
This is a repository copy of The Global Ecosystems Monitoring network: Monitoring 
ecosystem productivity and carbon cycling across the tropics.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/170505/

Version: Accepted Version

Article:

Malhi, Y, Girardin, C, Metcalfe, DB et al. (18 more authors) (2021) The Global Ecosystems 
Monitoring network: Monitoring ecosystem productivity and carbon cycling across the 
tropics. Biological Conservation, 253. 108889. p. 108889. ISSN 0006-3207 

https://doi.org/10.1016/j.biocon.2020.108889

© 2021, Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 
license http://creativecommons.org/licenses/by-nc-nd/4.0/.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long 
as you credit the authors, but you can’t change the article in any way or use it commercially. More 
information and the full terms of the licence here: https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



 1 

The Global Ecosystems Monitoring network: monitoring ecosystem 1 

productivity and carbon cycling across the tropics 2 

 3 

Yadvinder Malhi1, Cécile Girardin1, Dan Metcalfe2, Chris Doughty3, Luiz E.O. 4 

Aragão4,5, Sami Rifai6, Imma Oliveras1, Alexander Shenkin1, Jesus Aguirre-5 

Gutiérrez1,7, Cecilia Dahlsjö1, Terhi Riutta1, Erika Berenguer1,8, Sam Moore1, 6 

Walter Huaraca Huasco1, Norma Salinas9, Antonio Carlos Lola da Costa10, Lisa 7 

Patrick Bentley11, Stephen Adu-Bredu12, Toby R. Marthews13, Patrick Meir14,15, 8 

Oliver Phillips16 9 

 10 
1Environmental Change Institute, School of Geography and the Environment, 11 

University of Oxford, OX1 3QY, UK  12 
2Department of Physical Geography and Ecosystem Science, Lund University, SE 13 

223 62, Lund, Sweden. 14 
3School of Informatics, Computing and Cyber systems, Northern Arizona 15 

University, Flagstaff, Arizona, USA 16 
4Divisão de Sensoriamento Remoto - DIDSR, Instituto Nacional de Pesquisas 17 

Espaciais, São Jose dos Campos, São Paulo, Brazil  18 
5College of Life and Environmental Sciences, University of Exeter, Exeter EX4 19 

4RJ, United Kingdom 20 
6ARC Centre of Excellence for Climate Extremes, University of New South Wales, 21 

Sydney, NSW 2052, Australia 22 
7Biodiversity Dynamics, Naturalis Biodiversity Center, Leiden, The Netherlands 23 
8Lancaster Environment Centre, University of Lancaster, UK  24 
9Pontificial Catholic University of Peru, Lima, Peru 25 
10Museu Paraense Emilio Goeldi, Belém, Pará, Brazil. 26 
11Department of Biology, Sonoma State University, Rohnert Park, California, USA  27 
12CSIR-Forestry Research Institute of Ghana, Kumasi, Ghana  28 
13UK Centre for Ecology and Hydrology, Wallingford, Oxfordshire, UK  29 
14Research School of Biology, Australian National University, Canberra, Australia 30 
15School of Geosciences, University of Edinburgh, UK 31 
16School of Geography, University of Leeds, UK 32 
  33 



 2 

 34 

 35 

The Global Ecosystems Monitoring network: monitoring ecosystem 36 

productivity and carbon cycling across the tropics 37 

 38 

Abstract 39 

A rich understanding of the productivity, carbon and nutrient cycling of 40 

terrestrial ecosystems is essential in the context of understanding, modelling and 41 

managing the future response of the biosphere to global change. This need is 42 

particularly acute in tropical ecosystems, home to over 60% of global terrestrial 43 

productivity, over half of planetary biodiversity, and hotspots of anthropogenic 44 

pressure. In recent years there has been a surge of activity in collecting data on 45 

the carbon cycle, productivity, and plant functional traits of tropical ecosystems, 46 

most intensively through the Global Ecosystems Monitoring network (GEM). The 47 

GEM approach provides valuable insights by linking field-based ecosystem 48 

ecology with the needs of Earth system science. In this paper, we review and 49 

synthesize the context, history and recent scientific output from the GEM 50 

network. Key insights have emerged on the spatial and temporal variability of 51 

ecosystem productivity and on the role of temperature and drought stress on 52 

ecosystem function and resilience. New work across the network is now linking 53 

carbon cycling to nutrient cycling and plant functional traits, and subsequently 54 

to airborne remote sensing. We discuss some of the novel emerging patterns and 55 

practical and methodological challenges of this approach, and examine current 56 

and possible future directions, both within this network and as lessons for a 57 

more general terrestrial ecosystem observation scheme. 58 

 59 

1. Introduction  60 

The Global Ecosystems Monitoring (GEM) network is a network of sites where 61 

the productivity and carbon cycling of terrestrial ecosystems is tracked through 62 

a standard protocol, and frequently integrated with data on plant functional 63 

traits and broader environmental variables, such as tree species community 64 

composition, soil and climate. From its origins in 2005 focused on Amazonian 65 

and Andean forests, since 2010 it has expanded to cover all tropical continents, 66 

and to also cover a range of tropical savanna sites and some temperate forests.. 67 

To date (April 2020) there are at least 81 peer-reviewed publications resulting 68 

from this network, focussed on scales ranging from individual sites to regional 69 

and global syntheses. As of late 2020, the network spans 294 plots covering 178 70 

hectares (Figure 1, Table S2). GEM has a detailed online manual (Marthews et al. 71 

2014), as well as methods detailed in many papers. In this paper, we provide the 72 

context and history of the GEM network, its philosophy, its advantages and key 73 

contributions, experiences learned from both practical implementation and peer 74 

review comments, and lessons for future network development. 75 

 76 

Specifically, we: 77 

(i) describe the broader scientific context of tropical carbon cycle science and the 78 

motivation for establishing such a network; 79 

(iii) describe the overall philosophy and features of the methodology and its key 80 

aspects; 81 

(ii) describe the development of this network within the historical context of 82 

measurements of productivity and carbon cycling in the tropics; 83 
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(iv) summarise  data analysis and processing protocols for the core GEM 84 

methodology, and discuss some key limitations and challenges; 85 

(v) synthesise and highlight key discoveries thus far and present new areas for 86 

development;  87 

(vi) discuss lessons learnt from the development and implementation of this 88 

network. 89 

 90 

2. Background and History 91 

 92 

2.1 Context 93 

Attempts to describe the full carbon and energy budgets of ecosystems have 94 

been a feature of ecosystem ecology since the 1960s. Much effort has focused on 95 

northern temperate and boreal systems, which tended to have more convenient 96 

access for better-funded institutions. The first attempts to describe the carbon 97 

cycle of a tropical forest was conducted in Puerto Rico by Odum and Pigeon 98 

(1970) and in Thailand by Kira (1967). International programmes in the 1970s 99 

fuelled attempts at similar descriptions of ecosystems around the world, 100 

including a tropical forest site in Malaysia (Kira 1978). In parallel, the first 101 

attempts emerged to quantify the primary productivity of the biosphere, by 102 

scaling up from site-based estimates in a range of biomes {Lieth, 1975 #635}. 103 

These early attempts were constrained by limited tools for measuring carbon 104 

dioxide gas exchange (e.g., absorbing chemicals were used at the time, rather 105 

than portable infrared gas analysers). Such activities fell into a lull in the late 106 

1970s and early 1980s, but resurfaced in the 1990s with increased scientific 107 

interest in the global carbon cycle and its links with climate change, specifically 108 

to pinpoint the role of the terrestrial biosphere as either a source or a sink of 109 

carbon. This renewed interest was coupled with the development of 110 

micrometeorological tools and techniques, such as eddy covariance, to measure 111 

the net flux of carbon dioxide above vegetation canopies. At the same time, 112 

global biosphere models were advancing substantially, and there was increased 113 

demand for empirical ecosystem-level quantification of key aspects and 114 

processes of the biosphere carbon cycle to develop and test these models. 115 

Comprehensive measurements of the components of the carbon budgets 116 

provided a source of validation for models and micrometeorological studies, but 117 

also enabled a deeper process-level understanding of how different components 118 

of the system contributed to the magnitude and variability of the carbon budget. 119 

 120 

Ecosystem flux measurements in the tropics tended to lag behind better-funded 121 

studies in North America and Europe. The first eddy covariance studies in the 122 

tropics were in Brazilian Amazonia in the late 1980s and early 1990s (Fan et al. 123 

1990, Grace et al. 1995, Malhi et al. 1998) , from where they substantially 124 

expanded through the LBA (Large Scale Biosphere-Atmosphere study in 125 

Amazonia) programme. However, eddy covariance approaches remained limited 126 

in coverage in the tropics because of the specialised equipment required, and, on 127 

their own, only described the net exchange of carbon, water and energy between 128 

ecosystems and the atmosphere. Their large footprint (100s-1000s m2), while an 129 

advantage in some aspects, also limit their utility in fragmented and patchy 130 

landscapes, or in sites with extreme topography. 131 

 132 

In parallel with the spread of eddy covariance studies across the tropics, there 133 

was a renewed interest in calculating the Gross Primary Productivity (GPP) and 134 
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Net Primary Productivity (NPP) of tropical forests in the early 2000s. GPP is the 135 

total uptake of carbon by an ecosystem through photosynthesis, while NPP is the 136 

total rate of production of biomass (including leaves, reproductive organs, 137 

woody tissue, roots, and exudates and volatile compounds). The difference 138 

between GPP and NPP is accounted for by the metabolism (autotrophic 139 

respiration) of the plants themselves. Studies of NPP (or of its components such 140 

as litterfall and woody growth) in the tropics began in the 1960s and 1970s. 141 

Clark et al. synthesised both the limited available data at the start of this century, 142 

and the challenges in quantifying the NPP of tropical forests (Clark et al. 2001a, 143 

Clark et al. 2001b), and Chambers et al. (2004) presented a full NPP and 144 

respiration quantification of the carbon budget of a tropical forest plot near 145 

Manaus in Brazilian Amazonia. Similar site-based descriptions began to emerge 146 

in sites in tropical Asia. At the same time, broad networks of forest inventory 147 

plots were emerging, in particular the CTFS-ForestGEO network established 148 

repeatedly-censused plots, typically 50 ha  (Anderson-Teixeira et al. 2015, 149 

Davies et al, this volume), and the RAINFOR forest inventory plot network (Malhi 150 

et al. 2002, Peacock et al. 2007)  focused on 1-ha tree census  plots across 151 

Amazonia, which later spawned the Forest Plots meta-network (Phillips et al. 152 

this volume). These networks built on a long tradition and expertise in 153 

assessment of tropical forest structure and biomass, and taxonomic expertise, 154 

and, by integrating these  plots across regions and countries, provided new 155 

insights into spatial variability of forest structure, tree communities and 156 

dynamics, as well as revealing evidence for changes in biomass and in carbon 157 

dynamics and net biomass carbon balance over time (Lewis et al. 2009, Phillips 158 

et al. 2009, Hubau et al. 2020).  159 

 160 

2.2. Motivation for development of the GEM network 161 

A key objective of the GEM network has been to provide an interface between 162 

tropical forest ecology and Earth System science (ESS) (Malhi 2012). ESS is a 163 

scientific discipline that emerged in the 1970s that aims to provide an integrated 164 

systems view of planetary function, and quantifying and understanding the role 165 

of the biosphere is clearly pivotal in such understanding. Much of the early 166 

scientific revolution was driven by new observational tools (e.g. Galileo’s use of 167 

one of the first telescopes, leading to the Copernican revolution, and Hooke’s use 168 

of one of the first microscopes, leading to the cell theory of biology, among other 169 

things). Similarly, ESS has been driven by the development of two “macroscopes" 170 

in the late twentieth century: complex process-based models, enabled by 171 

advances in computing capacity, that can represent and integrate the processes 172 

of biosphere, atmosphere and hydrosphere; and satellite-based remote sensing, 173 

enabling mapping and monitoring of Earth processes at a comprehensive global 174 

scale. 175 

 176 

Another key tool in biosphere-focussed ESS has been the development of field 177 

observation networks. The macroscopes need testing and ground-truthing 178 

against field observations that are embedded in a rich understanding of local 179 

ecosystem processes dynamics. Some networks such as the FLUXNET network of 180 

eddy covariance flux towers have tended to be focused on resource-rich regions 181 

such as North America, Europe, East Asia and Australia. Others, such as the 182 

Forest Plots and CTFS/ForestGEO networks mentioned above have developed 183 

impressive coverage of the old-growth tropical rainforest zones, while others 184 

(2ndFor and the Tropical Managed Forests Observatory) have focused on 185 
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secondary and logged forests (Sist et al. 2015, Poorter et al. 2016). These 186 

networks have focused on forest inventories and yielded important insights into 187 

forest properties such as the net tropical forest carbon sink, continental 188 

variation in biodiversity and biomass dynamics, and rates of recovery from 189 

disturbance. However, integrating these results with the ESS macroscopes of 190 

modelling and remote sensing presents some challenges. Optical remote sensing 191 

focuses on canopy surface reflectance and fluorescence, often to infer fraction of 192 

absorbed photosynthetic radiation and hence GPP. Radar- or lidar-based remote 193 

sensing provides insights into structure and biomass, but does not directly 194 

capture the processes that generate that structure. Modelling of the carbon cycle 195 

has required representation of processes such as allocation, autotrophic 196 

respiration and soil carbon dynamics, aspects that are not immediately 197 

deducible from forest inventories alone. GEM seeks to provide a bridge between 198 

the forest inventory networks and Earth system macroscopes: it emerged out of 199 

the RAINFOR Amazonian forest plots network, but by focusing on a more holistic 200 

view of carbon cycling, it seeks to speak the “language” of biosphere carbon 201 

cycling models. Similarly, the recent focus on canopy functional traits under 202 

GEM-TRAITS (see below) seeks to act as a bridge between environment, tree 203 

community composition, ecosystem carbon cycling and remote sensing. 204 

 205 

 206 

2.3 Network Development 207 

The GEM network emerged gradually from the RAINFOR network, starting in 208 

2005 with the introduction of detailed carbon budget studies at two relatively 209 

fertile RAINFOR plots in Tambopata, Peru, compared with two relatively infertile 210 

plots in Caxiuanã, Brazil. The impetus for this study was the discovery that the 211 

woody productivity of forests in western Amazonia appeared to be generally 212 

greater than that of eastern Amazonia (Malhi et al. 2004), a feature that 213 

appeared related to soil properties (Quesada et al. 2012). It was unclear whether 214 

this difference in woody growth rates reflected a difference in GPP (i.e. forests in 215 

lowland Peru were intrinsically more productive, perhaps because the leaves 216 

had higher nutrient concentrations), or whether there were differences in the 217 

allocation of captured carbon (e.g. a larger fraction of NPP goes to wood, or there 218 

is lower expenditure in autotrophic respiration). The results from this study 219 

were presented by  Aragão et al. (2009) and Malhi et al. (2015), showing that the 220 

difference was mainly driven by lower autotrophic respiration in the Peruvian 221 

sites, with smaller influences from differences in allocation to wood and in 222 

overall GPP. This work highlighted the importance of understudied components 223 

of the carbon cycle, such as Carbon Use Efficiency (the ratio of NPP to GPP), or 224 

fractional allocation of NPP to canopy, wood and root tissue. 225 

 226 

In parallel, the LBA (Large-Scale Biosphere-Atmosphere Programme in 227 

Amazonia) was collecting detailed carbon cycle measurements at a number of 228 

locations in Brazilian Amazonia, but the work was dispersed across multiple 229 

research organisations. Malhi et al. (2009) presented a compilation of data for 230 

three forest sites in Brazilian Amazonia, including Caxiuanã, gathered through 231 

LBA that helped provide an overall framework for providing a holistic carbon 232 

cycle description of forest ecosystems. This showed both the potential for 233 

detailed carbon cycle descriptions, how they cross-checked well with eddy 234 

covariance measurements, and the relatively small magnitude (in carbon budget 235 

terms) of some harder-to measure terms such as lateral dissolved inorganic 236 
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carbon flows and methane and volatile organic carbon emissions. In addition, 237 

Metcalfe et al. (2010)presented a detailed carbon budget analysis for the drought 238 

and control forest plots in Caxiuanã, showing that long-term drought resulting in 239 

increased autotrophic respiration and hence a reduced proportion of GPP being 240 

allocated to biomass production. 241 

 242 

In 2007, similar plots to those in Tambopata and Caxiuanã were established at 243 

multiple sites along a ~3500 m elevation gradient in south-eastern Peru 244 

(Girardin et al. 2010, Malhi et al. 2010), stretching upwards from the lowland 245 

rainforest site at Tambopata. The elevation transect had already been 246 

established by the Andes Biodiversity and Ecosystems Research Group (ABERG) 247 

in the early 2000s (Malhi et al. 2017) and has since become a major focus of 248 

interdisciplinary research into how elevation and temperature control 249 

ecosystem composition and function, and how these are changing under global 250 

warming.   251 

 252 

A large boost to the nascent GEM network came with funding from the Gordon 253 

and Betty Moore Foundation over 2008-2014, which enabled establishment and 254 

monitoring of 16 plots across Amazonia and the Andes (Malhi et al. 2015, Malhi 255 

et al. 2017). This period of funding also enabled formalisation of this network, 256 

including development of a detailed protocol available online, training courses in 257 

South America, a website http://gem.tropicalforests.ox.ac.uk/ and the 258 

establishment and use of the name GEM. A key output from this period was the 259 

publication of eight site-based papers describing the carbon budget of each site 260 

in South America, in a special issue of Plant Ecology and Diversity in 2014 261 

(Araujo-Murakami et al. 2014, da Costa et al. 2014, del Aguila-Pasquel et al. 262 

2014, Doughty et al. 2014b, Galbraith et al. 2014, Girardin et al. 2014, Huasco et 263 

al. 2014, Malhi et al. 2014, Rocha et al. 2014). Many of these papers were led by 264 

local students and researchers, and provided a model for building local capacity 265 

in analysis and paper writing. For the first time, a library of detailed carbon cycle 266 

assessments was being assembled, each addressing locale-specific questions, but 267 

ultimately contribute to broader, biome-wide analyses (Doughty et al. 2015b, 268 

Malhi et al. 2015, Malhi et al. 2017). 269 

 270 

The success of this model for an intensive carbon cycle plots network in South 271 

America led to similar project development in SE Asia and in Africa. A series of 272 

plots were established in Malaysian Borneo; first with two plots at Lambir, 273 

Sarawak in 2007 as part of a PhD project (Kho et al. 2013), then 7 plots were 274 

established in Sabah in 2010-11 in old-growth and logged forest under the 275 

auspices of the SAFE (Stability of Altered Forest Ecosystems) programme (Ewers 276 

et al. 2011, Riutta et al. 2018). In Africa, a NERC research grant enabled 277 

establishment in 2011 of 14 plots along a wet-dry gradient in Ghana and 6 plots 278 

in Gabon, providing the first measured NPP values for African lowland forests 279 

(Moore et al. 2018).  280 

 281 

In addition to this pantropical coverage in old-growth systems, other trends in 282 

recent years have been increased coverage of human-modified forests (e.g. 283 

logged forests, burned forests and tree crops), and the beginnings of coverage in 284 

savanna and grassy ecosystems (Figure 1). For example, recent plots have been 285 

established in natural forest-cocoa agroforest gradients in Ghana (Morel et al. 286 

2019), in natural forest-coffee agroforest gradients in Ethiopia (Morel et al, 287 

http://gem.tropicalforests.ox.ac.uk/
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unpublished), in savannas in Brazil (Peixoto et al. 2017), Gabon and South Africa, 288 

and along gradient of human-disturbance in Brazilian Amazonia, including 289 

selectively-logged forests, burned forests, and secondary forests (Berenguer et 290 

al. 2018).  A number of GEM sites also span control and treatment plots in 291 

experimental treatments, including the 20-year old drought experiment in the 292 

Caxiuana, Brazil (Rowland et al. 2015),  the fire experiment in Tanguro, Brazil  293 

(Brando et al. 2016) and the Free Air Carbon Dioxide Enrichment experiment in 294 

Australia {Jiang, 2020 #637}. 295 

 296 

Separate from the GEM network, there has been a surge of detailed NPP (and, to 297 

a lesser extent, GPP) measurements in tropical forests, particularly in SE Asia 298 

and in China and more recently in Central Africa (Rwanda and the Congos). 299 Anderson‐Teixeira et al. (2016) provide a summary of these data across the 300 

tropics, incorporated in the Global Forest Carbon (ForC) database (https://forc-301 

db.github.io). In recent years GEM has also sought to be a convening hub for this 302 

wider tropical network of carbon cycling and productivity data, bringing in self-303 

funded partners who wish to standardise data collection protocols, take 304 

advantage of the data management within the GEM network, and contribute to 305 

regional or global analyses.  306 

 307 

 308 

Although the focus of core GEM activities has been predominantly tropical, there 309 

have been occasional forays into temperate forests while employing the same 310 

protocol. Fenn et al. (2015) applied this protocol in Wytham Woods, a long-311 

established maritime broadleaf woodland near Oxford, UK. Urrutia-Jalabert et al. 312 

(2015) reported on the productivity and carbon dynamics of Fitzroya-dominated 313 

temperate rainforests in Chile (“the oldest, slowest rainforests on Earth”) and 314 

more recently similar plots have been established in Ponderosa pine forests in 315 

Arizona (Doughty et al. 2020) and Populus tremuloides stands in Colorado (B. 316 

Blonder, pers. comm.). 317 

 318 

In terms of climate space, the GEM network now covers substantial elevation 319 

gradients in the tropics, as well as spanning the lowlands of these regions 320 

(Figure 2a). Water stress gradients are also spanned, ranging from dry savannas 321 

in Ghana and South Africa, through mesic savannas, seasonally dry forests and 322 

aseasonal rainforests (Figure 2c). The coverage of some seasonal temperate sites 323 

provides some useful contrasts with high elevation tropical sites (Figure 2c), 324 

enabling exploration of the role of seasonality in shaping ecosystem carbon 325 

cycling and function. A selection of GEM sites are shown in Figure 3. 326 

 327 

 328 

3. Features of the GEM Network 329 

  330 

The core framework which defines the GEM network is the estimation of the key 331 

components of ecosystem productivity, through routine measurements at 332 

relatively high frequency (biweekly/monthly/trimonthly, depending on site and 333 

measurement type). A minimum requirement would be measurement of the 334 

main components of NPP (canopy litterfall, woody growth and fine root 335 

productivity). Many GEM sites also cover the main components of ecosystem 336 

respiration (woody stem respiration, leaf respiration and soil respiration 337 

partitioning into heterotrophic and autotrophic components), which enable 338 
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estimations of total autotrophic respiration. The summation of autotrophic 339 

respiration and NPP gives an estimation of GPP (on annual or longer timescales, 340 

when the balance between photosynthesis and vegetation use of photosynthate 341 

can be assumed to be close to equilibrium). 342 

 343 

An important attribute of the GEM protocol is the standardisation of sampling 344 

protocols. There is potential of much variation in protocols, and this 345 

standardisation facilitates comparisons across regions and ecosystems. Soils 346 

collected by the central GEM project are collected using the RAINFOR soil 347 

sampling protocol (Quesada et al. 2011). Such samples have largely been 348 

analysed in the cross-referenced soil laboratories of INPA in Manaus, Brazil (for 349 

most sites in Amazonia) or at the University of Leeds, UK (for most other sites). 350 

 351 

An additional key feature of the GEM protocol is its emphasis on relatively low 352 

technology and low-cost approaches. Conversely, it is fairly heavy in human 353 

labour inputs, typically requiring field teams to spend a week every month at a 354 

cluster of field plots, and longer periods every three months. These features (low 355 

capital inputs and high labour inputs) have made it well-suited to many 356 

developing region contexts. This has facilitated its spread across multiple sites in 357 

low- and middle-income countries, where students and technicians are often 358 

available to conduct research but capital and equipment resources are low. Its 359 

application has been more challenged in high-income countries, where labour 360 

costs are higher (including tropical countries such as northern Australia). As a 361 

result, the GEM network has expanded well across the tropics, to the extent that 362 

there are currently more site-level NPP data available from tropical regions than 363 

from temperate regions. This is a remarkable reversal of the normal pattern of 364 

ecological data availability, where the tropics tend to have the strongest data 365 

deficits. 366 

 367 

3.1 Plot location and size 368 

Because of the requirement of frequent visits, ideal GEM plot locations are within 369 

easy reach (1-2 hours) of field stations or research institutes, which limits 370 

establishment in more remote and inaccessible settings. The standard GEM 371 

forest plot site is a 1 hectare square (100 x 100 m), which reflects its origins out 372 

of the RAINFOR forest plot network. One hectare is considered an adequate size 373 

to sample a range of trees (typically 500-800 trees > 10 cm dbh) and not be 374 

overly influenced by individual tree gap dynamics, while also being a tractable 375 

area to sample at high frequency. It is also a size that is useful for many current 376 

remote sensing technologies.  In some low tree diversity sites, such as some 377 

savannas and a Pacific atoll, a “mini-GEM” plot size of 40 m x 40 m or 50 m x 50 378 

m has been employed, and smaller plots are still welcomed in the network as 379 

providing useful information. Moreover, in the context of human-modified 380 

forests such as agroforests or burned/logged forest patches, the heterogeneous 381 

nature of the modified forest landscape can also favours a smaller plot size. 382 

 383 

3.2 GEM field methodologies 384 

An overview of the GEM sampling methodologies (Figure 4) is given in Table S1, 385 

and GEM methodologies are described in further detail in the GEM Manual 386 

(Marthews et al. 2014). Below we summarise some of the key features, 387 

challenges and limitations of these approaches.  388 
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A carbon (C) budgeting approach can be adopted to characterise the carbon cycle of an 389 

ecosystem from field data if it is possible to measure all C stocks and flows. Flows must be 390 

divided into flows into and out of the ecosystem (e.g. C fixation through photosynthesis vs, 391 

autotrophic respiration) and transfers between pools (e.g. litter fall, root decomposition). 392 

Hence summation of the components of NPP and the components of autotrophic respiration 393 

gives an estimate of GPP. Similarly, the difference between NPP and heterotrophic respiration 394 

gives an estimate of changes in net carbon balance. 395 

 396 

3.2.1 Components of Net Primary Productivity 397 

Woody production is calculated from forest censuses on an annual or multiannual scale, and 398 

from dendrometer bands at a seasonal scale. Growth rates are converted into woody biomass 399 

production rates using standardised tropical forest biomass allometries, adjusted to local 400 

regions (Chave et al. 2014).  401 

Branch turnover is an additional component of woody production that attempts 402 

to capture the turnover of large branch material not associated with tree death. 403 

The assumption is that fallen branch material is compensated for by new branch 404 

growth.  405 

 406 

Litterfall captures canopy productivity, and is collected through an array of litter 407 

traps that are sampled biweekly. In many sites, the material is separated into 408 

leaves, twigs and reproductive components. At some sites, leaf herbivory is 409 

estimated by scanning a subset of fallen litter and calculating what fraction of 410 

leaf area has been lost to herbivory (Metcalfe et al. 2014). 411 

 412 

Many GEM sites derive seasonal canopy productivity by estimating canopy leaf 413 

area index on monthly timescales using hemispherical photos, coupled with 414 

measurements of Specific Leaf Area (leaf area per unit mass). This enables 415 

estimation of monthly changes in canopy leaf biomass stock. The leaf litterfall 416 

gives leaf outflow from the canopy, and the summation of the two provides an 417 

estimate of monthly leaf productivity.  418 

 419 

Fine root productivity is a frequently neglected component of NPP 420 

measurements. It is a challenge to measure accurately, as any soil-based 421 

measurement involves disturbance of the study system. GEM adopts two 422 

approaches. Firstly, root-free ingrowth cores are installed and sampled after 423 

three months, to give a volume-based estimate of fine root productivity. In 424 

addition, at many sites screen rhizotrons are deployed that enable manual 425 

tracing of root growth at monthly timescales. They enable greater temporal 426 

resolution and also vertical profiles of root productivity. Where the two 427 

approaches have been compared, there has been good agreement in lowland 428 

tropical sites but some divergence in montane sites with rich organic soils very 429 

vulnerable to disturbance (Girardin et al. 2013)(Girardin, Aragao et al. 2013, 430 

Huaraca et al in prep).  431 

 432 

Below-ground coarse root productivity is not directly measured (it is almost 433 

impossible to do so) but is estimated by multiplying above-ground woody 434 

productivity using biome-specific allometric relationships for biomass (Jackson 435 

et al. 1996). 436 

  437 
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At sites with a substantial and productive herbaceous layer (for example, 438 

savannas), above-ground herbaceous productivity (Oliveras et al. 2014, Moore et 439 

al. 2018) is estimated through seasonal biomass harvest of sample quadrats 440 

(protected from grazing where necessary). Below-ground herbaceous 441 

productivity is already incorporated into the fine root productivity estimates, 442 

which do not distinguish between trees and herbaceous plants. 443 

 444 

3.2.2 Components of Ecosystem Respiration 445 

The more complete GEM sites also measure the main components of ecosystem 446 

respiration. Summation of NPP and the autotrophic component of respiration 447 

enable the estimation of GPP, and the difference between above-ground NPP and 448 

total soil CO2 efflux provides an estimate of net carbon balance. 449 

 450 

Total soil CO2 efflux is measured at monthly frequency in a grid across the plot, 451 

at fixed collar locations. Many GEM sites attempt to partition this efflux into 452 

components (litter layer, soil organic matter and fine roots) by installing a 453 

separate partitioning experiment (Metcalfe et al. 2018). Furthermore, at some 454 

sites a fine mesh treatment is employed, which enables passage of fungal hyphae 455 

but acts as a barrier to fine roots. This enables an estimation of the respiration 456 

associated with mycorrhizal fungi – as this respiration is derived from recent 457 

photosynthate transferred directly via plant roots, it can be considered an 458 

additional component of NPP. 459 

 460 

Above ground, woody tissue respiration is measured at monthly frequency by 461 

installing similar collars on a subset of tree stems, scaling to the whole tree using 462 

tree surface area allometries, and then scaling to the full plot tree census.  463 

 464 

Canopy foliar dark respiration is not measured regularly, but estimated in canopy 465 

sampling campaigns (either seasonally or in a one-off campaign associated with 466 

leaf traits collection, see below) by applying gas exchange measurements to 467 

leaves on cut branches. Frequently, leaf photosynthetic parameters are also 468 

measured in the same campaigns (photosynthesis under high light and/or high 469 

carbon dioxide), which can be employed in a canopy modelling framework to 470 

provide an independent estimate of GPP. 471 

 472 

Respiration from dead wood is a term that is measured at a few GEM plots by 473 

attaching collars to dead trunks or placing small dead wood material in closed 474 

chambers. It can be a significant component of ecosystem heterotrophic 475 

respiration(Gurdak et al. 2014), especially so in logged forests.  476 

 477 

3.2.3 Missing terms 478 

There are a number of components of NPP that are challenging to quantify and 479 

are non-standard in NPP or carbon cycle assessments. These include, in likely 480 

declining order of importance: production of root exudates and transfer of 481 

photosynthate to mycorrhizae (although at some sites GEM estimates these 482 

through the soil respiration partitioning experiment, as described above), 483 

canopy productivity by epiphytes that senesce and decay in situ in the canopy, 484 

productivity of the herbaceous understory (not routinely measured in forest 485 

plots), release of volatile organic compounds such as isoprene or monoterpenes, 486 

methane fluxes from the soil, and lateral export of material as particulate or 487 

dissolved organic carbon. One cross check of whether these extra terms are 488 
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significant is through constructing more complete carbon budgets where rich 489 

data streams enable this and cross-comparisons with independent eddy-490 

covariance estimates of GPP (see below). Malhi et al. (2009) took advantage of 491 

the comprehensive range of research conducted in Brazilian Amazonia under the 492 

auspices of the LBA programme to quantify many of these terms for three old-493 

growth terra firme Amazonian forests. VOC, methane and lateral carbon effluxes 494 

were found to be small in relation to the main carbon flux components above. 495 

 496 

3.2.4 Functional traits collection 497 

A key challenge in ecosystem ecology is linking biodiversity to ecosystem 498 

function and productivity. Over 2013-2018, an ERC Advanced Investigator Grant 499 

(GEM-TRAITS) enabled the further monitoring and databasing of the data 500 

emerging from the global network, and also a new focus on collecting tree 501 

functional traits across the network, with the aim to link community 502 

composition to ecosystem function. 503 

 504 

Use of a plant functional traits framework has provided rich ground for 505 

theoretical and empirical analyses, particularly in high biodiversity tropical 506 

ecosystems where use of a few key functional traits is more tractable than 507 

engaging with thousands of plant species. To address this challenge, the GEM-508 

TRAITS programme has been collecting leaf and wood functional traits for 509 

dominant canopy species in GEM sites across the tropics. The collection protocol 510 

is stratified according to basal area dominance, with tree species that contribute 511 

most of plot basal area (a proxy for canopy area) being prioritised. A goal of 512 

sampling the fewest species that contribute to 80% of the basal area is the target, 513 

although this is not always achieved in diverse lowland rainforest sites.  514 

Traits collected include leaf morphological, chemical and photosynthetic traits, 515 

and in some cases wood and leaf hydraulic traits. As with many features of GEM, 516 

the traits programme and methodology were initially developed along the 517 

Amazon-Andes transect in Peru, before being deployed across all tropical 518 

continents. These traits data have a variety of applications, including 519 

understanding the link between leaf and wood traits and ecosystem dynamics, 520 

parametrizing canopy parameters in biosphere models, and linking canopy traits 521 

to remote sensing data. 522 

 523 

4 Challenges for the GEM approach 524 

   525 

4.1 Uncertainty and Error Propagation 526 

A key feature of the GEM approach is that it measures/estimates and then sums 527 

multiple components of the ecosystem carbon cycle. For example, an estimate of 528 

NPP involves at least four independent measurements (canopy litterfall, branch 529 

turnover, woody growth and fine root growth), an estimate of autotrophic 530 

respiration involves three independent measurements (canopy respiration, 531 

woody tissue respiration and autotrophic soil respiration). Estimation of GPP 532 

involves summing these two and hence requires at least seven independent 533 

measurements. 534 

 535 

Each of these independent measurements carries uncertainties, either in random 536 

uncertainty sampling limitations, or systematic uncertainty arising from poorly 537 

understood biases or uncertainties in scaling. Examples of such systematic 538 

errors include uncertainties in local tree biomass or surface area allometries. 539 
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Each of these uncertainties can be accounted for by rigorous error propagation 540 

during summation. Random sampling errors can be estimated from the variance 541 

of observations (Metcalfe et al. 2008), but systematic errors are assigned 542 

(usually conservatively) from expert judgement. 543 

 544 

Given the inherent uncertainty in each type of measurement, one remarkable 545 

feature is that overall uncertainty in estimated NPP or GPP can be fairly 546 

constrained, typically around ±10% (Malhi et al. 2016, 2017). This under-547 

appreciated feature comes from the nature of error propagation: as each 548 

component measurement is independent, uncertainties propagate in quadrature, 549 

and hence relatively slowly compared to the summation. Hence, the biometric 550 

GEM approach can compare favourably against, for example, an eddy covariance 551 

approach to estimating GPP. The latter relies essentially only on one variable 552 

being measured (net carbon flux), and hence is more vulnerable to any 553 

systematic biases associated with that single measurement type. 554 

 555 

4.2 Cross-checks with eddy covariance measurements 556 

One useful cross-check for the GEM approach has been cross-checks with the 557 

independent “top-down” eddy-covariance approaches to estimate GPP. Eddy 558 

covariance is a tower-based approach that continuously measures the net 559 

turbulent exchange of carbon dioxide between the vegetation canopy and the 560 

atmosphere. Once suitable corrections are applied for estimating daytime 561 

ecosystem respiration (based on night-time ecosystem respiration rates), the 562 

total ecosystem photosynthesis (GPP) can be estimated. Eddy covariance comes 563 

with its own challenges, particularly under low turbulence night-time conditions. 564 

Nevertheless, good agreement between eddy covariance and GEM approaches 565 

provides some reassurance that no major carbon cycle components are being 566 

missed, and that measurement and scaling uncertainties are well-constrained.  567 

 568 

At three sites in Brazilian Amazonia (Malhi et al. 2009), agreement between the 569 

two approaches has been good. Campioli et al. (2016) conducted a systematic 570 

cross-comparison of eddy covariance and biometric approaches across 18 forest 571 

sites (spanning boreal, temperate and the same three Brazilian tropical forests), 572 

and found no significant difference in estimation of annual mean GPP and total 573 

ecosystem respiration between the two approaches.   574 

 575 

4.3 Logistics and management 576 

The creation and management of a global observation network inevitably 577 

generates a number of management and logistical challenges. There has been a 578 

need to support central coordination, management and data cleaning, in addition 579 

to field data collection. The central coordination activities of GEM were 580 

supported by a number of funding initiatives, notably from the Gordon and Betty 581 

Moore Foundation (2008-2012) over the initial phase of developing a 582 

standardised network over the Amazon-Andes, from the European Research 583 

Council (2013-2018) that supported development and integration into a global 584 

network and the advance of the traits data collection, and from the Natural 585 

Environment Research Council (2016-2020) to continue this collection, analysis 586 

and databasing in the wake of the 2015/16 El Niño event. Both carbon cycle and 587 

traits data are stored in a dedicated GEM database {Shenkin, 2017 #640}, and 588 

made freely available to all users, subject to fair use agreements that 589 
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acknowledge and protect the prior publication rights of data collectors and data 590 

providers ([DOI to be inserted in final proof]) 591 

 592 

One key advantage of GEM is the standardisation of data collection protocols 593 

across the global network, though inevitably there are some small local 594 

variations in protocols (sometimes inadvertent, sometimes deliberate because of 595 

locale-specific challenges or questions). For example, in sites with high elephant 596 

abundance such as in Gabon or Sabah, litter traps are frequently deliberately 597 

destroyed by elephants and an alternative or additional protocol of marking out 598 

discrete quadrants on the ground is employed, even though this risks higher 599 

rates of in situ decomposition prior to collection because of the activities of litter 600 

layer fauna. Small variations in protocols can also lead to substantial additional 601 

challenges in incorporation into the database. 602 

 603 

4.4 Capacity-strengthening and training 604 

The development of local research capacity is an essential feature of GEM. The 605 

basic research model is dependent on autonomous and long-term local collection 606 

of data, which requires the training of local students or technicians in both data 607 

collection and analysis. This is achieved through workshops and hands-on 608 

training in situ and online. A number of GEM students have gone on to Masters 609 

and PhD qualifications, in many cases using the GEM data they collected in the 610 

field. Local students are strongly encouraged and supported to lead scientific 611 

papers based on their local site data (e.g. Huasco et al. 2014, Peixoto et al. 2017, 612 

Addo-Danso et al. 2018, Ibrahim et al. 2020), though the challenges of writing a 613 

paper to international scientific journal standards are not to be underestimated. 614 

 615 

A particularly exciting feature of GEM has been South-South training, where 616 

experienced field data collectors in one region have the opportunity to travel to 617 

other regions to train in plot installation and data collection. As an example, 618 

students and data technicians from Cusco, Peru (as the base for the Andes-619 

Amazon transect, the oldest and most advanced of our GEM focal regions) have 620 

led training events and plot installation in Brazil, Belize, Chile, Gabon and 621 

Malaysia. Similarly, students from Ghana have collected traits data in Gabon, and 622 

students from Gabon have helped establish plots in South Africa. Such exchange 623 

enables flourishing cross-tropics relationships and collaborations amongst an 624 

emerging generation of tropical ecosystem ecologists. 625 

 626 

4.5 Long term funding and prioritisation 627 

A key challenge, as with all long-term observation networks, is maintaining long-628 

term funding. In GEM the funding model to date has been dominated by a 629 

number of locale-focused grants centered on specific questions (e.g. temperature 630 

in the Andes, logging in Malaysia, fire in Amazonia), coupled with some large 631 

central grants that support network expansion, management and coordination. 632 

In some cases, notably in more prosperous tropical countries such as Brazil and 633 

Malaysia, this has led to locally sourced funding that enables continuation of 634 

measurements for the long-term. In most countries, however, continued data 635 

collection is dependent on centralised international funding. As the network has 636 

matured, additional partners have been brought into the network, who bring 637 

their own funding but would like their data to fit within the wider standardised 638 

network and contribute to large-scale analyses. 639 

 640 
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Dependency on centralised funding leads to a trade-off between supporting long-641 

term time series, vs. expanding coverage of sites. How much information is 642 

gained from maintaining a site  with monthly data collection for over a decade 643 

(e.g. the Tambopata, Peru plots were run over the period 2005-2017 (Malhi et al. 644 

2014)) vs. investing in new collection of a few years of data from additional sites 645 

that enable better coverage of the heterogeneity of the tropical forest biome? 646 

The answer to this depends of course on the question being asked, and on the 647 

temporal and spatial variability being observed. Long-term time series have, for 648 

example, been immensely valuable in understanding the impacts of the 2015/6 649 

El Niño (Rifai et al. 2018), and, in conjunction with forest inventories, may be the 650 

most cost-effective and practical way to collect long-term carbon flux time series 651 

and understanding global change impacts on forests. Broadly however, the focus 652 

in recent years has been to expand spatial coverage (either through setting up 653 

new plots or by bringing on board partners with new data collections), at the 654 

expense of long-term continuation of existing sites. However, it typically takes a 655 

few months to set up a new cluster of sites, and several months before all data 656 

collection protocols are properly underway and producing anything useful. 657 

Hence very short-term projects have a poor ratio between set-up phase and 658 

productive data output. 659 

 660 

5. Key Discoveries  661 

 662 

5.1 Variation of productivity and allocation across regions 663 

A key contribution of GEM has been to provide a detailed description of how 664 

tropical ecosystem productivity varies across regions, and along environmental 665 

gradients, but also to show how woody growth (the most widely applied proxy 666 

for forest productivity) can be a poor indicator of overall ecosystem productivity. 667 

Malhi et al. (2015) showed how GPP declined along wet-dry rainfall gradients in 668 

Amazonia, as increasing dry season intensity limited productivity for part of the 669 

year. However, this decline was not as apparent in NPP, because the drier forests 670 

invested more in biomass production and less in autotrophic respiration, 671 

probably because they were lower biomass and younger tree age ecosystems 672 

(Doughty et al. 2015a). Furthermore, the wet-dry trend almost disappeared in 673 

woody growth, because drier forests invested disproportionately more in woody 674 

growth. Moore et al. (2018) reported a similar pattern along wet-dry gradients 675 

in Ghana, West Africa, though here the highest NPP was found in the centre of 676 

the gradient, possibly because of soil fertility effects. 677 

 678 

Carbon use efficiency (CUE), the ratio of NPP to GPP, is a highly uncertain term in 679 

global biosphere modelling, yet has received much less attention than GPP. GEM 680 

has greatly increased the number of direct estimates of tropical CUE but found 681 

great site-to-site variability across lowland tropical forest sites. For example, 682 

CUE in lowland Amazonia averages 0.37 but ranges between ~0.25 and ~0.45 683 

across Amazonian GEM sites.  Overall, Amazonian forests have lower CUE in 684 

forest stands with slow growing trees and with lower fertility (Doughty et al. 685 

2018a). 686 

 687 

In contrast, along a 2800 m elevation gradient in the Andes, Malhi et al. (2017) 688 

reported no shifts in allocation or CUE along the gradient. GPP and NPP did 689 

decline at high elevations, but the cloud forest vegetation carbon cycle was 690 

simply a proportionately scaled-down version of the lowland rainforest one. 691 
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Moreover, the decline in productivity with elevation was not linear, but an 692 

abrupt change near cloud base (~ 1600 m a.s.l.), suggesting that mean 693 

temperature does not determine forest productivity. Oliveras et al. (2014) 694 

extended this transect higher beyond the cloud forest and into the puna 695 

grasslands, and showed no decline in NPP across this transition. 696 

 697 

The GEM network has also revealed striking regional differences. Until around 698 

2010, most understanding of tropical forest productivity and carbon cycling has 699 

emerged from the Neotropics, and in particular from eastern Amazonia, which 700 

was the focus of the LBA programme in Brazil. The wider GEM network has 701 

revealed that eastern Amazonia has amongst the lowest net primary 702 

productivity observed in the humid lowland tropics, probably because of its 703 

highly weathered soils. Higher values of productivity are observed in western 704 

Amazonia (Aragão et al. 2009, Malhi et al. 2015) , Borneo (Kho et al. 2013, Riutta 705 

et al. 2018) and most remarkably in West Africa (Moore et al. 2018), which has 706 

the highest recorded values for mature forests. The reasons for these contrasts is 707 

unclear, and are under investigation in an ongoing synthesis study across the 708 

network.  709 

 710 

In old growth forests, GEM has also highlighted the relative importance of 711 

turnover time (mortality rates) in determining forest biomass and vegetation 712 

carbon stocks. Spatial gradients in biomass across the tropics are only weakly 713 

shaped by gradients in woody productivity, and much more strongly determined 714 

by gradients in mortality and turnover time (Galbraith et al. 2013, Malhi et al. 715 

2015, Johnson et al. 2016). This presents a major challenge for terrestrial 716 

biosphere models, which have tended to prioritise the modelling of 717 

photosynthesis and productivity over the far less well-understood process of 718 

tree mortality (Friend et al. 2014). 719 

 720 

5.2 Seasonal variation of productivity, allocation and phenology 721 

 722 

Understanding the processes that govern seasonal carbon allocation strategies of 723 

humid and dry forests help provide a carbon and nutrient budget perspective on 724 

phenology. Many GEM sites collect bi-weekly data on fruit and flower fall. 725 

Focussing on tropical South American plots, Girardin et al. (2016) provided 726 

evidence that suggests solar irradiance may be a cue for flowering events 727 

governed by phylogeny. The energetic cost of reproduction was found to be 728 

trivial, suggesting that nutrient considerations are the predominant 729 

physiological constraint on timing and abundance of flowering and fruiting. 730 

In terms of the overall allocation of NPP, two main seasonal allocation strategies 731 

were identified in Amazonian forests: trade-offs between allocation to wood and 732 

canopy in dry sites, and trade-offs between allocation to roots and canopy in 733 

humid sites (Doughty et al. 2014a, Girardin et al. 2016). When considering the 734 

full GPP, NPP and respiration budget, the data suggested that there is a temporal 735 

decoupling between total photosynthesis from eddy covariance and total carbon 736 

usage (from GEM studies) that indicates that nonstructural carbohydrates could 737 

be serving as seasonal stores of energy reserves that have a strong influence on 738 

shaping patterns of seasonality and interannual variability (Doughty et al. 2015a, 739 

Doughty et al. 2015b). 740 

 741 

5.3 Logging, disturbance and the ecosystem carbon cycle  742 
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A whole-carbon-cycle approach has also yielded new insights into how logging 743 

and other forms of disturbance affect productivity and woody growth. It has long 744 

been known that logging and other forms of stand thinning tend to stimulate 745 

woody growth, but it has been unclear if this is due to an increase in overall GPP, 746 

a decrease in autotrophic respiration, or a shift in allocation of NPP to woody 747 

growth. Riutta et al. (2018) studied a logging gradient in Sabah, Malaysia, 748 

ranging from old growth to intensively logged forests. They showed that overall 749 

there was no increase in NPP between heavily logged and unlogged forest plots, 750 

but further examination showed strong increase in NPP in remaining patches of 751 

forest in the logged plots, offset by very low productivity in heavily degraded 752 

subplots, such as old logging platforms. The overall increase in woody growth 753 

was partially caused by a stimulation of NPP, and partially by increased 754 

allocation of NPP to woody growth, as a result of increased competition for light 755 

in the logged stands. Remarkably, the stimulation of growth did not result in net 756 

carbon accumulation in the logged forests, because of the ongoing release of 757 

carbon from dead wood and soil organic matter. Hence, logged forests can be net 758 

carbon sources to the atmosphere many decades after logging, a feature not 759 

visible if only tree biomass inventories are considered. 760 

 761 

5.4 Response of carbon cycle to droughts 762 

The rate of rise of atmospheric CO2 shows strong interannual variability, and it is 763 

known that this variability is largely determined by the variability of the net 764 

carbon balance of the tropical terrestrial biosphere (Malhi et al. 2018b). 765 

Monitoring in the GEM network has now spanned a number of major drought 766 

events in the tropics, most notably the 2010 drought in Amazonia (Doughty et al. 767 

2015a, Doughty et al. 2015b) and the 2015/16 El Niño, which was the strongest 768 

such event in decades. Moreover, these drought events sit on top of a long-term 769 

anthropogenic warming trend (Rifai et al. 2019), which means that every major 770 

drought event occurs under conditions of increasing peak temperature and 771 

atmospheric water stress. 772 

 773 

Doughty et al. (2015a) examined impacts of the 2010 drought in 13 GEM sites 774 

across Amazonia. They found that, as expected, the drought caused a reduction 775 

in GPP but that, remarkably, there was no corresponding reduction in NPP and 776 

or woody growth; instead, there was a decline in autotrophic respiration. The 777 

study proposed that this indicated a decreased investment in plant maintenance 778 

and defence in favour of continued biomass growth, but that such a strategy may 779 

contribute to increased mortality in the years following drought. A worldwide 780 

analysis of GEM plots in the 2015/16 El Niño shows a similar pattern of little 781 

shift in NPP, but offers an additional insight in showing a strong pulse of 782 

increased soil respiration, suggesting that the interannual variability of the 783 

tropical forest carbon cycle is driven mainly by soil processes rather than plant 784 

processes (Malhi et al., unpublished analysis). Coupling traits data with the 785 

longer term forest inventories also enables an improved description of potential 786 

shifts in ecosystem function traits over time, as has been demonstrated by the 787 

Ghana rainfall gradient study (Aguirre-Gutierrez et al. 2019). 788 

 789 

5.5 Linking canopy traits to ecosystem productivity and resilience through theory 790 

and models 791 

A key goal of the traits-based research in GEM has been to link canopy functional 792 

traits to ecosystem productivity and resilience under climate change. Both 793 
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theory and modelling approaches have been applied to this challenge, with an 794 

initial focus being the Andes-Amazon elevation gradient (Marthews et al. 2012, 795 

Enquist et al. 2017, Fyllas et al. 2017, Peng et al. 2020). Fyllas et al. (2017) 796 

showed that a traits-based model could accurately predict the magnitude and 797 

trends in forest productivity with elevation, with solar radiation and plant 798 

functional traits being sufficient to describe productivity variation. Remarkably, 799 

there was no need to explicitly represent temperature variation with elevation, 800 

as trait variation driven by species turnover appears to capture the effect of 801 

temperature. Enquist et al. (2017) applied a metabolic-theory-based approach to 802 

the same (Aguirre-Gutierrez et al. 2019) dataset, and arrived at a broadly similar 803 

conclusion, that the turnover in species results in an adaptive compensation for 804 

the effects of temperature on ecosystem productivity, a feature that current 805 

biosphere models struggle to represent. Peng et al. (2020) analysed the same 806 

rich dataset through a framework of optimisation of photosynthesis to 807 

temperature, and argued that an adjustment in leaf-level photosynthetic capacity 808 

was sufficient to explain ecosystem-level trends in nutrient stocks and 809 

productivity. While these interpretations differ in details, they all agree that the 810 

widely presumed sensitivity of ecosystem function to temperature is much less 811 

than expected, and demonstrated fundamental new insights into how 812 

temperature influences ecosystem function. Similar approaches and analyses are 813 

currently being applied to the very different context of the GEM rainforest-814 

savanna gradient in Ghana (e.g. Aguirre-Gutierrez et al. 2019, Oliveras et al. 815 

2020), and this is a fruitful direction where GEM can contribute to both theory 816 

and modelling.  Previous studies using the GEM-trait database from the Peruvian 817 

elevation gradient suggest that leaf traits such as LMA may be changing in 818 

response to climate change (Enquist et al. 2017) and other studies have found 819 

that this could impact leaf reflectance by essentially darkening tropical leaves 820 

and changing the albedo of the tropical biosphere (Doughty et al. 2018b).  821 

 822 

In a further model application, Fauset et al. (2019) applied a more advanced 823 

dynamic model that incorporated diverse tree strategies, realistic physiology 824 

and detailed forest structure. They explored the links between traits, 825 

demography (recruitment and mortality) forest structure and NPP and GPP, in 826 

the context of seasonal and aseasonal lowland forest GEM sites in Peru. The 827 

study found that in this case the differences in productivity between the two 828 

sites could be explained by climate alone and not by traits differences, but 829 

modelling the allocation of NPP to organs remained problematic.  The rich 830 

allocation datasets now available from many GEM sites offer the opportunity for 831 

a better understanding of allocation strategies than can inform and test such 832 

models. 833 

 834 

5.6 Linking field data to remote sensing 835 

The link between ecosystem function and leaf traits opens the prospect for 836 

monitoring ecosystem function and health through airborne or satellite-based 837 

remote sensing. Long-established optical earth observation approaches are 838 

limited in the amount of information potentially contained in their few optical 839 

bands, and the tropical forest canopy is reduced to a largely uninformative green 840 

surface. However, new richer multispectral (> 5 bands) and hyperspectral 841 

(hundreds of distinct bands) approaches, coupled with information on 842 

ecosystem structure through Lidar and textural analysis, offer the promise of 843 

elucidating key canopy traits and structural features. Thereby, through the 844 
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theoretical and modelling approaches outlined in the previous section, this 845 

opens up the potential of providing richly detailed maps and monitoring of 846 

tropical ecosystem function. Flights in 2011 and 2013 using hyperspectral and 847 

lidar sensors on board the Carnegie Airborne Observatory over much of the 848 

Andes-Amazon transect demonstrated the potential of linking canopy function to 849 

airborne remote sensing (Asner et al. 2014, Asner et al. 2017), thereby 850 

successfully predicting ecosystem productivity from remotely sensed functional 851 

diversity (Duran et al. 2019). Swinfield et al. (2020) used a similar combination 852 

of Lidar and imaging spectroscopy coupled with traits sampling in the GEM plots, 853 

to map nutrients in the matrix of intact and logged forests in Sabah, Malaysian 854 

Borneo. They showed that canopy foliar nitrogen and phosphorus 855 

concentrations decreased with elevation, a feature not detectable from the 856 

ground surveys alone. Once topography was controlled for, logged forests were 857 

found to have relatively depleted phosphorus concentrations as this limiting 858 

nutrient was extracted through harvest, highlighting long-term sustainability 859 

issues in repeated logging.  860 

 861 

At a smaller scale, measurements of leaf spectroscopy along the Peruvian 862 

elevation gradient suggested that many new traits could be remotely sensed 863 

through correlations with other leaf traits, such as photosynthesis, leaf venation, 864 

wood density (Doughty et al. 2017).  Another study, in Borneo, suggested that 865 

leaf spectroscopy has some potential in providing early warning of future tree 866 

mortality (Doughty et al., in review).  Scaling up slightly more, drone-based 867 

hyperspectral remote sensing also showed potential in mapping canopy leaf 868 

nutrients and traits along the wet-dry ecosystem GEM gradient in Ghana 869 

(Thomson et al. 2018). An immediate goal of the GEM network is to exploit the 870 

latest generation of satellite-based sensors, such as the multispectral bands of 871 

the Sentinel-2 mission  from the European Space Agency (ESA) or the Lidar on 872 

the GEDI mission, to develop the potential real-time remote sensing of canopy 873 

properties and ecosystem function  (Aguirre-Gutierrez et al. 2020). 874 

 875 

6. New scientific directions 876 

The GEM network is continuing to deliver on its central goals of describing 877 

ecosystem productivity and carbon cycling, understanding their spatial and 878 

interannual variability, and their relationship to functional traits and remotely 879 

sensed properties. However, the network is also continuing to spawn new 880 

research directions, some of which are highlighted below. 881 

 882 

6.1 GEM-Nutrients 883 

The nutrient status of ecosystems is often described in static terms such as  884 

concentrations or stocks of nitrogen or phosphorus. However, the coupling of 885 

NPP (the signature feature of the GEM network) with the stoichiometry of leaves, 886 

wood and fine root tissue enables the quantification of ecosystem use and flows 887 

of nutrients, enabling direct assessment of ecosystem nutrient demand and use 888 

efficiency. This approach is currently being applied to GEM sites in Malaysia 889 

(Inagawa et al., in prep), Brazil (Scalon et al, in review), Ghana and South Africa, 890 

and offers the prospect of a network of standardised assessment of nutrient 891 

dynamics. In principle, the approach can be applied to any nutrient or organic 892 

compound:  Feakins et al. (2016) applied such an approach to leaf wax n-alkane 893 

concentrations along the Andes-Amazon transect, and was thus able to uniquely 894 

quantify the variation of ecosystem wax production rates with elevation. They 895 
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showed that ecosystem n-alkane production rates increased with elevation by 896 

more than an order of magnitude, most likely as a defence mechanism for long-897 

lived montane-forest leaves. Such waxes are promising and important 898 

paleoindicators of ecosystem composition and function. This result shows the 899 

potential of new insights into the dynamics of ecosystem nutrients and complex 900 

organic compounds made possible through a network of NPP measurements. 901 

 902 

6.2 Tree architecture as a functional trait 903 

The consideration of plant functional traits has tended to focus on leaf or wood 904 

functional traits. However, consideration of tree architecture provides a series of 905 

traits that directly link species composition to ecosystem structure and biomass. 906 

It has been quite challenging to address architectural traits, as their collection 907 

has been laborious and often imprecise. This impediment has recently been 908 

largely removed with the advent of terrestrial laser scanning approaches (Malhi 909 

et al. 2018a) that enable digital extraction of detailed tree skeletons, from which 910 

a suite of architectural parameters can be derived. Recent field campaigns have 911 

collected such tree architectural data from a suite of GEM sites where NPP and 912 

traits data have been collected, including in Peru, Brazil, Ghana, South Africa, 913 

Malaysia and Australia. Immediate priorities are to understand the association 914 

between tree architecture and other plant functional traits, and the patterns of 915 

geographical and taxonomic variation in architecture. In addition, such data 916 

enable development of much more accurate descriptions and allometries of tree 917 

woody surface area, thereby enabling improved estimation of woody respiration, 918 

a key component of the GEM carbon cycle measurements (Meir et al. 2017). 919 

 920 

6.3 GEM-Animals: a multitrophic view of ecosystems 921 

A new direction for GEM is to combine the vegetation-focused conventional GEM 922 

focus with a holistic view of energy and nutrient flows through the fauna and 923 

multiple trophic levels of an ecosystem. These efforts link back to the earliest 924 

attempts in ecosystem ecology to describe whole ecosystem energy flow through 925 

both flora and fauna {Lindeman, 1942}.  Such an approach is possible where 926 

there are rich data on the composition and abundance of faunal populations, 927 

where metabolic mass-based scaling approaches can be used to estimate energy 928 

needs and food consumption by each animal species or functional group. This 929 

can be complemented by direct estimates of herbivory, such as measuring what 930 

fraction of leaf area is consumed by insect herbivores. The advantage of using 931 

GEM sites is that the NPP and productivity data are available, enabling framing in 932 

terms of the fraction of total productivity and photosynthesis that is flowing 933 

through different populations and trophic levels. This approach is only possible 934 

at the few sites where detailed studies of animal populations are available. It is at 935 

an advanced stage at Wytham Woods, the UK GEM site with a rich history of 936 

animal research, and is also being developed at intact and logged forests in 937 

Sabah, Malaysia, where rich faunal datasets have been collected in the SAFE 938 

project (Ewers et al. 2011, Riutta et al. 2018), and also at the Wits Rural savanna 939 

sites in South Africa, where termite and ant exclusion experiments have been 940 

implemented.  A recent study used combined the GEM methodology and large 941 

mammal data data (dung count and camera trap) to find forest thinning in North 942 

America appeared to increase energy flow from primary producers to primary 943 

consumers (Doughty et al. 2020). 944 

 945 

7.  Conclusions 946 
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This paper has sought to give an overview of the context and historical 947 

development of the GEM network, as well as providing a benchmark of the 948 

coverage and state of the network in 2020. It has highlighted the opportunities 949 

and challenges of developing such a network, and the potential it has to provide 950 

a stronger bridge between field ecology and Earth System Science. Synthetic 951 

analyses across the network offer the prospect of new broad insights into 952 

tropical ecosystem function, and new directions of research will result in richer 953 

understanding and scaling of ecosystem function. Whatever form the network 954 

continues in over the coming decade, we hope and believe that it has left a 955 

record of training, collaboration and scientific innovation, particularly in tropical 956 

nations, that will leave a positive legacy for many decades to come. 957 
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Figures 981 

 982 

Figure 1: The Global Ecosystems Monitoring Network, as of early 2020. Open circles indicate 983 

sites where detailed carbon cycle data alone have been collected; grey filled circles indicate 984 

where plant traits data and forest inventory data alone have been collected; filled circles 985 

where both detailed carbon cycle and plant functional traits data have been collected. Circles 986 

indicate sites that are centrally supported by the GEM network; triangles indicate sites 987 

primarily supported by external partners.  988 

 989 

Figure 2: GEM plots in climate space. Colours indicate continent, and country of the sites are 990 

indicated, where they are not congested.  The climate data are derived from TerraClimate 991 

(http://www.climatologylab.org/terraclimate.html) for the period 1982-2010 1(a) Mean 992 

annual solar radiation (W/m2) vs Elevation (m); (b) Water stress: Potential 993 

evapotranspiration (mm/month) vs Maximum Climatological Water Deficit (mm); (c) Annual 994 

precipitation (mm) vs Mean annual temperature (oC). 995 

 996 

Figure 3: A selection of sites from the GEM network: (a) Fine root productivity measurements 997 

in Ivindo National Park, Gabon, Central Africa; (b) Measuring diameter of large trees with a 998 

ladder to reach above the buttress, Maliau Hills National park, Sabah, Malaysia; (c) Measuring 999 

leaf traits in montane cloud forest, Wayqecha, Peruvian Andes. (d) Measuring Leaf area Index 1000 

in Bobiri Forest Reserve, Ghana; (e) Measuring herbaceous layer productivity in a savanna in 1001 

Wits Rural Facility, South Africa; (f) Plot locations in a coral atoll in Tetiaroa, French 1002 

Polynesia, looking at the impacts of invasive rat eradication on ecosystem functioning. 1003 

 1004 

Figure 2: The key components of the GEM protocol. See main text for details. 1005 
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Figure 4: The key components of the GEM protocol. See main text for details. 1065 
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