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II
first encountered John Conway’s work on frieze

patterns around 2006 when I participated in a reading
group on cluster algebras and related topics in the pure

mathematics group at the University of Leicester. The two
papers [7, 8] were on our reading list at the time, and they
are most remarkable, for they invite the reader to a
discovery of the properties of frieze patterns. The first
presents a list of 39 problems to study, whereas the second
gives hints and solutions for them. Problems (28) and (29)
are known as the Conway–Coxeter theorem (Theorem 1
below), relating integer friezes with triangulations of
polygons:

Problem (28): Is there just one frieze pattern of integers for
each triangulated polygon?

Problem (29): Is there just one triangulated polygon for
each frieze pattern of integers?

These two problems have led to a huge amount of
activity around friezes, and in this article, I provide an
overview, not exhaustive to be sure, of the development
initiated by Conway’s contribution to friezes almost 50
years ago. It goes without saying that there is not enough
space here to give credit to all of the developers of this
area. There are currently 88 articles on MathSciNet with the
word ‘‘frieze’’ in the title. Some of them appeared in the 20
years following the inception of friezes. However, the
discovery of the link between friezes and cluster algebras
by Fomin and Zelevinsky [10] and between friezes and
cluster categories by Caldero and Chapoton [6] led to
renewed interest in the topic, with over 60 articles having
been written on friezes in the last ten years.

Frieze patterns were invented by Coxeter in [9], where he
attributed thefirst instanceof such a friezepattern to relations
Gauss proved in his study of the pentagramma mirificum, a
spherical pentagram formed by five successively orthogonal

great-circle arcs. This gives a pattern as follows, arising from
the 5-cyclic recurrence ðuiÞi with ui�1uiþ1 ¼ 1þ ui; for all i

(reducing indices modulo 5):

0 0 0 0 0
1 1 1 1 1

· · · u1 u3 u5 u2 u4

u5 u2 u4 u1 u3 · · ·
1 1 1 1 1

0 0 0 0 0

Coxeter also related this first example to continued frac-
tions by considering ci ¼ 1þ ui, and he proved further that
frieze patterns of integers are characterized by a divisibility
condition on entries in a diagonal.

Coxeter’s original definition [9] has been generalized in
many directions, resulting in work on infinite friezes,
SLk-friezes, SLk-tilings, tropical friezes, 2-friezes, q-de-
formed friezes (see Ovsienko and Morier-Genoud’s article
in this issue [13]), etc. It became apparent that friezes are of
interest in various areas such as combinatorics, cluster
algebras, geometry, integrable systems, and representation
theory. For a good survey, see Sophie Morier-Genoud’s
paper [12], in which many of these directions and links to
the literature can be found. Frieze patterns were the topic
of a mini-workshop in Oberwolfach in 2015 [17]; an MFO
snapshot authored by Thorsten Holm appeared subse-
quently [11]. The combinatorial flavor of friezes has also
made them quite popular for outreach activities. There are
even two beautiful videos on friezes by Numberphile,
presented by Sergei Tabachnikov [15, 16].

Here, I concentrate on the combinatorial geometric
interpretation of friezes inspired by Problems (28) and (29)
above. After recalling the notion of a frieze pattern and
giving some of the properties of closed friezes, I concen-
trate on infinite friezes, offering a geometric interpretation
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via matchings and explaining the growth of the entries in
those friezes.

Frieze Patterns
First, some definitions.

DEFINITION 1. A frieze pattern is formed by a finite or

infinite number of rows, shifted with respect to each other,

starting with a row of 0’s, followed by a row of 1’s and then

rows of elements aij , i þ 2 � j, of an integral domain (here,

the integral domain will usually be the integers, but there

will be an instance in which the entries are cluster variables

of a cluster algebra):

. . . 0 0 0 0 0 . . .

. . . 1 1 1 1 1 1 . . .

. . . a−1,1 a0,2 a1,3 a2,4 a3,5 . . .

. . . a−2,1 a−1,2 a0,3 a1,4 a2,5 a3,6 . . .

. . . a−2,2 a−1,3 a0,4 a1,5 a2,6 . . .

...
...

...
...

...
...

There are two conditions on these patterns. First, every
square formed by four neighboring entries must satisfy the
unimodular or diamond rule: we have bc� ad ¼ 1 for
every four entries of the form

a

b c

d

Second, such a pattern must be periodic: there is an n[ 0
such that ai;j ¼ aiþn;jþn, for all i þ 2 � j.

A frieze pattern is called integral if all entries aij are

positive integers. It is called closed if after a finite number
of rows, it stops with a second row of 1’s followed by a row
of 0’s. Otherwise, the frieze pattern is infinite. The order of
a closed frieze is defined to be one less than its number of
rows (including the zeros). (The number of nontrivial rows
is called the width of the frieze.) An example of a closed
integral frieze of order 6 appears in Figure 1. An example
of an infinite frieze will be given below in Example 3.

Every integral frieze pattern is determined by its first
nontrivial row. This is true more generally (for integer
domains) if every 3� 3 diamond in the frieze has deter-
minant 0. Such frieze patterns are said to be tame. If the
frieze is n-periodic and tame, then any n successive entries
ai;iþ2; . . .;aiþn�1;iþnþ1 determine the frieze under iterated

application of the diamond rule. Such a tuple is called a
quiddity sequence for the frieze.

From now on, we will mostly concentrate on integral
friezes. In this case, we have a geometric interpretation of
frieze patterns via triangulations of polygons (if the frieze

pattern is closed) or of annuli (if it is infinite), as we will
see.

Closed Frieze Patterns

First note that if F is a closed integral frieze of order n, then
F is n-periodic; cf. [7, (21)]. This can be viewed as a con-
sequence of the following theorem, known as the Conway–
Coxeter theorem.

THEOREM 1. [7, 8, Problems (28), (29)] There is a bijection

between frieze patterns of order n and triangulations of

convex n-gons.

To seehow thisworks, consider a convexpolygonPnwith
n vertices, labeled clockwise by f1; 2; . . .;ng. Take a trian-
gulation of Pn, i.e., a maximal collection by noncrossing
diagonals of Pn (any such collection contains n� 3 diago-
nals). Let ai be the numbermatchings of triangleswith vertex
i, i.e., the number of triangles incident with vertex i. Then
ða1; . . .;anÞ is the quiddity sequence of a frieze pattern of n.

One of the first properties of frieze patterns is that every
quiddity sequence of a closed integral frieze contains at
least two entries equal to 1. Theorem 2 gives a geometric
reason for this, since every triangulation contains at least
two triangles that are peripheral, i.e., for which two edges
are boundary segments. Another fact is that if ða1; . . .;anÞ is
a quiddity sequence with n[ 2, then there can be no two
entries 1 next to each other.

REMARK 1. There is a way to go from quiddity sequences

with n elements to quiddity sequences with nþ 1 elements

and back, as described in [7, (23)]: If ða1; . . .;anÞ is the

quiddity sequence of a frieze pattern of order n and i is

some index, 1 � i � n, then the sequence ða1; . . .;ai þ
1; 1;aiþ1 þ 1; . . .;anÞ is the quiddity sequence of a frieze

pattern of order nþ 1. We call this operation ‘‘gluing.’’ The

reverse operation of gluing is to start with an entry ai ¼ 1 in

a quiddity sequence and remove it, by simultaneously

decreasing its two neighbors by 1: from

ða1; . . .;ai�1; 1;aiþ1; . . .;anÞ, we obtain the new quiddity

sequence ða1; . . .;ai�1 � 1;aiþ1 � 1; . . .;anÞ, with n� 1

entries. This is called ‘‘cutting (at an entry 1).’’

In terms of triangulations of polygons, gluing corre-

sponds to adding a vertex with a peripheral triangle to the

Figure 1. A closed integral frieze of order 6.
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triangulated polygon, while the operation cutting corre-

sponds to removing a peripheral triangle.

REMARK 2. (Idea of the proof of Theorem 1: first, check

that the claim is true for n ¼ 3, and then use induction.) To

go from a frieze pattern F of order n � 2 to a triangulated

n-gon, modify the quiddity sequence of F by cutting at an

entry 1. The result is a frieze pattern F0 of order n� 1. By

the induction hypothesis, this corresponds to a triangula-

tion of a polygon on n� 1 vertices. Glue a triangle at the

appropriate position to get the desired triangulation.

To go from a triangulated n-gon with n � 4 to a frieze,

use the fact that every triangulated polygon has a periph-

eral triangle. Removing this gives a triangulated polygon

with n� 1 vertices. This corresponds by induction to a

closed frieze of order n� 1. Extending its quiddity

sequence by gluing yields the quiddity sequence for the

desired triangulated n-gon.
By Theorem 1, we can give frieze labels of the vertices of

the polygon to the entries of any closed integral. The entries
in the quiddity sequence ðan;2;a1;3; . . .;an�1;1) are viewed as

being in positions (n, 2), (1, 3), (2, 4), . . ., ðn� 1; 1Þ, and by
going along a diagonal NW–SE, we keep the first coordinate,
with the entries in diagonals NE–SWhaving the second entry
fixed. Figure 2 shows this for n ¼ 6.

With this labeling system, we can explain how every
entry in a closed integral frieze is given by a set of
matchings for a triangulation, a result of Broline, Crowe,
and Isaacs [5].

Consider a triangulated convex n-gon P. Let i, j be two
vertices of P with j 62 fi � 1; i; i þ 1g. Denote by Mði; jÞ the
set of matchings of triangles with the set of vertices fi þ
1; . . .; j � 1g (reducing modulo n). Note that

fi þ 1; . . .; j � 1g [ fj þ 1; . . .; i � 1g ¼ f1; . . .;ng n fi; jg:

THEOREM 2. [5, Theorem 1] Let T be a triangulation of a

convex n-gon P and let F ¼ ðaijÞij be the frieze associated

with T. Then jMði; jÞj ¼ aij ¼ jMðj; iÞj for any two vertices

i, j of P with j 62 fi � 1; i; i þ 1g.

EXAMPLE 1. Consider a fan triangulation of a hexagon

with all diagonals incident with vertex 1, as shown in

Figure 3.

The quiddity sequence of the corresponding frieze is

(4, 1, 2, 2, 2, 1), as depicted in Figure 1. To illustrate

Theorem 2, we determine a few sets of matchings. There

are four triangles incident with vertex 1; the set of

matchings for vertex 1 is Mð6; 2Þ ¼ fM1;M2;M3;M4g and

a6;2 ¼ 4.

For entry a6;3, we have to consider matchings between

triangles and the vertices 1, 2:

Mð6; 3Þ ¼ fðM1;M4Þ; ðM2;M4Þ; ðM3;M4Þg
(the first entry in the tuple is the triangle allocated with
vertex 1; the second entry is the triangle allocated with
vertex 2), a6;3 ¼ 3. We compare this with Mð3; 6Þ, match-

ing triangles to the vertices 4, 5 of the polygon:

Mð3; 6Þ ¼ fðM3;M2Þ; ðM3;M1Þ; ðM2;M1Þg

and a3;6 ¼ 3.

Let F be a closed integral frieze. Let n0 be its minimal
period. If F is finite of order n, it arises from a triangulation
of an n-gon. The minimal period n0 is equal to n/3 if the
triangulation is invariant under a rotation of 120 degrees,
and is equal to n/2 if the triangulation is invariant under a
rotation of 180 degrees. It is equal to n otherwise.

EXAMPLE 2. Consider the closed friezes of small order. If

F is of order 4, its quiddity sequence is (1, 2, 1, 2) or

(2, 1, 2, 1). In both cases, the smallest period is 2. If F has

order 5, it arises from a triangulation of a pentagon, and

since no such triangulation has a nontrivial rotational

symmetry, the smallest period is 5. If F has order 6, it

comes from a triangulation of a hexagon. Among such tri-

angulations are the triangulations with rotational symmetry

by 180 degrees, e.g., with diagonals (1, 3), (3, 6), (4, 6),

and the triangulations with 3-fold symmetry, e.g., with

diagonals (1, 3), (1, 5), and (3, 5). In the former case, the

frieze has period 3, while in the latter case, it is 2-periodic.

Figure 2. The layout of a frieze of order 6.

Figure 3. Fan triangulation of a hexagon with all diagonals

incident with vertex 1.
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In Figure 4 we show the 5-periodic frieze of order 5,

with quiddity sequence (1, 2, 2, 1, 3), and a 2-periodic

frieze of order 6, with quiddity sequence (1, 3, 1, 3, 1, 3).

For later use, we add rows of �1’s at both ends.

A Frieze Determinant

As an immediate consequence of the geometric interpre-
tation by Broline et al. [5] of all frieze entries, we recover
the n-periodicity of friezes of order n, and we see that
closed integral friezes are invariant under a glide reflection.
We consider a fundamental domain for this glide reflection
given by the entries in positions (i, j) with 1 � i � n� 3 (as
in Figure 2). We include the n� 1 entries equal to 1 and
the n entries equal to 0 above as well as the entry 1 below
the two positions ð1;n� 1Þ and (2, n). These entries form a
triangle, and we take it as the upper triangular part of an
n� n matrix, with a row of 0’s on the diagonal. Reflecting
along the diagonal, we create a symmetric matrix M ¼
MðT Þ whose entries are the matching numbers of a frieze
pattern. This matrix depends on the chosen triangulation or
on the corresponding matching numbers. Its determinant,
however, is independent of these choices; it depends only
on the size of the polygon.

THEOREM 3. [5, Theorem 4] Let M be the symmetric

matrix corresponding to the frieze of a triangulation of an

n-gon. Then detM ¼ �ð�2Þn�2.

The determinant result can be stated in terms of cluster
variables. We associate the entries of a frieze of order n
with the diagonals of a convex n-gon. These, in turn, cor-
respond to cluster variables xij , 1 � i \ j � 1 � n, of a

cluster algebra of type An�3; see [10, Section 12.2]. The
clusters of this cluster algebra are given by the triangula-
tions of the n-gon, together with the frozen variables
fx1;2; x2;3; . . .; xn�1;n; xn;1g of the edges of the polygon:

fxij j ði; jÞ is a diagonal of T g [ fxi;iþ1 j i ¼ 1; . . .;ng.
The variables of the diagonals in the chosen triangulation
are the initial cluster variables. Every cluster variable of the
associated cluster algebra is a Laurent polynomial in the
initial variables, obtained through iterated mutations (a
procedure similar to the diamond rule). Furthermore, the
mutable cluster variables correspond bijectively to the

diagonals in the n-gon. We put these variables in the
positions as indicated by the endpoints of their diagonals.
Then the cluster variables form a ‘‘frieze’’ F ¼ FðxÞ of
elements of a ring of Laurent polynomials, in particular, of
an integral domain. This is a slight generalization of the
original definition of frieze patterns, replacing the two rows
of 1’s by the frozen variables fx1;2; x2;3; . . .; xn�1;n; xn;1g and

naturally extending the labeling system with endpoints of
diagonals in the n-gon. We note that FðxÞ is tame.

As before, in the resulting closed frieze, there is a fun-
damental domain given by the xij with 1 � i � n� 1 and

i þ 1 � j � n. We use this fundamental domain as the
upper triangular part of a square matrix M ¼ MðxÞ whose
entries are cluster variables and make it symmetric around
the diagonal of 0’s.

THEOREM 4. [3, Theorem 3.2] Let T be a triangulation of a

convex n-gon with initial cluster x ¼ xðT Þ ¼ fxij j ðijÞ 2
T g [ fxi;iþ1gi. Let FðxÞ be the frieze of all the cluster

variables obtained from this cluster and let MðxÞ be the

square matrix of FðxÞ. Then

detMðxÞ ¼ �ð�2Þn�2x12x23 � � � xn�1;nxn1:

If we specialize the cluster variables xij with ðijÞ 2 T and

the frozen cluster variables to 1, then the entries in the
fundamental domain become the entries of the closed
integral frieze pattern of T [6, Proposition 5.2], and the
frieze determinant from Theorem 4 specializes to the frieze
determinant from Theorem 3.

REMARK 3. It would be interesting to see whether an

analogous formula involving frozen variables can be found

for cluster algebras in type Dn that arise from triangulations

of a punctured disk.

Infinite Friezes
The Conway–Coxeter theorem tells us how quiddity
sequences of finite integral friezes arise. It is natural to ask
which sequences yield infinite integral frieze patterns. An
example that has already appeared in [7, Problem (16)] is
the one on the right in Figure 5. In [18], Manuela Tschabold
showed that such patterns arise from triangulations of
punctured disks. Let Sn be a disk with n marked points on
the boundary and a point in the middle (the puncture), and

−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1

0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1

1 2 2 1 3 1 1 3 1 3 1 3

1 3 1 2 2 2 2 2 2 2 2

1 1 1 1 1 1 3 1 3 1 3 1

0 0 0 0 0 1 1 1 1 1 1

−1 −1 −1 −1 −1 −1 0 0 0 0 0 0

−1 −1 −1 −1 −1 −1

Figure 4. The minimal period of the left-hand frieze is equal to its order. On the right, the minimal period is 2, and the order is 6.

The rows of �1’s are added for our later discussion of growth coefficients.
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use n arcs to triangulate Sn. These arcs have as endpoints
the vertices on the boundary or the point in the middle, and
they are noncrossing (the arcs are considered up to isotopy
fixing endpoints). The resulting regions have three sides in
general; two of them may coincide. For each vertex i of the
boundary, we let ai be the number of connected compo-
nents of the complement of the triangulation in a small
neighborhood of i.

THEOREM 5. [18, Theorem 3.6]. If ai is given by a trian-

gulation of the punctured disk Sn, then ða1; . . .;anÞ is the

quiddity sequence of an infinite n-periodic integral frieze.

Furthermore, as in the finite case, every entry in the
frieze of a triangulation of Sn is a matching number
between triangles and vertices (on passing to a suit-
able covering of the punctured disk); see [18, Section 4.5].

EXAMPLE 3. Consider the star triangulation of a punctured

disk with four vertices on the boundary, as shown on the

left in Figure 5. At each vertex on the boundary, there are

two triangles. We thus have ai ¼ 2 for all i. The frieze

associated with the quiddity sequence (2, 2, 2, 2) appears

on the right in that figure.

Tschabold’s results show that there are infinite friezes for
every period n[ 0 and that the infinite friezes constructed
from triangulations of Sn have a geometric interpretation as
in the case of closed friezes. However, these are by no
means the only types of infinite friezes. It can be shown
that if F is an infinite n-periodic frieze with quiddity
sequence ða1; . . .;anÞ, then for all b[ 0, the n-tuple ða1 þ
b;a2; . . .;anÞ is also the quiddity sequence of an infinite n-
periodic frieze [4, Theorem 2.2]. Even if the original
sequence can be realized by a triangulation of Sn, this is no
longer true for the new quiddity sequence.

However, every quiddity sequence of an infinite frieze
can be realized as the matching numbers of a triangulation
of an annulus. Consider an annulus with n points on the
outer boundary and m points on the inner boundary,
assuming that nþm[ 0. A triangulation of this surface is a
collection of nþm arcs connecting these points so that no
two arcs cross. Again, we take arcs up to isotopy fixing
endpoints. See Figure 6 for two examples of triangulations

of annuli. A triangulation of an annulus gives rise to two
quiddity sequences in general (only one if one of the
boundaries has no marked points), similarly as in the case
of triangulations of Sn: if the outer boundary has n[ 0
vertices, we let ai be the number of connected components
of the complement of the triangulation in a small neigh-
borhood of i. One can show that the tuple ða1; . . .;anÞ is
the quiddity sequence of an infinite frieze. Furthermore,
every infinite frieze arises in this way, as formalized in the
following theorem.

THEOREM 6. [4, Theorem 4.6] Every infinite periodic

frieze comes from a triangulation of an annulus. All entries

of the frieze are matching numbers between triangles and

sets of vertices.

REMARK 4. The proof of Theorem 6 is an explicit con-

struction of a triangulation for a quiddity sequence

ða1; . . .;anÞ of an infinite frieze. This works as follows.

(1) If there exists an entry 1 among the ai, reduce the

quiddity sequence as in Remark 1 until there are no 1’s left.

Since the frieze is infinite, all entries in the quiddity

sequence are greater than or equal to 2 after finitely many

steps [4, Remark 4.7].

(2) Assume now that ai � 2 for all i and that there

exists an entry ai [ 2. Draw vertices 1; 2; . . .;n on the outer

boundary of an annulus. Then add a1 � 1 starting segments

of arcs at vertex 1. Next, put a1 � 1 vertices on the inner

boundary across vertex 1 and connect the starting segments

to these vertices on the inner boundary. In a second step,

draw a2 � 1 starting segments of arcs at vertex 2. The first

of them is connected to the last vertex drawn for the arcs at

vertex 1. In addition, a2 � 2 new vertices are drawn on the

inner boundary. And so on. For vertex n, only an � 3 new

vertices are drawn on the inner boundary, since the last of

the an � 1 arcs at n gets connected to the first vertex

created for vertex 1.

(3) If the quiddity sequence is ð2; 2; . . .; 2Þ, then the

frieze arises from a star triangulation of a punctured disk.

Replace every arc of the star triangulation by an arc starting

at the outer boundary of an annulus and spiraling around a

Figure 5. A triangulation of a punctured disk and its infinite integral frieze.
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noncontractible closed curve in this annulus (all in the

same direction). See Example 4.

EXAMPLE 4. The triangulation of an annulus giving rise to

the trivial quiddity sequence (2, 2, 2, 2) is given by arcs

spiraling around a noncontractible curve in the annulus, as

shown on the left-hand side of Figure 6. The triangulation

yielding the quiddity sequence (3, 4, 2, 4) is shown on the

right.

Note that we can view the triangulations of Sn as coming
from triangulations of an annulus with m ¼ 0 points on the
inner boundary and n points on the outer boundary, by
contracting the inner boundary to a point.

Growth of Frieze Patterns

Clearly, in any closed frieze, the entries along a diagonal
form a sequence of nonnegative integers that begins 0, 1,
increases for a while, and then decreases back to 1 and 0. If
an infinite frieze arises from a triangulation of a punctured
disk, it can be shown that the entries in every diagonal form
n arithmetic progressions [18, Proposition 3.12]. An illus-
tration is the frieze pattern in Example 3. As Example 5
below suggests, the entries in an infinite frieze can grow
much faster. In fact, we will see that in general, the num-
bers grow exponentially.

EXAMPLE 5. The entries in frieze patterns arising from

triangulations of annuli grow very fast. This is illustrated by

the frieze with quiddity sequence (3, 4, 2, 4), as we see

here. The entries in the fifth nontrivial row are already

three-digit numbers:

0 0 0 0 0 0

1 1 1 1 1

4 3 4 2 4 3

11 11 7 7 11

19 40 19 24 19 40

69 69 65 65 69

236 119 236 176 236 119
...

...
...

Recall that the elements in a frieze are indexed so that the
entries in the quiddity sequence are of the form ai;iþ2. In

going down a NW–SE diagonal, the first coordinate is fixed,
while the second increases. One position to the right, both
coordinates increase by 1 (Definition 1). Extend this and
denote the entries in the first rows of 1’s by ai;iþ1, the

entries in the rows of 0’s above by ai;i, and the entries �1

above them by ai;i�1. When drawing a frieze in the plane,

we say that the (first) row containing the quiddity sequence
is row 1, and the rows above are called rows 0, �1, and �2
(the last of these is the row of �1’s written above the
frieze). If the frieze is closed of order n, then the frieze ends
with a row of 1’s (row n� 2) followed by a row of 0’s (row

n� 1), and we extend this by the additional row of �1’s
(row n).

We can now state a remarkable property of integral
friezes.

THEOREM 7. [2, Theorem 2.2] Let F be an integral frieze.

Assume that F is m-periodic. Then for all k � 0, the dif-

ferences of the entries in rows km and km� 2 are constant:

ai;iþkmþ1 � aiþ1;iþkm ¼ aj;jþkmþ1 � ajþ1;jþkm for all i, j.

There are two extreme cases in which the statement is
clearly true: If k ¼ 0, the difference of the entries in rows 0
and �2 is always 2. Secondly, if F is closed of order n, then
it is in particular n-periodic. For closed friezes of order n,
we reduce the coordinates of the entries modulo n, as
indicated in Figure 2. So if k ¼ 1 and m ¼ n, we have
ai;iþnþ1 ¼ ai;iþ1 ¼ �1, aiþ1;iþn ¼ aiþ1;i ¼ 1 for all i, with

constant difference �2. See Figure 4 for two examples.
These constant differences can be expressed using

Chebyshev polynomials of the first kind. More precisely,
for infinite friezes, the constant differences of entries occur
every n0 rows, where n0 is the smallest period. We define
s :¼ ai;iþn0þ1 � aiþ1;iþn0

to be the first of these differences

(apart from the one for k ¼ 0). In the frieze pattern of
Example 3, we have s ¼ 2. In Example 5, we have s ¼ 58.

Note that if the frieze arises from a triangulation of a
punctured disk, all these constants are equal to 2 (the first
case to check here is the frieze in Figure 5). In all other
infinite friezes, these differences grow rapidly. The
sequence ðskÞk � 0 of these constant differences satisfies the

recurrence

skþ2 ¼ s1skþ1 � sk :

Explicitly, in terms of s ¼ s1, we have

sk ¼ sk þ k
Xbk=2c

l¼1

ð�1Þl 1

k � l

k � l

l

� �
sk�2l

for k � 1. Furthermore, the sequence ðskÞk � 0 grows

asymptotically exponentially if and only if s[ 2, in which

case, its growth rate is 1
2 1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
s2 � 4

p� �
; see [2, Section 4] for

Figure 6. Triangulations for the quiddity sequences

(2, 2, 2, 2) and (3, 4, 2, 4).
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details. Since s governs the rate at which the entries in F
grow, it is called the growth coefficient of the frieze.

REMARK 5. (1) Every triangulated annulus with marked

points on both boundaries gives rise to two frieze patterns,

since both boundary components determine a quiddity

sequence. These sequences are different in general. How-

ever, one can show that their growth coefficients are the

same [2, Theorem 3.4]. In the figure on the right in Figure 5,

the quiddity sequence of the inner boundary is

(3, 2, 4, 2, 3), giving a 5-periodic frieze.

(2) Triangulations of annuli give rise to cluster tilting

objects in a cluster category of type eA. In this algebraic

interpretation, the common growth behavior of the two

associated friezes can be viewed as common behavior of

tubes in the associated category and interpreted as gener-

alized numbers of submodules of indecomposable objects

[1, Section 4.4]. However, there are examples of cluster

categories with collections of tubes in which the growth

coefficients differ across the different tubes.
Since my first encounter with Conway’s contributions to

frieze patterns, I have been fascinated by the many aspects
of this topic. Several of the questions I have studied about
these patters over the years link back to cluster algebras or
cluster categories. Others are more combinatorial, such as
the geometric realizations of infinite friezes. And some use
homological methods, for example, in the reduction of
friezes of Dynkin types to smaller friezes. Studying the
growth of infinite friezes has interesting implications for
module categories, as pointed out in Remark 5 above. Only
recently, I learned that Conway thought about growth in a
very different context, for the so-called look-and-say
numbers, which he explained beautifully in a video by
Numberphile from 2014 [14].
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