside a 10-fold training

scheme. The original dataset was split into 10 stratified

folds based on DILI class label using the StratifiedKFold

function in scikit-learn with parameters: n_splits = 10,

and shuffle = True to assess the impact of different

training data on model predictive performance. Within

each training fold, an internal grid search over model

hyperparameters was conducted using an internal 5-fold

LOCO-CV to select the best model per training fold.

The best model in each fold, assessed by balanced accur-

acy, was then used to predict for the holdout external

test set. The LOCO-CV scheme was implemented with

the GroupKFold function in scikit-learn with clusters

only containing compounds with a ECFP4 Tanimoto

similarity [70] greater than or equal to 0.5. This cross-

validation scheme was utilized irrespective of the de-

scriptor type. In addition, baseline models were trained

and evaluated using the same procedure as mentioned,

but with prior y-scrambling of the output labels (3 runs

of different random scramblings). To further evaluate

model predictive performance, an FDA validation set

composed of 49 compounds (a subset of 55 - the

CAMDA organizers removed 6, of which were unknown

to the authors) previously labeled as vAmbiguous-DILI-

Concern, but later relabeled as DILI positive or DILI

negative by the FDA was used as an additional test set.

To evaluate the relationship between the mean chem-

ical similarity of a compound to its 5 nearest neighbors

in the training set and model correct classification rate a

LOO-CV was conducted for the best performing model

(SVM, DILIrank (−vLessConcern, (Fig. 2a). This re-

quired the calculation of the Tanimoto similarities be-

tween the training dataset and the left-out compound

using ECFP4 fingerprints and predicting its DILI label

within each LOO-CV fold. Furthermore, the Tanimoto 5

nearest neighbor inter-similarity of the FDA validation

set to the training set was compared to the correspond-

ing similarities of the external test set (Fig. 2b). As we

previously evaluated the performance of the model

(SVM, DILIrank (−vLessConcern)) with 10 distinct ex-

ternal test sets (in a 10-fold cross-validation scheme; see

above), the similarities are averaged across all 10 pairs of

training and test set.

Balanced accuracy (eq. 1) was primarily used to assess

the predictive performance of the models. We also uti-

lized specificity to compare models to those previously

published in the literature (Table 3). Those metrics were

calculated from a confusion matrix consisting of true

positives (TP), true negatives (TN), false positives (FP)

and false negatives (FN).

Balanced Accuracy ¼

TP

TP þ FNð Þ
þ

TN

TN þ FPð Þ

2
ð1Þ

Interpretation of protein targets

Protein targets with higher binding probability in DILI

positive compounds, called DILI-enriched targets, were
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determined using a one-sided Wilcoxon rank-sum test

with a FDR of < 0.05. Among those, proteins features

with high median importance across the 10 train-test

splits were identified for RF and SVM models, respect-

ively. The feature importance for RF models imple-

mented in scikit-learn [66] describes the decrease of

node impurity achieved by a feature, averaged over all

trees in the forest, as a fraction, so that the importance

of all features included in the model sum up to 1 [69].

In SVM models using linear kernels the importance of

features is reflected by the magnitude of their coeffi-

cients describing the hyperplane [68]. The sign indicates

which class is favored by the presence of a given feature.

The values used for further analysis were the median im-

portance of a feature across the 10 train-test splits.

Over-enrichment analysis was performed using the

clusterprofiler R package (version 3.17.5) [71]. For this,

pathway maps were derived from MSigDB [25] via the

msigdbr R package from Reactome [72], KEGG [73] and

Wikipathways [74]. To this end, the protein targets with

highest feature importance were mapped to Entrez gene

IDs with the biomaRt package [74] and the list of PIDG

IN target proteins was used as background. Only gene

sets containing 10 or more genes were considered and

p-values were adjusted using the Benjamini-Hochberg

procedure. The analysis was performed using various

feature importance thresholds scanning across the top

quantile of absolute feature importance values.

Structural alerts

Derivation of structural alerts

Two algorithms for SA derivation were used, with the

DILIrank (−vLessConcern) dataset as input - MoSS and

SARpy. MoSS is a graph-based depth-first search

method used for chemical substructure mining [26] and

we used the KNIME (v3.7.2.) [61] implementation of

MoSS in the current study. It derives potential SAs as

“subgraphs” with only heavy atoms, which are neither

SMILES nor SMARTS. Users might decide to approxi-

mate the subgraphs with SMARTS in order to match

the substructure to molecules (denoted by SMILES).

This program searches for frequent molecular substruc-

tures and discriminative fragments in a set of molecule

graphs. In a graph, a vertex is a representation of an

atom and an edge is a representation of a bond. Each

vertex has attributes related to atom type, charge, and

whether it is a part of an aromatic ring. Edges indicate

the bond type. The search starts from the root of the

graph tree being a single atom and follows recursively

through atoms linked to leaf atoms with subsequent

bonds. Substructures are then created based on each

state of the graph tree and are pruned if the substructure

occurrence in the active class is lower than the defined

minimum focus support (MFS).

In order to find a discriminative fragment, two thresh-

olds should be defined by the user. The first one is the

aforementioned MFS used for pruning and the second

one is minimum complement support (MCS) i.e. the

substructure occurrence in the inactive class. The fol-

lowing KNIME MoSS settings were chosen: 1% MFS

(the minimum fraction of the fragment-contained che-

micals in the DILI positive class - the true positive rate),

0.01% MCS (the maximum fraction of the fragment-

contained drugs in the DILI negative class - the false

positive rate). In addition, only substructures in which

the number of bonds ranged from 2 to 15 were kept.

Pure carbon fragments were ignored and ring mining

was applied.

SARpy is a string-based search method used for chem-

ical substructure mining [27]. Briefly, SAs in the form of

SMARTS strings are generated by recursively breaking

every combination of bonds working directly on the

SMILES strings of the input dataset. Fragments are then

internally validated against all compounds in the dataset,

and then a reduced set of substructure “rules” is ex-

tracted. In this work’s implementation of SARpy (v.1.0)

the fragmentize function parameters minAtoms and

maxAtoms were set to 2 and 15 respectively, and the

‘target’ (i.e. DILI positive or DILI negative) was set to

None. Structural alerts for DILI were extracted using the

extract function with the parameters: 5 minHits, 1

minLR, and 0 minPrecision. These settings are identical

to those used by Yang et al. (2017) [75], except that a

precision threshold was not applied in order to generate

a larger compendium of SAs to analyze.

Evaluation of structural alerts

Structural alerts’ SMARTS were matched to compounds’

SMILES using the RDKit HasSubstructMatch function in

Python (RDKit 2018.09.3.0). Precision (eq. 2) and cover-

age in DILI positive compounds were both used to as-

sess the predictive performance of the SAs. In addition,

significance measured by p-value was also calculated for

each SAs using the SciPy (version 1.3.0) stats module

fisher_exact function with alternative parameter set to

‘greater’.

Precision Pð Þ ¼
TP

TP þ FPð Þ
ð2Þ

As previously mentioned, because MoSS utilizes a

graph-based search approach it may not consider the

slight difference between aromatic and aliphatic atoms,

leading to mismatches when matching its substructures

to SMILES. For example, in MoSS, “N-C” can match

both aminofuran (NC1 = CC=CO1) and aminotetrahy-

drofuran (NC1CCCO1). However, in SMARTS, “C” is
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different from “c”, so RDKit will not match “N-C” with

aminofuran, because the carbons are aromatic. Despite

this, the significance of these SAs is based on the pres-

ence calculated using RDKit.

To investigate a SA’s presence in already approved and

marketed drugs, SAs were matched to compounds in the

DrugBank database [55] (v.5.1.4) using the RDKit (ver-

sion 2018.09.1) [65] HasSubstructMatch function. This

involved firstly standardizing compounds’ SMILES using

the Python package Standardiser of Atkinson et al.

(2016) [64]. As some SMILES could not be standardized,

this step reduced the total number of DrugBank com-

pounds in the analysis from 2411 to 2136.
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Additional file 1: SI. Overview of gene expression data preparation,

DILI model generation, and DILI label prediction performance for models

derived using L1000 gene expression data. Gene expression data for 14

distinct cell line-time-dose combinations was extracted for all compounds

with DILI labels. Replicate measurements for the same compound were

not aggregated resulting in differing numbers of positive and negative

data points for each dataset. Separate RF and SVM classification models

were trained using either the DILIrank or the DILIrank (−vLessConcern)

datasets for each of the 14 distinct cell line-time-dose combinations. Un-

like models generated using descriptors derived from chemical structure,

the RF and SVM models developed did not achieve meaningfully higher

prediction accuracies than y-scrambling models.

Additional file 2: Figure S1. DILI label prediction performance

(balanced accuracy) of RF and SVM models trained using the DILIrank

(−vLessConcern) dataset and Mordred molecular descriptors for 5-fold

LOCO-CV, external test set, and FDA validation set (Methods). The bal-

anced accuracy for 5-fold internal cross-validation, external test set, and

FDA validation set for 10 models trained using different training data sets

(DILIrank (−vLessConcern), DILIrank, DILIrank (+SIDER)) and training data-

set splits is shown via whisker plots. The median model performance of 3

y-scrambled models is shown as triangles for cross-validation and exter-

nal test set. Predictive accuracy is stable between cross-validation and ex-

ternal test set, but a distinct drop in predictive accuracy is observed

when predicting the FDA validation set.

Additional file 3: Figure S2. DILI label prediction performance

(balanced accuracy) of RF and SVM models trained using the DILIrank

(−vLessConcern) dataset and protein target descriptors for 5-fold LOCO-

CV, external test set, and FDA validation set (Methods). The balanced ac-

curacy for 5-fold internal cross-validation, external test set, and FDA valid-

ation set for 10 models trained using different training data sets (DILIrank

(−vLessConcern), DILIrank, DILIrank (+SIDER)) and training dataset splits is

shown via whisker plots. The median model performance of 3 y-

scrambled models is shown as triangles for cross-validation and external

test set. Predictive accuracy is stable between cross-validation and exter-

nal test set, but a distinct drop in predictive accuracy is observed when

predicting the FDA validation set.

Additional file 4: Figure S3. Enriched pathways across different feature

importance cutoffs for RF using the DILIrank (−vLessConcern) dataset.

Enriched pathways are shown across different feature importance cutoffs

which are identified by the percentile of DILI-enriched protein targets

covered. Significant pathways (FDR < 0.05) are colored by -log (FDR),

pathways without any gene present are shown in white and insignificant

ones in grey. Regulation of TP53 through phosphorylation is the pathway

conserved at the highest threshold identifying significant pathways. Other

identified pathways include arachidonic acid metabolism and prostaglan-

din synthesis.

Additional file 5: Figure S4. Enriched pathways across different feature

importance cutoffs for SVM using the DILIrank (−vLessConcern) dataset.

Enriched pathways are shown across different feature importance cutoffs

which are identified by the percentile of DILI-enriched protein targets

covered. Significant pathways (FDR < 0.05) are colored by -log (FDR),

pathways without any gene present are shown in white and insignificant

ones in grey. While some pathways are only significant at high thresh-

olds, such as steroid hormone biosynthesis, others are only found at

lower thresholds, e.g. TLR signaling. Additionally, a set of pathways in-

cluding biotransformation, cytochrome 450 and arachidonic acid metab-

olism are observed across the majority of thresholds.

Additional file 6: Table S1. Performance of models trained using the

DILIrank (−vLessConcern) dataset. Shown is mean ± standard deviation

for 7 metrics (MCC - Matthew’s Correlation Coefficient, PRAUC - Precision-

Recall Area Under Curve, ROCAUC - Receiver-Operator-Characteristic Area

Under Curve) for models trained using ECFP4, Mordred molecular de-

scriptors (MD), and protein target descriptors (PT). Row names correspond

to the descriptor type, algorithm, and the test set - external test set (ET),

FDA validation set (FDA). The best external test set and FDA validation

set performance per metric are shown in bold. For the FDA validation

set, PRAUC and ROCAUC were not available as only the confusion matri-

ces of the predictions were provided by CAMDA. The model trained

using SVM and ECFP4 descriptors achieved the best performance over

the FDA validation set.

Additional file 7: TableS2. Proteins with high feature importance in RF

and SVM, and links to DILI. The 19 proteins with the highest feature

importance in RF or SVM models are shown. The feature importance is

shown in bold if the protein ranked among the top 19 in the respective

model. Many proteins identified possess known functions in liver drug

metabolism and cell stress. Those proteins with plausible involvement in

DILI are indicated in italics.

Additional file 8: TableS3. Pathways with high feature importance in

RF and SVM, and links to DILI. The overrepresented gene sets for 19

proteins with the highest feature importance in RF or SVM models are

shown. Many pathways identified possess known functions in liver drug

metabolism and cell stress.

Additional file 9: TableS4. Top significant structural alerts (p-value

≤0.05). The following quality metrics are shown: precision, coverage in

DILI positive compounds (%), and number of Drugbank [44] approved

compounds with the substructure are shown. *MoSS substructure

notation is in the form of subgraphs with only heavy atoms, which are

neither SMILES nor SMARTS.
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