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Highlights:  

The availability of novel, more efficacious cancer therapies is increasing, resulting in significant treatment effect 

heterogeneity and complicated treatment and disease pathways. Technology Appraisals (TAs) evaluate clinical 

and economic evidence to inform reimbursement decisions and resource allocation. Through critical appraisal of 

UK cancer TAs, we identify areas where considerations of heterogeneity can be improved. We focus on three 

cancer sites: colorectal, lung and ovarian cancer, encompassing variation in screening, diagnostic and treatments 

pathways. 

All TAs in this review employed decision analytic modelling. The majority utilised partitioned survival models 

and evaluated aggregate outcomes of clinical trial populations. Only two models explicitly considered real-

world patient heterogeneity in disease progression estimates. Moreover, pre-determined subgroup analyses 

contained within the clinical studies that informed the TAs were rarely exploited in economic analyses. 

This review highlights a paucity of information relating to the assessment of heterogeneity in colorectal, lung 

and ovarian cancer TAs. We conclude that future cancer TAs should consider more flexible modelling 

approaches and apply real-world data to explore heterogeneity within their economic analyses, especially if the 

complexity of treatment and disease pathways is to be reflected. 

 



4 

 

Abstract 

Word count: 247 

Objectives 

The availability of novel, more efficacious and expensive cancer therapies is increasing, resulting in significant 

treatment effect heterogeneity and complicated treatment and disease pathways. The aim of this study is to 

review the extent to which UK cancer technology appraisals (TAs) consider the impact of patient and treatment 

effect heterogeneity.  

Methods 

A systematic search of NICE TAs of colorectal, lung and ovarian cancer was undertaken for the period up to 

April 2020. For each TA, the pivotal clinical studies and economic evaluations were reviewed for considerations 

of patient and treatment effect heterogeneity. The study critically reviews the use of subgroup analysis and real-

world translation in economic evaluations, alongside specific attributes of the economic modelling framework. 

Results 

The search identified 49 TAs including 49 economic models. In total, 804 subgroup analyses were reported 

across 69 clinical studies. The most common stratification factors were age, gender and Eastern Cooperative 

Oncology Group performance score, with 15% (119/804) of analyses demonstrating significantly different 

clinical outcomes to the main population; economic subgroup analyses were undertaken in only 17 TAs. All 

economic models were cohort-level with the majority described as partitioned survival models (39) or 

Markov/semi-Markov models (9). The impact of real-world heterogeneity on disease progression estimates was 

only explored in two models. 

Conclusions 

The ability of current modelling approaches to capture patient and treatment effect heterogeneity is constrained 

by their limited flexibility and simplistic nature. This study highlights a need for the use of more sophisticated 

modelling methods that enable greater consideration of real-world heterogeneity. 

 



5 

 

Introduction 

Cancer represents a significant healthcare burden in the UK, being the leading cause of morbidity and 

mortality1. Between 2015 and 2017, an estimated 2.5 million people were living with cancer in the UK, with an 

estimated annual incidence of 367,000 and, despite general improvements in population health, incidence and 

prevalence are predicted to increase2-6. Consequently, the economic burden of cancer is high and is estimated to 

account for 5% of total UK medical expenditure7. Nevertheless, whilst the UK falls behind other high-income 

countries, in recent years there has been improvement in mortality rates across most cancers, driven by an ever-

evolving therapeutic landscape and earlier diagnoses8-10. The introduction of several nationwide screening 

policies, the emergence of targeted therapies and an increasing focus on personalised care have all contributed to 

such improvements11-15. These changes have ushered in the potential for significant treatment outcome 

variability, compounded by inherent increases in patient and treatment effect heterogeneity.  

Patient heterogeneity typically refers to the variability of particular characteristics (e.g. age, sex, etc.) amongst 

patients in a given population, whilst treatment effect heterogeneity refers to the non-random, explainable 

variability in the direction and magnitude of treatment effects for individuals within a population16. Treatment 

effect heterogeneity can be measured in relative or absolute terms and patient heterogeneity may conventionally 

be represented by variation in outcomes under the status quo, whilst treatment effect heterogeneity would be 

operationalised as the variation in the difference in outcomes between the new treatment and the status quo.  

Measures of patient and treatment effect heterogeneity seem particularly applicable to a disease area such as 

cancer, where the treatment landscape is rapidly evolving, and the availability of novel and more efficacious 

therapies is increasing. This is even more relevant when considering that newer cancer therapies are often 

targeted to specific patient groups, such as those with particular gene mutations or treatment and clinical 

histories. These targeted treatment recommendations arise from the significant patient and treatment effect 

heterogeneity observed amongst cancer patients, naturally resulting in complicated treatment and disease 

pathways17,18. However, there remains a lack of formal guidance on how to incorporate such effects into 

economic evaluations19-21. Indeed, reimbursement decisions are typically made based on average population-

level results of clinical and economic evaluations, which potentially conceal important sources of outcome 

variability, particularly within large clinically heterogeneous populations.  

Linked to these issues are the growing concerns related to inequalities across socioeconomic groups, particularly 

with respect to cancer survival22,23. People in the most income-deprived areas in England are more likely to have 
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their cancer diagnosed at a later stage, present with more comorbidities and observe different treatment 

pathways to those in less deprived areas, and perhaps as a consequence, observe lower life expectancy24,25. 

Further, whilst survival rates improve there is little evidence that inequalities in cancer survival have 

narrowed26,27. Knowledge about variation in patient outcomes and their association with clinical and 

socioeconomic characteristics would enable efficient and equitable healthcare resource allocation. 

The objective of this study is to review the extent to which UK cancer TAs consider the impact of patient and 

treatment effect heterogeneity, and to evaluate the suitability of current modelling approaches with respect to 

their ability to capture such heterogeneity. Through critical appraisal, this review aims to identify areas where 

the consideration of patient and treatment effect heterogeneity may be improved, and to move towards 

recommendations on best practice for future economic evaluations. 
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Methods 

A search of published National Institute for Health and Care Excellence (NICE) cancer TAs was undertaken. 

Focus was given to three cancer sites: colorectal, lung and ovarian cancer, to encompass a range of screening, 

diagnostic and treatment practices. Full details of the search are provided in Supplemental Appendix 1. In 

brief, the review was undertaken according to best practices as described by the Preferred Reporting Items for 

Systematic Reviews and Meta-Analysis (PRISMA) guidelines28. Searches were conducted on the 12th April 

2020; no date restrictions were applied. For each TA, the clinical studies describing the effectiveness of the 

intervention under assessment, and any associated economic analyses, were retrieved and reviewed.  

Within the context of economic evaluation specifically, this review explores the use of subgroup analyses and 

real-world translation, alongside specific attributes of the underlying economic modelling frameworks. Each 

component is critically reviewed, from the perspective of their ability to incorporate patient and treatment effect 

heterogeneity. 

Subgroup analysis 

Randomised clinical trials often assess the impact of treatments in specific groups of patients through pre-

defined subgroup or stratification factor analyses. Subgroup analysis is also a common approach used to explore 

heterogeneity implications in cost-effectiveness analyses. Espinoza et al. develops a general framework to guide 

the use of subgroup cost-effectiveness analysis for decision making in a collectively funded health system29. 

With this framework in mind, we consider to what extent TAs have included subgroup analysis in clinical and 

economic sections of the submission. 

Patient and treatment effect heterogeneity were initially explored by extracting data relating to the presentation 

of subgroup analyses in the pivotal clinical studies. Subgroup analyses undertaken within the clinical studies 

that presented treatment effect hazard ratios (HRs) for either progression-free survival (PFS) or overall survival 

(OS) were recorded, alongside subgroup stratifications. In addition, we recorded the number of subgroup 

analyses where the HR in the subgroup population significantly differed from the HR in the intention-to-treat, or 

overall population. Here, a significant difference is defined by an opposing effect in each population, for 

example, instances where the HR is greater than one favouring the comparator in the subgroup analysis 

population, whilst the HR is lower than one favouring the intervention in the overall population. 

Economic modelling 
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Economic modelling in TAs is utilised to estimate lifetime clinical and economic outcomes associated with a 

particular treatment, where direct experimental or observational data are unavailable or incomplete. Modelling 

frameworks provide a natural environment to assess the impact of patient and treatment effect heterogeneity and 

their associated uncertainty. The ability of models to incorporate such aspects can be highly dependent on their 

structural form and the statistical analysis used to manipulate and evaluate the underlying data. 

We draw on Brennan et al. and Briggs et al. and describe a modified taxonomy of models (Supplemental 

Appendix 2) in order to critically review the ability of identified models to incorporate patient and treatment 

effect heterogeneity30,31. Partitioned survival models (PSMs) and Markov models are the most common 

approaches to modelling cost-effectiveness in cancer32. Both are typically cohort-level and predict outcomes 

based on the average patient and treatment effect in a population. A PSM follows a cohort as they move 

between a set of exhaustive and mutually exclusive health states, relying on the use of independent survival 

functions to estimate state occupancy. Similarly, a Markov model follows a cohort as they move between 

exhaustive and mutually exclusive health states, but relies on static, cyclic transition rates. Importantly, these 

Markov transitions enable the cohort to move back into health states that have already been visited. However, to 

incorporate time-dependency of transitions through relaxation of the Markov assumption, the use of tunnel 

states or semi-Markov models is required33,34.  

Patient-level models are an alternative to cohort-level models and estimate outcomes for each individual patient, 

enabling individual patient histories to be recorded and the ability to capture (first order) heterogeneity in the 

patient population. Patient-level models require more data than cohort models, and their ability to capture 

patient histories therefore comes at a cost which may or may not be necessary for solving a decision problem. 

Whilst it is suggested that patient-level models are the preferred choice for incorporating heterogeneity 

considerations due to their inherent flexibility, heterogeneity may be incorporated in PSMs and Markov models 

using extra health states to stratify patients by clinical or treatment characteristics30,31. 

The following model components are therefore reviewed and appraised:  

• Modelled population 

• Model type 

• Health states  

• Health state transitions and their derivation 

• Treatment pathway and its influence on outcomes 
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Real-world translation 

Trial populations often differ from those they are deemed to represent in routine clinical practice, with trial 

participants often being younger and healthier35-37. Trials undertaken in different regions or at different times 

can also differ significantly with respect to the patients they recruit and treatment management. These 

differences are particularly important for establishing the external validity of economic findings, with subgroup 

analysis a natural first test.  

For example, in a trial that has recruited patients younger than those observed in routine clinical practice, and 

where the intervention demonstrates reduced effectiveness in the elderly subgroup, showing the generalisability 

of the trial findings to the proportions of the elderly found in routine clinical practice is akin to extending the 

heterogeneity of the trial subgroup to the overall clinical population. We explored the TAs acknowledgement of 

differences between trial populations and routine clinical practice and their approaches to real-world data 

translation. 

Firstly, we extracted patient characteristic data for age, gender, Eastern Cooperative Oncology performance 

status (ECOG-PS) and ethnicity from the pivotal clinical studies. Where multiple clinical studies were included 

for a single TA, the range of results was presented and discussed. Secondly, for clinical studies with a National 

Clinical Trial identification number we reviewed the exclusion criteria described on the ClinicalTrials.gov 

website. The extent to which exclusion criteria would reduce the comparability between trial and routine 

practice populations was discussed. Finally, the TA submissions were reviewed for explicit acknowledgements 

of differences between trial and routine clinical practice, and economic analyses were reviewed for analytical 

methods that accounted for these differences.
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Results 

Included studies 

A total of 49 TAs, published between 2003 and 2020, were included in the review; 38 evaluated a targeted 

therapy (Figure 1). The included TAs were dominated by lung (L) cancer appraisals (32/49), of which 31 were 

for non-small cell lung cancer; there were eight colorectal (C) and nine ovarian (O) cancer TAs. Details of 

excluded studies are presented in Supplemental Appendix 3, alongside an overview of each included TA.  

<<FIGURE 1>> 

The clinical evidence across all TAs was informed by a total of 94 (C: 22; L: 55; O: 17) clinical studies. 

Amongst the TAs, a total of 49 (C: 9; L: 31; O: 9) cost-effectiveness models were available for review. A total 

of 41 cost-effectiveness analyses were undertaken by the submitting pharmaceutical company, with eight 

undertaken by academic review groups. 

Subgroup analysis 

Subgroup analyses assessing either PFS or OS were reported for 72 (C: 13; L: 44; O: 15) of the clinical studies 

in either the clinical section of the TA or in the main clinical study publication cited in the TA. A total of 804 

subgroup analyses were described amongst these 72 clinical studies. The most common stratification factors 

were age (62 studies), gender (46 studies) and ECOG-PS (50 studies). Across all reported clinical subgroup 

analyses, 14.8% (119/804) observed results that differed to those of the overall population. Figure 2 contrasts 

the number of subgroup analyses presented as clinical evidence to the number of subgroup analyses undertaken 

within economic evaluations. Subgroup analysis in the economic evaluations was only conducted in 17 TAs. In 

8 TAs the conclusions from at least one economic subgroup analysis differed to those of the main population, 

based on cost-effectiveness criteria described by the analysis authors. The most common subgroups included 

histology (five lung cancer studies) and mutation status (eight lung cancer studies).  

<<FIGURE 2>> 

Economic modelling 

Table 1 describes the structures of the 49 cost-effectiveness models. The majority of models were described as 

PSMs (total: 39; C: 5; L: 27; O: 7), Markov models (total: 5; C: 3; L: 2; O: 0), or semi-Markov models (total: 4; 

C: 0; L: 2; O: 2). Figure 3 describes the health states included in each of the models. Health states of partitioned 
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survival models typically reflected PFS, progression and death (37 models), with 6 of these models including 

response- or treatment-based sub-states. In contrast, Markov and semi-Markov structures described a range of 

health states reflecting treatment and clinical status. All models were cohort-level, and given the majority 

included between 2 and 4 health states only, there was little consideration of individual patient clinical 

heterogeneity or variability within the model structures themselves.  

<<FIGURE 3>> 

With respect to treatment heterogeneity, 42 (C: 4; L: 31; O: 7) economic analyses utilised data from a single 

clinical study relating to the first modelled line of treatment only, relying on either clinical expert opinion or 

validation against published studies with longer-term follow-up to justify extrapolation choices. Supplemental 

Appendix 4 demonstrates the growing importance of accurate clinical extrapolation; across the 72 clinical 

studies for which information on the maturity of clinical data was available, 46% (33/72) of studies had 

observed events in less than 50% of patients at the time of analysis (17% [12/72] had observed events in less 

than 25% of patients). Further, there appears to be no discernible relationship between the length of follow-up of 

the clinical studies and the choice of modelling structure, with lung cancer studies, as expected due to their 

comparatively lower survival rate, observing the shortest periods of follow-up on average.  

The modelling of treatment pathways is described in Table 2, alongside additional context with respect to the 

modelled population. Despite real-world potential for multiple subsequent therapies across many of the 

reviewed indications, 20% (10/49) of models did not include subsequent therapy at all and 71% (35/49) included 

only one explicit subsequent line of therapy (not including best supportive care). Of those models that included 

the impact of subsequent therapies, this impact was limited to cost accrual in 77% (30/39) of models and to cost 

accrual and utility values in 18% (7/39) of models; subsequent therapy impacted disease progression, cost 

accrual and utility values in the remaining two models. 

<<TABLE 1>> 

<<TABLE 2>> 

Real-world translation 

The majority of TAs (32/49) acknowledged differences between the patient characteristics and/or treatment 

pathways used in the clinical studies and routine clinical practice. Further, within individual TAs, patient 

heterogeneity was particularly noticeable in those that included more than one pivotal clinical study 
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(Supplemental Appendix 5). In such TAs, where data were reported, the average range of median ages was 4.9 

years (C: 4.9; L: 5.7; O: 3.0), with average ranges of 16% (C: 12%; L: 18%), 10% (C: 5%; L: 11%; O: 14%) and 

21% (C: 31%; L: 20%; O: 12%) for the proportion of patients that were male, had an ECOG-PS of 0 or 1 and 

were White or Caucasian, respectively; the largest ranges in any single TA were 18.8 years (C: 18.5; L: 18.8; O: 

3.1), 65% (C: 29%; L: 65%), 57% (C: 11%; L: 57%; O: 37%) and 99% (C: 58%; L: 99%; O: 13%), 

respectively.  

Figure 4 describes the most common exclusion criteria used by the clinical studies and gives an overall 

impression of the selective nature of clinical trials and how the trial populations might differ from those found in 

routine clinical practice. A total of 73/94 clinical studies described exclusion criteria. The most common criteria 

not related to the treatment indication (e.g. treatment history, histology, mutation status, etc.) were a history of 

other malignancies (35/73 studies) and a history of cardiac problems (31/73). Such exclusion criteria would 

likely ostracize a significant proportion of cancer patients in UK clinical practice that are expected to have 

comorbid conditions25.  

<<FIGURE 4>> 

Finally, few TAs attempted to investigate the impact of clinical heterogeneity through disease progression 

modelling, with only five models (all evaluating targeted therapies) including clinical covariates within their 

estimation of PFS and OS disease progression estimates (Table 1). Although not exclusive to these TAs, 

patients in the clinical studies associated with four out of the five TAs were systematically different to the 

routine clinical practice patients they were representing with respect to their ethnic origin. Of these, two TAs 

(TA406 and TA529) employed methods to account for differences between trial and clinical practice 

populations. These lung cancer TAs generated disease progression survival models that included clinical 

covariates based on data from the clinical study. Subsequently, these survival models were used to predict 

clinical outcomes for the cost-effectiveness model at covariate values corresponding to those observed in 

published studies deemed representative of UK clinical practice. In both cases, the following clinical covariates 

were included in the survival models: race (Asian/non-Asian), ECOG-PS (0 or 1/2), brain metastases at baseline 

(yes/no), age (≥65/<65 years), sex, smoking status (never smoked/former or current smoker), adenocarcinoma at 

baseline (yes/no).  
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Discussion 

This is the first review to consider patient and treatment effect heterogeneity in UK TAs of colorectal, lung and 

ovarian cancer. The review highlighted that whilst many clinical studies undertook subgroup analyses, only a 

small number of economic evaluations considered these subgroups further in modelling analyses. Although, 

such findings must be caveated with the potential for publication bias and the under-reporting of negative results 

in economic submissions. This lack of representation in economic analyses was notable as several clinical 

subgroup analyses presented results contradicting the overall population findings, although statistical 

significance was rare. In addition, it was common to find a significant and positive treatment effect in the 

overall population analysis with subgroup analyses failing to demonstrate the same effect (or achieve 

significance). Statistical significance was not a focus of this study due to inconsistent definitions across TAs, 

underreporting of results (e.g. commercial-in-confidence redaction) and small sample sizes. Subgroup analyses 

provide evidence for improved allocation of healthcare resources, with the potential to tailor reimbursement 

recommendations to specific patient groups where evidence for effectiveness is either very strong or very weak. 

Guidance is available on when to apply subgroup analysis in cost-effectiveness evaluation, with such analyses 

continuing to be a preferred first step to evaluate patient and treatment heterogeneity29,38-40.  

Review of the economic models further showed that the ability to incorporate heterogeneity in the economic 

evaluations was hampered by an overreliance on relatively simplistic cohort-based modelling structures. It was 

found for example, that most economic models utilised univariable disease progression estimates and 

represented disease progression through just three health states. Of particular note is what may be perceived as a 

systemic reliance on PSMs to demonstrate the economic impact of new cancer therapies. PSMs are designed for 

use with near complete clinical data and relatively simplistic treatment and disease pathways41. Inherently, 

models with simple structures lack flexibility and therefore do not lend themselves to the modelling of 

heterogeneity, particularly those of patient characteristics and treatment effects.  

The NICE Decision Support Unit technical documentation suggests patient-level simulation should be 

considered when the number of categories required to define patient groups with homogeneous outcomes 

becomes large42. Patient-level simulation is also advocated for consideration when the likelihood of future 

events (e.g. death) are dependent on the time since previous events (e.g. disease progression). Notably, these 

criteria are true of certain TAs in this review, with the latter being particularly relevant to cancers for which 

curative treatment is available (colorectal and ovarian cancer) and those where disease progression is 
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particularly influential over patient prognosis (lung cancer). However, patient-level models often have greater 

computational requirements, with respect to the data required, the time taken to run analyses and the complexity 

of such analyses. As such, trade-offs between analyst time, computation time and the requirements of the 

decision problem may be required. To justify final model selection, a checklist approach could be used to 

characterise the decision problem, the data, computational limitations, and other relevant issues. This approach 

offers several advantages over algorithmic model selection, including the ability to summarise strengths and 

weaknesses of modelling approaches within the context of the decision problem aiding critical appraisal of 

model choice, and the avoidance of prescriptive decisions that create the illusion that only one model type suits 

a particular decision problem. 

The review additionally identified weaknesses in the methods used to extrapolate clinical endpoints to policy-

relevant time horizons. Extrapolations rarely considered clinical mechanisms for estimating disease progression, 

and instead relied predominantly on within-trial statistical goodness-of-fit output, visual inspection, and 

comparison to historical data. A potential solution is to utilise risk equations to aid in the extrapolation of 

outcomes beyond the trial phase using clinical and treatment history data. This approach is commonly applied in 

other disease areas such as diabetes, cardiovascular disease and chronic kidney disease43-49. The derivation of 

these risk equations is typically undertaken from large real-world observational datasets and may also assist in 

alleviating concerns over the real-world applicability of outcome extrapolation. These methods may have 

previously been overlooked in cancer due to the potential for low quality of recording of data, the propensity for 

cancer treatments to fundamentally change the course of disease and for the prevalence of highly unique cancer 

subpopulations defined by genetic variation50-55. However, national comprehensive clinical practice datasets 

have improved in both quality and coverage over recent years56-59. Combining risk equations with more flexible 

and sophisticated modelling methods will provide greater consideration, and understanding, of real-world 

patient and treatment effect heterogeneity, and go some way to addressing historical limitations.  

Finally, whilst appraisals acknowledged differences between the clinical studies from which their evidence was 

based and routine clinical practice, few summarised these differences quantitatively. Clearly there are tensions 

between the representativeness of clinical trials and the necessity of a trial to have homogeneous groups of 

patients to enable comparison between groups60. However, homogeneity does not need to come at the expense 

of the natural heterogeneity observed in the population of interest, which may become the case when extensive 

exclusion criteria are applied. Addressing such issues is not straightforward, with patient safety, ethical issues, 

and sample size considerations at the forefront of concern. As a relatively simple and practical initial step, we 
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suggest that trial investigators could improve reporting by making available more evidence on clinical outcomes 

of stratification subgroups, alongside encouraging access to individual patient data (IPD) for research. 

Subsequently, we would advocate the addition of a more explicit and structured comparison of routine clinical 

practice and trial patient populations within TAs. Such a comparison might take the form of a quantitative side-

by-side summary of the clinical and demographic characteristics of patients from both groups, based on relevant 

UK clinical practice datasets and the clinical studies informing the appraisal. We would encourage the adoption 

of such an approach as standard practice within TAs to provide relevant parties with a transparent overview of 

both the relevance and the extent of any differences. 

Further, very few TAs employed methods to adjust cancer outcomes to account for differences between trial and 

routine clinical practice, even in the most recent TAs. This is particularly relevant given observed differences 

between cancer outcomes in these settings, particularly amongst PFS and OS outcomes61, and the need for 

policy makers to understand these differences to inform policy recommendations and guidelines. Two TAs used 

a form of simulated treatment comparison (STC), generating survival models that included clinical covariates 

based on IPD from the clinical study, and subsequently using these to predict clinical outcomes for the cost-

effectiveness model at covariate values deemed representative of UK clinical practice. Methods such as STC 

and matching-adjusted indirect comparison (MAIC), aim to reduce bias in treatment comparisons by using IPD 

from the clinical studies to provide indicative estimates of the likely outcomes in different settings, and may be 

used to address the above concerns62,63. MAIC adjusts average population-level outcomes by applying weights 

to IPD from the clinical study, using larger weights for patients that more closely match those of routine clinical 

practice, whilst STC utilises regression equations to adjust estimates. 

Clearly these suggestions should acknowledge the current constraints of the NICE review process, which is 

subject to strict timelines. For example, IPD needed for patient-level simulation or risk equation development 

may not be available to researchers. This raises the questions of how NICE should resource future TAs to enable 

them to better incorporate heterogeneity and related equity concerns. A further limitation of the review is the 

pragmatic decision to consider three cancer sites. Further research is required before we can generalise across all 

cancers and across economic evaluations of cancer outside the remit of NICE TAs. 

Conclusion 

This study highlights a relative paucity of information relating to the assessment of heterogeneity in UK cancer 

TAs and identifies a mostly unjustified reliance on relatively simplistic modelling frameworks. If heterogeneity 
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considerations are to be included in TA frameworks, and the complexity of treatment and disease pathways 

reflected in economic analyses, there is a requirement to embrace more flexible modelling approaches and to 

further research real-world heterogeneity



17 

 

References 

1. Public Health England. Health profile for England: 2019 In: UK government; 2019. 

2. Smittenaar CR, Petersen KA, Stewart K, Moitt N. Cancer incidence and mortality projections 

in the UK until 2035. Br J Cancer. 2016;115(9):1147-1155. 

3. Cancer Research UK. Cancer incidence statistics. https://www.cancerresearchuk.org/health-

professional/cancer-statistics/incidence#heading-Zero. Accessed 24.10.19, 2019. 

4. Hawkes N. Cancer survival data emphasise importance of early diagnosis. Bmj. 

2019;364:l408. 

5. Maddams J, Utley M, Moller H. Projections of cancer prevalence in the United Kingdom, 

2010-2040. Br J Cancer. 2012;107(7):1195-1202. 

6. Macmillan cancer support. Statistics fact sheet. 2019. 

7. Pfizer. Cancer Costs: a ripple effect analysis of cancer’s wider impact. 2020. 

8. Arnold M, Rutherford MJ, Bardot A, et al. Progress in cancer survival, mortality, and 

incidence in seven high-income countries 1995-2014 (ICBP SURVMARK-2): a population-

based study. Lancet Oncol. 2019. 

9. Allemani C, Matsuda T, Di Carlo V, et al. Global surveillance of trends in cancer survival 2000-

14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one 

of 18 cancers from 322 population-based registries in 71 countries. Lancet. 

2018;391(10125):1023-1075. 

10. Falzone L, Salomone S, Libra M. Evolution of Cancer Pharmacological Treatments at the Turn 

of the Third Millennium. Front Pharmacol. 2018;9:1300. 

11. National Institute for Health and Care Excellence. Breast screening. 

https://cks.nice.org.uk/breast-screening#!topicSummary. Published 2017. Accessed 

24.10.19, 2019. 

12. National Institute for Health and Care Excellence. Bowel screening. 

https://cks.nice.org.uk/bowel-screening#!topicSummary. Published 2019. Accessed 

24.10.19, 2019. 

13. National Institute for Health and Care Excellence. Cervical screening. 

https://cks.nice.org.uk/cervical-screening#!topicSummary. Published 2017. Accessed 

24.10.19, 2019. 

14. NHS to rollout lung cancer scanning trucks across the country [press release]. 2019. 

15. National Health Service. The NHS Long Term Plan. 2019. 

16. Varadhan R SJ. Estimation and Reporting of Heterogeneity of Treatment Effects. In: 

Developing a Protocol for Observational Comparative Effectiveness Research: A User's Guide. 

Rockville (MD): Agency for Healthcare Research and Quality (US); 2013. 

17. Yuan M, Huang L-L, Chen J-H, Wu J, Xu Q. The emerging treatment landscape of targeted 

therapy in non-small-cell lung cancer. Signal Transduction and Targeted Therapy. 

2019;4(1):61. 

18. Xin Yu J, Hubbard-Lucey VM, Tang J. The global pipeline of cell therapies for cancer. Nat Rev 

Drug Discov. 2019;18(11):821-822. 

19. Sculpher M. Subgroups and heterogeneity in cost-effectiveness analysis. 

Pharmacoeconomics. 2008;26(9):799-806. 

20. Grutters JP, Sculpher M, Briggs AH, et al. Acknowledging patient heterogeneity in economic 

evaluation : a systematic literature review. Pharmacoeconomics. 2013;31(2):111-123. 

21. Ramaekers BLT, Joore MA, Grutters JPC. How Should We Deal with Patient Heterogeneity in 

Economic Evaluation: A Systematic Review of National Pharmacoeconomic Guidelines. Value 

in Health. 2013;16(5):855-862. 

22. Cookson R, Propper C, Asaria M, Raine R. Socio-Economic Inequalities in Health Care in 

England. Fiscal Studies. 2016;37(3-4):371-403. 

23. Foster HME, Celis-Morales CA, Nicholl BI, et al. The effect of socioeconomic deprivation on 

the association between an extended measurement of unhealthy lifestyle factors and health 

ttps://www.cancerresearchuk.org/health-professional/cancer-statistics/incidence#heading-Zero.
ttps://www.cancerresearchuk.org/health-professional/cancer-statistics/incidence#heading-Zero.
ttps://cks.nice.org.uk/breast-screening#!topicSummary.
ttps://cks.nice.org.uk/bowel-screening#!topicSummary.
ttps://cks.nice.org.uk/cervical-screening#!topicSummary.


18 

 

outcomes: a prospective analysis of the UK Biobank cohort. The Lancet Public Health. 

2018;3(12):e576-e585. 

24. Macmillan cancer support. Health Inequalities: Time to Talk. 2019. 

25. Fowler H, Belot A, Ellis L, et al. Comorbidity prevalence among cancer patients: a population-

based cohort study of four cancers. BMC Cancer. 2020;20(1):2. 

26. Public Health England. Health profile for England: 2018. In: UK government; 2018. 

27. Exarchakou A, Rachet B, Belot A, Maringe C, Coleman MP. Impact of national cancer policies 

on cancer survival trends and socioeconomic inequalities in England, 1996-2013: population 

based study. BMJ. 2018;360:k764. 

28. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews 

and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097. 

29. Espinoza MA, Manca A, Claxton K, Sculpher MJ. The value of heterogeneity for cost-

effectiveness subgroup analysis: conceptual framework and application. Med Decis Making. 

2014;34(8):951-964. 

30. Brennan A, Chick SE, Davies R. A taxonomy of model structures for economic evaluation of 

health technologies. Health Econ. 2006;15(12):1295-1310. 

31. Briggs ADM, Wolstenholme J, Blakely T, Scarborough P. Choosing an epidemiological model 

structure for the economic evaluation of non-communicable disease public health 

interventions. Popul Health Metr. 2016;14:17-17. 

32. Bullement A, Cranmer HL, Shields GE. A Review of Recent Decision-Analytic Models Used to 

Evaluate the Economic Value of Cancer Treatments. Appl Health Econ Health Policy. 

2019;17(6):771-780. 

33. Sonnenberg FA, Beck JR. Markov Models in Medical Decision Making:A Practical Guide. 

Medical Decision Making. 1993;13(4):322-338. 

34. Abner EL, Charnigo RJ, Kryscio RJ. Markov chains and semi-Markov models in time-to-event 

analysis. J Biom Biostat. 2013;Suppl 1(e001):19522-19522. 

35. Geifman N, Butte AJ. DO CANCER CLINICAL TRIAL POPULATIONS TRULY REPRESENT CANCER 

PATIENTS? A COMPARISON OF OPEN CLINICAL TRIALS TO THE CANCER GENOME ATLAS. Pac 

Symp Biocomput. 2016;21:309-320. 

36. Unger JM, Barlow WE, Martin DP, et al. Comparison of Survival Outcomes Among Cancer 

Patients Treated In and Out of Clinical Trials. JNCI: Journal of the National Cancer Institute. 

2014;106(3). 

37. Mitchell AP, Harrison MR, George DJ, Abernethy AP, Walker MS, Hirsch BR. Clinical trial 

subjects compared to "real world" patients: Generalizability of renal cell carcinoma trials. 

Journal of Clinical Oncology. 2014;32(15_suppl):6510-6510. 

38. Cui L, Hung HM, Wang SJ, Tsong Y. Issues related to subgroup analysis in clinical trials. J 

Biopharm Stat. 2002;12(3):347-358. 

39. Cook DI, Gebski VJ, Keech AC. Subgroup analysis in clinical trials. Med J Aust. 

2004;180(6):289-291. 

40. Grouin JM, Coste M, Lewis J. Subgroup analyses in randomized clinical trials: statistical and 

regulatory issues. J Biopharm Stat. 2005;15(5):869-882. 

41. NICE NIfHaCE. NICE DSU TECHNICAL SUPPORT DOCUMENT 19: PARTITIONED SURVIVAL 

ANALYSIS FOR DECISION MODELLING IN HEALTH CARE: A CRITICAL REVIEW 

http://nicedsu.org.uk/ 02.06.2017 2017. 

42. Davis S, Stevenson M, Tappenden P, Wailoo A. NICE Decision Support Unit Technical Support 

Documents. In: NICE DSU Technical Support Document 15: Cost-Effectiveness Modelling 

Using Patient-Level Simulation. London: National Institute for Health and Care Excellence 

(NICE); 2014. 

43. Cichosz SL, Johansen MD, Hejlesen O. Toward Big Data Analytics:Review of Predictive 

Models in Management of Diabetes and Its Complications. Journal of Diabetes Science and 

Technology. 2016;10(1):27-34. 

ttp://nicedsu.org.uk/


19 

 

44. Collins GS, Mallett S, Omar O, Yu L-M. Developing risk prediction models for type 2 diabetes: 

a systematic review of methodology and reporting. BMC Medicine. 2011;9(1):103. 

45. Noble D, Mathur R, Dent T, Meads C, Greenhalgh T. Risk models and scores for type 2 

diabetes: systematic review. BMJ. 2011;343:d7163. 

46. Tangri N, Kitsios GD, Inker LA, et al. Risk prediction models for patients with chronic kidney 

disease: a systematic review. Ann Intern Med. 2013;158(8):596-603. 

47. Ramspek CL, de Jong Y, Dekker FW, van Diepen M. Towards the best kidney failure 

prediction tool: a systematic review and selection aid. Nephrology Dialysis Transplantation. 

2019. 

48. Di Tanna GL, Wirtz H, Burrows KL, Globe G. Evaluating risk prediction models for adults with 

heart failure: A systematic literature review. PLoS One. 2020;15(1):e0224135-e0224135. 

49. Damen JA, Hooft L, Schuit E, et al. Prediction models for cardiovascular disease risk in the 

general population: systematic review. Bmj. 2016;353:i2416. 

50. Muller P, Walters S, Coleman MP, Woods L. Which indicators of early cancer diagnosis from 

population-based data sources are associated with short-term mortality and survival? 

Cancer Epidemiol. 2018;56:161-170. 

51. Kolovos S, Nador G, Kishore B, et al. Unplanned admissions for patients with myeloma in the 

UK: Low frequency but high costs. J Bone Oncol. 2019;17:100243-100243. 

52. Laudicella M, Walsh B, Burns E, Smith PC. Cost of care for cancer patients in England: 

evidence from population-based patient-level data. Br J Cancer. 2016;114(11):1286-1292. 

53. McConnell H, White R, Maher J. Categorising cancers to enable tailored care planning 

through a secondary analysis of cancer registration data in the UK. BMJ Open. 

2017;7(11):e016797-e016797. 

54. Ward SE, Holmes GR, Ring A, et al. Adjuvant Chemotherapy for Breast Cancer in Older 

Women: An Analysis of Retrospective English Cancer Registration Data. Clinical Oncology. 

2019;31(7):444-452. 

55. Nguyen A, Yoshida M, Goodarzi H, Tavazoie SF. Highly variable cancer subpopulations that 

exhibit enhanced transcriptome variability and metastatic fitness. Nature Communications. 

2016;7(1):11246. 

56. Clinical Practice Research Datalink. Clinical Practice Research Datalink Dataset. 

https://www.cprd.com/. Accessed 28.09.2020, 2020. 

57. NHS Digital. Hospital Episode Statistics (HES). https://digital.nhs.uk/. Accessed 28.09.2020, 

2020. 

58. Public Health England. Cancer Registry Dataset. https://www.cancerdata.nhs.uk/. Accessed 

28.09.2020, 2020. 

59. UK Biobank. Biobank Dataset. https://www.ukbiobank.ac.uk/. Accessed 28.09.2020, 2020. 

60. D'Agostino RB, Kwan H. Measuring effectiveness. What to expect without a randomized 

control group. Med Care. 1995;33(4 Suppl):As95-105. 

61. Lakdawalla DN, Shafrin J, Hou N, et al. Predicting Real-World Effectiveness of Cancer 

Therapies Using Overall Survival and Progression-Free Survival from Clinical Trials: Empirical 

Evidence for the ASCO Value Framework. Value in Health. 2017;20(7):866-875. 

62. Signorovitch JE, Wu EQ, Yu AP, et al. Comparative Effectiveness Without Head-to-Head 

Trials. PharmacoEconomics. 2010;28(10):935-945. 

63. Caro JJ, Ishak KJ. No Head-to-Head Trial? Simulate the Missing Arms. PharmacoEconomics. 

2010;28(10):957-967. 

ttps://www.cprd.com/
ttps://digital.nhs.uk/
ttps://www.cancerdata.nhs.uk/
https://www.ukbiobank.ac.uk/


20 

 

Tables 

Table 1: Overview of model structures 

Model type Modelled health states Modelled health state transitions* 

Outcomes informing 

health state 

transitions 

Progression-free 

survival (PFS) or 

time to 

discontinuation 

(TTD) analysis 

Overall Survival 

(OS) analysis 

Technolog

y 

Assessment 

PSM 

Alive; death Alive -> Death OS - 

Piecewise 

parametric survival 

models^ 

TA190 

On treatment; off 

treatment; death 

On treatment -> Off treatment; On 

treatment -> Death; Off treatment -> 

Death 

TTD; OS 

Piecewise 

parametric survival 

models^ 

Mixture-cure 

model^ 

TA520 

Progression-free; 

progression; death 

Progression-free -> Progression; 

Progression-free -> Death; 

Progression -> Death 

PFS; OS 

KM data^^ 

Parametric survival 

models^^ 

TA227 

Multivariable 

parametric model 

with treatment 

covariate 

Multivariable 

parametric model 

with treatment 

covariate 

TA406 
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Multivariable 

parametric models^ 

TA403 

Multivariable 

parametric model^ 

Multivariable 

parametric model^ 

TA529 

Multivariable 

parametric model^^ 

Multivariable 

parametric model^^ 

TA192 

Parametric survival 

model with 

treatment covariate 

Parametric survival 

model with 

treatment covariate 

TA310 

Parametric survival 

models^ 

TA118 

Piecewise 

parametric survival 

model with 

treatment covariate 

TA621 

Parametric survival 

models^ 

Parametric survival 

models^ 

TA184, 

TA242, 

TA285, 

TA307, 
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TA347, 

TA389, 

TA395, 

TA405, 

TA416, 

TA484, 

TA528, 

TA536, 

TA611 

Piecewise 

parametric survival 

models^ 

TA428 

Parametric survival 

models^^ 

Parametric survival 

models^^ 

TA500, 

TA571, 

TA584, 

TA595 

Piecewise 

parametric survival 

models^ 

Parametric model 

with treatment 

covariate 

TA284 
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Piecewise 

parametric survival 

models^ 

TA212, 

TA374, 

TA402, 

TA411, 

TA531, 

TA557, 

TA600 

Piecewise 

parametric survival 

models^^ 

TA598 

Spline model^ Spline model^ TA620 

Spline model with 

treatment covariate 

Parametric survival 

model with 

treatment covariate 

TA483 

Model type Modelled health states Modelled health state transitions 

Outcomes informing 

health state 

transitions 

Non-death 

transitions 

Death transitions 

Technolog

y 

Assessment 
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Markov model 

1st line, 2nd line, 3rd 

line, post-resection, 

death 

1st line -> Post resection; 1st line -> 

2nd line; 1st line -> Death; Post 

resection -> Death; 2nd line -> 3rd 

line; 2nd line -> Death; 3rd line -> 

Death 

Resection rate, PFS, 

ToT, OS 

Parametric survival 

models^ 

Parametric survival 

models^ 

TA439 

Alive without relapse, 

alive with relapse, death 

Alive without relapse -> Alive with 

relapse; Alive without relapse -> 

Death; Alive with relapse -> Death 

DFS, PPS, ACM 

Parametric survival 

models^ 

Mixture of 

exponential 

transition rates and 

life tables 

TA100 

PFS: 1st line, PFS: no 

drug, PFS: post 

successful resection, 

PD: post successful 

resection, 2nd line: 

FOLFOX/FOLFIRI, 3rd 

line: BSC, Death 

PFS-1st line -> PFS-no drug; PFS-

1st line -> PFS-post successful 

resection; PFS-1st line -> Death; 

PFS-no drug -> 2nd line-

FOLFOX/FOLFIRI; PFS-no drug -> 

Death; PFS-post successful resection 

-> PD-post successful resection; 

PFS-post successful resection -> 

Death; 2nd line-FOLFOX/FOLFIRI 

-> 3rd line-BSC; 2nd line-

Resection rate, PFS, 

ToT, OS 

Mixture of 

parametric survival 

models and 

exponential rates 

Mixture of 

parametric survival 

models and 

exponential rates 

TA439 
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FOLFOX/FOLFIRI -> Death; 3rd 

line-BSC -> Death 

Response, stable 

disease, progressive 

disease, death 

Stable disease -> Response; Stable 

disease -> Progression; Response -> 

Progression; Progression -> Death 

Response, PFS, OS 

Exponential 

transition rates 

Exponential 

transition rates 

TA124, 

TA181 

Semi-Markov 

model 

Progression-free, first 

subsequent treatment, 

second subsequent 

treatment, death 

PFS -> First subsequent treatment; 

PFS -> Death; First subsequent 

treatment -> Second subsequent 

treatment; First subsequent treatment 

-> Death; Second subsequent 

treatment -> Death 

ToT, OS 

Multivariable 

parametric survival 

models with or 

without treatment 

coefficients 

Multivariable 

parametric survival 

models with or 

without treatment 

coefficients 

TA381 

Progression-free, 

progressed, death 

Progression-free -> Progression; 

Progression-free -> Death; 

Progression -> Death 

PFS, PPS, OS 

Piecewise 

parametric survival 

models^ 

Exponential 

transition rates 

TA284 

Parametric survival 

models^ 

Exponential 

transition rates 

TA578 

Progression-free -> Progression; 

Progression-free -> Death; 

Progression -> Death 

PFS, PPS, OS 

Piecewise 

parametric survival 

models^^ 

Exponential 

transition rates 

TA258 
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Accounting 

exercise 

- - OS - - TA61 

ACM: all-cause mortality; DFS: disease-free survival; OS: overall survival; PFS: progression-free survival; PPS: post-progression survival; PSM: partitioned survival 

model; TA: technology appraisal; ToT: time on treatment; TTD: time to discontinuation. 

*Underlined transitions denote those that are modelled with different rates across each treatment arm. 

^Same survival model form chosen for each treatment arm. 

^^Survival models were only produced for one arm with ITC results used to inform disease progression in other arms. 

 

TA Notes 

TA192, TA402 and TA411: Model structure believed to be incorrectly described as Markov model in submission. 

TA118: Model structure not described but assumed to be PSM based on description of parameters. 

TA192 and TA258: PFS health state stratified in to two sub-states ('Treatment response' and 'Stable disease') based on proportions at model initiation. 

TA242: Some (but not all) comparator survival estimates informed by survival ratios applied to parametric curves of other arms (holding shape parameters constant). 

TA212, TA307 and TA611: PFS health state stratified in to two sub-states ('On treatment' and 'Post-treatment') using parametric survival models. 

TA374: Two populations modelled where piecewise spline models used for one population and piecewise parametric models used for one population 

TA381: Unclear whether single models were used for certain transitions (i.e. treatment independent transitions) as the submission contains contradictory statements; the 

ERG report states that apart from time to first event, all other transitions were set the same for each treatment arm 

TA411: PFS health state stratified in to three sub-states ('On induction treatment', 'Off treatment', 'Receiving maintenance treatment') using parametric survival models 

TA484: TTD used as proxy for PFS 
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TA528: Model states that mean survival estimates are used (therefore not strictly a PSM as AUC approach not utilised), however parametric survival curves are used to 

assess PFS and OS so it has been included in the PSM section 

TA536: PFS stratified in to two sub-states ('Patients with brain metastases' and 'Patients without brain metastases') although it is unclear how patients are stratified 
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Table 2: Overview of modelled treatment pathways 

Population Number of 

subsequent 

therapies 

modelled^ 

Impact of 

subsequent 

therapy 

Method for estimating time on initial 

treatment 

TA 

Cancer 

Previously 

treated 

Stage* 

Mutation

-specific 

CRC 

No 

Dukes stage C No One Cost only Mean treatment duration TA100 

Metastatic 

No None - 

Explicit number of cycles capped by OS TA61 

ToT KM curve TA212 

Yes 

One 

Cost, utility, 

disease 

progression 

Initial treatment modelled with own health state TA439 (ERG) 

Two 

Cost, utility, 

disease 

progression 

Initial treatment modelled with own health state TA439 (Company) 

Yes Metastatic 

No None - 

Treatment to progression or mean treatment 

duration 

TA242 

No One Cost only Mean treatment duration TA307 

No One Cost only Treatment to progression TA405 

Yes Two Cost only Mean treatment duration TA118 
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NSCL

C 

Both 

Advanced or 

metastatic 

Yes One 

Cost and utility TTD modelled independently using KM data TA529 

Cost only Parametric ToT model TA584 

No 

Advanced or 

metastatic 

No One Cost only 

Cyclic discontinuation rate capped by specific 

number of cycles 

TA181 

Parametric ToT model TA557 

ToT KM curve TA411 

Treatment to progression TA600 

Yes 

None - Parametric ToT model TA258 

One 

Cost and utility 

Mean treatment duration beyond progression TA406, TA621 

Treatment to progression TA310 

Cost only 

Parametric ToT model TA500 

Treatment to progression 

TA192, TA531, 

TA536 

Two Cost only Treatment to progression TA595 

Yes 

Advanced or 

metastatic 

No 

None - 

Cyclic discontinuation rate capped by specific 

number of cycles 

TA124 

Treatment to progression TA374 

One Cost and utility 

Parametric ToT model TA520 

Treatment to progression TA483, TA484 



30 

 

Cost only 

Cyclic discontinuation rate capped by 

progression 

TA347 

Parametric ToT model TA402 

ToT KM curve TA578 

Treatment to progression 

TA190, TA227, 

TA403 

Yes 

None Cost only Independent mean duration beyond progression TA571 

One Cost only Treatment to progression TA416, TA428 

Any Yes None - Treatment to progression TA395 

SCLC Yes Relapsed No None - Specific number of treatment cycles TA184 

Ovaria

n 

cancer 

Any Any No - - - TA55 

No Advanced No 

None Cost only Mean treatment duration TA284 (Model 1) 

One Cost only Mean treatment duration 

TA285 

TA284 (Model 2) 

Yes 

Any No One Cost only Treatment to progression TA389 

Advanced Yes One Cost only Parametric ToT model TA598 

High-grade 

No One Cost only Parametric ToT model TA528, TA611 

Yes 

One Cost only Parametric ToT model TA620 

Two Cost only Initial treatment modelled with own health state TA381 
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CRC: colorectal cancer; KM: Kaplan-Meier; NSCLC: non-small cell lung cancer; SCLC: small cell lung cancer; TA: technology appraisal; ToT: time on treatment 

*For NSCLC, ‘Advanced or metastatic’ includes ‘recurrent disease’ in TA347 and, for ovarian cancer, ‘Advanced’ includes one appraisal that looked at stage III/IV 

disease (TA284) 

^Subsequent therapy is defined as either targeted therapy, chemotherapy, surgery or radiotherapy and does not capture the modelling of best supportive care 

 

TA Notes 

TA284 (Model 2), TA416 and TA528: Average number of subsequent therapies received was greater than 1 but modelled within one subsequent line of therapy 

TA307: Despite including substates within the progression-free health state describing treatment status (‘on treatment’ versus ‘off treatment’), treatment costs were 

modelled based on a mean treatment duration 

TA406: Only a proportion of patients were assumed to receive therapy post-progression; remaining patients ceased treatment at progression 

TA439: Patients could also receive curative resection after first line treatment, independent of other treatment lines 

 



32 

 

Figures 

 

Figure 1: Search results 
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Figure 2: Overview of subgroup analyses presented in clinical and economic submissions 

[The number in brackets next to the TA number indicates how many clinical studies reported at least some 

information relating to the use of subgroup analyses – a number of subgroup analyses and results were 

unavailable for review either due to absence or redaction] 
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Figure 3: Model structure overview
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Figure 4: Exclusion criteria categories reported by the clinical studies (limited to exclusion criteria reported in 

at least three clinical studies)
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Supplemental Appendix 1 

Details of search strategy 

A search of published National Institute for Health and Care Excellence (NICE) cancer TAs was undertaken. 

Focus was given to three cancer sites: colorectal, lung and ovarian cancer, to encompass a range of screening, 

diagnostic and treatment practices.  The time between first presentation in primary care and the date of diagnosis 

varies between these cancer sites providing an additional source of variation and potentially exacerbates 

differences in screening, diagnostic and treatment practices1,2.  

The review was undertaken according to best practices as described by the Preferred Reporting Items for 

Systematic Reviews and Meta-Analysis (PRISMA) guidelines3. Searches were conducted on the 12th April 

2020; no date restrictions were applied. Titles and summaries of the identified TAs were screened by one 

reviewer and checked for accuracy by a second reviewer. TAs that had been superseded by another TA or had 

been terminated for any reason, and were subsequently unavailable on the NICE TA database, were excluded. 

Appraisals that considered multiple cancer sites and those considering only surgical interventions did not 

include formal economic evaluation and so were also excluded. All data were extracted in a consistent manner 

from studies meeting the review inclusion and exclusion criteria, using a standardised data extraction template 

in Microsoft Excel. Data were extracted by one reviewer and checked for accuracy and completeness by a 

second reviewer. Any discrepancies between reviewers were resolved by consensus or referral to a third 

reviewer.  

For each TA, the clinical studies describing the effectiveness of the intervention under assessment, and any 

associated economic analyses, were retrieved and reviewed. Clinical studies that did not directly inform the 

clinical effectiveness of the intervention under assessment, but were included for supplementary information, 

were not reviewed, nor were clinical studies for which only abstracts were reported. Economic analyses 

undertaken by both the submitting pharmaceutical company and any academic review groups were included. 

Economic analyses were excluded if the complete economic submission was not publicly available or if only 

summary information was presented.  

Within the context of economic evaluation, this review explores the use of subgroup analyses and real-world 

translation, alongside specific attributes of the underlying economic modelling frameworks. Each component is 

critically reviewed, from the perspective of their ability to incorporate patient and treatment effect 

heterogeneity.
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Supplemental Appendix 2 

Appendix Table: Taxonomy of model structures 

Modelling method 

Cohort / 

individual-

level 

Temporal 

component 

Interactions and heterogeneity Advantages Disadvantages 

Decision tree Either No temporal 

component 

• No interaction 

• Requires either, additional 

disease states, or multiple model 

runs, to capture patient and 

treatment effect heterogeneity 

• Easy to construct 

• Relatively easy to interpret 

• Can be adapted for cohorts and 

individuals 

 

• No explicit time component 

• Exponentially more complex 

with additional disease states 

• No looping/recurring 

• Poorly suited to complex 

scenarios 

Comparative risk 

assessment 

Either No temporal 

component 

• No interaction 

• Requires either, additional 

disease states, or multiple model 

runs, to capture patient and 

treatment effect heterogeneity 

• Can model multiple diseases and 

risk factors 

• Can be used for individuals or 

cohorts 

• More complex to build than 

decision trees 

• No explicit time component 

• No looping/recurring 

• Unable to model interactions 

between individuals, 
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populations, or their 

environment 

Markov models 

(without interaction) 

Either Timed • No interaction 

• Requires either, additional 

disease states, or multiple model 

runs, to capture patient and 

treatment effect heterogeneity 

• Relatively straightforward to 

construct and to communicate 

• Can model populations or 

individuals 

• Has time component 

• Allows looping/recurring 

• The Markovian assumption – 

individuals have no memory of 

(are independent of) previous 

disease states 

• Can only exist in one disease 

state at any given time 

• Exponential increase in 

complexity with increasing 

number of disease states 

System dynamics 

models 

Cohort Discrete or 

continuous 

time 

• Interaction between populations 

and environment 

• Requires either, additional 

disease states, or multiple model 

runs, to capture patient and 

treatment effect heterogeneity  

 

• Allows for interactions between 

populations and the environment 

• Allows for feedback and 

recurring 

• Models populations rather than 

individuals 

• Relies on differential or 

difference equations which can 

be difficult to implement and 

interpret 
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Markov chain models 

and Markov individual 

event history models 

Either Discrete or 

continuous 

time 

• Interaction between populations 

and environment 

• Requires either, additional 

disease states, or multiple model 

runs, to capture 

• Can model individuals or 

populations 

• Allows for interaction between 

populations or individuals within 

the model 

• Markovian assumption still 

exists (although its impact can 

be reduced) 

• Becomes rapidly more complex 

with added disease states 

Discrete event 

simulation 

Individual Discrete or 

continuous 

time 

• Interaction between populations 

and environment 

• Able to incorporate a population 

of heterogeneous individuals that 

move through the model based 

on probabilities appropriate to 

their characteristics 

• Allows for interaction between 

individuals and between 

individuals, populations and 

their environment, governed by 

system rules 

• Allows for modelling of 

complex scenarios 

• Model structure can be difficult 

to communicate and interpret 

• Computationally challenging 

both in terms of designing the 

model and running it 

Agent-based simulation Individual Completely 

flexible 

• Interaction between individual 

patients / populations / spatial 

aspects important 

• Able to incorporate a population 

of heterogeneous individuals that 

move through the model based 

• Allows for interaction between 

individuals and between 

individuals, populations and 

their environment, governed by 

system rules 

• Allows for individuals to learn 

• More complex than discrete 

event simulation 

• Requires large computational 

power 

• Difficult to communicate and 

interpret model structure 
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on probabilities appropriate to 

their characteristics 

• Allows modelling of 

complicated systems 

Multistate life tables Either Timed or 

untimed 

• No interaction 

• Requires either, additional 

disease states, or multiple model 

runs, to capture patient and 

treatment effect heterogeneity 

• Can be used with comparative 

risk assessment and decision tree 

models to add a time component 

• Can be combined with Markov 

models to increase the numbers 

of possible disease states without 

exponentially increasing model 

complexity 

• Assumes diseases are 

independent of each other 

• Model limited by underlying 

model structure, for example, if 

combined with a Markov model, 

the Markovian assumption 

remains 

Microsimulation Individual Completely 

flexible 

• Interaction between populations 

and environment 

• Able to incorporate a population 

of heterogeneous individuals that 

move through the model based 

on probabilities appropriate to 

their characteristics 

• Can be combined with decision 

tree, comparative risk 

assessment, and Markov models 

to make it easier to model 

heterogeneous populations or 

multiple disease states 

• Data requirements and 

simulations can become 

computationally challenging 

with complex models 

• Model limited by underlying 

model structure, for example, if 

combined with a Markov model, 

the Markovian assumption 

remains 
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Notes 

• In discrete or continuous time Markov chain models, state transition probabilities can depend on (interact with) the proportion of different populations in different 

disease states, and on the time that has elapsed in the model. These interactions are the key difference between Markov chain models and Markov models without 

interaction, and provide the model with some degree of memory, in part overcoming the Markovian assumption. 
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Supplemental Appendix 3 

Appendix Table: Excluded studies 

Study identifier Cancer Study type Reason for exclusion Publication date 

ID379  Colorectal Technology appraisal In development TBC 

ID917  Colorectal Technology appraisal In development TBC 

ID2693 Colorectal Technology appraisal In development TBC 

ID1071  Colorectal Technology appraisal In development TBC 

ID1118  Colorectal Technology appraisal In development TBC 

ID1136  Colorectal Technology appraisal In development TBC 

ID1168  Colorectal Technology appraisal In development TBC 

ID1298  Colorectal Technology appraisal In development TBC 

ID1332  Colorectal Technology appraisal In development TBC 

ID1498  Colorectal Technology appraisal In development June 2021 

ID1598  Colorectal Technology appraisal In development October 2020 

ID1543 Colorectal Technology appraisal Proposed TBC 

TA105 Colorectal Technology appraisal Surgical intervention August 2006 

TA240 Colorectal Technology appraisal Terminated - no submission December 2011 

TA334 Colorectal Technology appraisal Terminated - no submission February 2015 

TA265 Lung Technology appraisal Considers multiple cancers October 2012 

ID9  Lung Technology appraisal In development TBC 

ID43  Lung Technology appraisal In development TBC 

ID44  Lung Technology appraisal In development TBC 

ID46  Lung Technology appraisal In development TBC 

ID357  Lung Technology appraisal In development TBC 

ID655  Lung Technology appraisal In development TBC 

ID657  Lung Technology appraisal In development TBC 

ID821  Lung Technology appraisal In development TBC 

ID883  Lung Technology appraisal In development TBC 

ID1088  Lung Technology appraisal In development TBC 



44 

 

ID1126  Lung Technology appraisal In development TBC 

ID1135  Lung Technology appraisal In development TBC 

ID1143  Lung Technology appraisal In development TBC 

ID1146  Lung Technology appraisal In development TBC 

ID1147  Lung Technology appraisal In development TBC 

ID1187  Lung Technology appraisal In development TBC 

ID1228  Lung Technology appraisal In development TBC 

ID1247  Lung Technology appraisal In development TBC 

ID1259  Lung Technology appraisal In development TBC 

ID1261  Lung Technology appraisal In development TBC 

ID1264  Lung Technology appraisal In development TBC 

ID1277  Lung Technology appraisal In development TBC 

ID1288  Lung Technology appraisal In development TBC 

ID1331  Lung Technology appraisal In development TBC 

ID1338  Lung Technology appraisal In development May 2020 

ID1468  Lung Technology appraisal In development January 2021 

ID1472 Lung Technology appraisal In development TBC 

ID1481  Lung Technology appraisal In development TBC 

ID1495  Lung Technology appraisal In development TBC 

ID1504  Lung Technology appraisal In development TBC 

ID1509 Lung Technology appraisal In development TBC 

ID1538  Lung Technology appraisal In development TBC 

ID1541  Lung Technology appraisal In development TBC 

ID1559  Lung Technology appraisal In development May 2020 

ID1566  Lung Technology appraisal In development TBC 

ID1572  Lung Technology appraisal In development May 2020 

ID1577  Lung Technology appraisal In development TBC 

ID1584  Lung Technology appraisal In development TBC 

ID1618  Lung Technology appraisal In development December 2020 



45 

 

ID1629 Lung Technology appraisal In development TBC 

ID1665 Lung Technology appraisal In development March 2020 

ID1675 Lung Technology appraisal In development TBC 

ID1678 Lung Technology appraisal In development February 2021 

ID1683  Lung Technology appraisal In development August 2020 

ID2702 Lung Technology appraisal In development TBC 

ID3743 Lung Technology appraisal In development TBC 

ID3751 Lung Technology appraisal In development TBC 

ID3757 Lung Technology appraisal In development TBC 

ID3761 Lung Technology appraisal In development TBC 

ID3762 Lung Technology appraisal In development TBC 

ID3780 Lung Technology appraisal In development TBC 

TA148 Lung Technology appraisal Terminated - no submission June 2008 

TA362 Lung Technology appraisal Terminated - no submission October 2015 

TA436 Lung Technology appraisal Terminated - no submission March 2017 

TA438 Lung Technology appraisal Terminated - no submission March 2017 

TA444 Lung Technology appraisal Terminated - no submission May 2017 

TA564 Lung Technology appraisal Terminated - no submission February 2019 

TA618 Lung Technology appraisal Terminated - no submission January 2020 

ID545  Ovarian Technology appraisal In development TBC 

ID564  Ovarian Technology appraisal In development TBC 

ID790  Ovarian Technology appraisal In development TBC 

ID826  Ovarian Technology appraisal In development TBC 

ID1184  Ovarian Technology appraisal In development TBC 

ID1340  Ovarian Technology appraisal In development TBC 

ID1497  Ovarian Technology appraisal In development TBC 

ID1527  Ovarian Technology appraisal In development TBC 

ID1561  Ovarian Technology appraisal In development TBC 

ID1639 Ovarian Technology appraisal In development TBC 
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ID1652  Ovarian Technology appraisal In development November 2020 

ID1680 Ovarian Technology appraisal In development February 2021 

ID2700 Ovarian Technology appraisal In development TBC 

ID2714 Ovarian Technology appraisal In development May 2021 

TA353 Ovarian Technology appraisal Terminated - no submission August 2015 

TA560 Ovarian Technology appraisal Terminated - no submission February 2019 

Notes on reasons for exclusion 

• Appraisals that considered multiple cancer sites and those considering only surgical interventions 

did not include formal economic evaluation and so were excluded. 

• Appraisals that are described as ‘In development’ or ‘Proposed’ have not yet been published and so 

haven't been included for this reason. 

• Appraisals that are described as ‘Terminated - no submission’ were terminated prior to publication 

of the submission and therefore no submission was available for review. 
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Appendix Table: Overview of included Technology Assessments 

TA 

number 

Cancer 

site 

TA title 

Publication 

date 

STA or 

MTA 

Population Technology* 

Recommendation 

(yes v no v CDF) 

TA61 

 

CRC 

 

Capecitabine and tegafur 

with uracil for metastatic 

colorectal cancer 

 

27/05/2003 

 

MTA 

 

Patients with untreated metastatic 

colorectal cancer 

 

Capecitabine Yes  

Tegafur with uracil Yes  

TA100 CRC 

Capecitabine and 

oxaliplatin in the adjuvant 

treatment of stage III 

(Dukes' C) colon cancer 

26/04/2006 MTA 

People with Dukes’ stage C colon 

cancer after complete surgical 

resection of the primary tumour 

Oxaliplatin in 

combination with 5-FU/FA 

Yes 

Capecitabine Yes 

TA118 CRC 

Bevacizumab and 

cetuximab for the treatment 

of metastatic colorectal 

cancer 

24/01/2007 MTA 

People with EGFR-expressing 

metastatic CRC who have 

previously failed on irinotecan-

including therapy. 

Second- or subsequent-line 

therapy using cetuximab 

in combination with 

irinotecan 

No 

People with untreated metastatic 

CRC.  

First-line therapy using 

bevacizumab in 

combination with 5-FU/FA 

or 5-FU/FA plus irinotecan 

No 
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TA212 CRC 

Bevacizumab in 

combination with oxaliplatin 

and either fluorouracil plus 

folinic acid or capecitabine 

for the treatment of 

metastatic colorectal cancer 

15/12/2010 STA 

People with metastatic colorectal 

cancer for whom oxaliplatin-

including chemotherapy regimens 

are suitable  

Bevacizumab in 

combination with 

oxaliplatin and either 5-FU 

or capecitabine 

No 

TA242 CRC 

Cetuximab, bevacizumab 

and panitumumab for the 

treatment of metastatic 

colorectal cancer after first-

line chemotherapy: 

Cetuximab (monotherapy or 

combination chemotherapy), 

bevacizumab (in 

combination with non-

oxaliplatin chemotherapy) 

and panitumumab 

(monotherapy) for the 

treatment of metastatic 

25/01/2020 MTA 

People with mCRC that has 

progressed after first-line 

chemotherapy  

Cetuximab (monotherapy 

or combination 

chemotherapy) 

No 

Bevacizumab in 

combination with non-

oxaliplatin chemotherapy 

No 

Panitumumab 

monotherapy 

No 
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colorectal cancer after first-

line chemotherapy 

TA307 CRC 

Aflibercept in combination 

with irinotecan and 

fluorouracil-based therapy 

for treating metastatic 

colorectal cancer that has 

progressed following prior 

oxaliplatin-based 

chemotherapy 

25/03/2014 STA 

People with mCRC that is resistant 

to or has progressed following prior 

oxaliplatin-based chemotherapy 

Aflibercept in 

combination with 

FOLFIRI 

No 

TA405 CRC 

Trifluridine–tipiracil for 

previously treated metastatic 

colorectal cancer 

24/06/2016 STA 

Adults with metastatic colorectal 

cancer whose disease has 

progressed after standard therapies 

or for whom standard therapies are 

unsuitable  

Fixed dose combination of 

trifluridine and tipiracil 

hydrochloride 

Yes 

TA439 

 

CRC 

 

Cetuximab and 

panitumumab for 

29/03/2017 

 

MTA 

 

Adults with previously untreated 

RAS wild-type metastatic 

colorectal cancer 

Panitumumab, in 

combination with 

FOLFOX or FOLFIRI 

Yes 
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previously untreated 

metastatic colorectal cancer 

 

 Cetuximab in 

combination with 

FOLFOX or irinotecan-

based chemotherapy 

Yes 

TA124 Lung 

Pemetrexed for the 

treatment of non-small-cell 

lung cancer 

22/08/2007 STA 

Patients with locally advanced or 

metastatic NSCLC after prior 

chemotherapy 

Pemetrexed No  

TA181 Lung 

Pemetrexed for the first-line 

treatment of non-small-cell 

lung cancer 

23/09/2009 STA 

Patients with chemotherapy-naïve 

locally advanced or metastatic 

NSCLC other than predominantly 

squamous cell histology who are 

unsuitable for surgery.  

Pemetrexed in 

combination with cisplatin 

Yes 

TA184 Lung 

Topotecan for the treatment 

of relapsed small-cell lung 

cancer 

25/11/2009 STA 

Adults (≥18 years) with relapsed 

SCLC who responded to first-line 

treatment and for whom re-

treatment with first-line therapy is 

not considered appropriate (due to 

contraindications, adverse effects).  

Topotecan Yes  
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TA190 Lung 

Pemetrexed for the 

maintenance treatment of 

non-small-cell lung cancer 

23/06/2010 STA 

People with advanced or metastatic 

(stage IIIB and IV) NSCLC, other 

than those with predominantly 

squamous histology, whose disease 

has not progressed following 

treatment with platinum-based, 

first-line chemotherapy 

Pemetrexed Yes 

TA192 Lung 

Gefitinib for the first-line 

treatment of locally 

advanced or metastatic non-

small-cell lung cancer 

28/07/2010 STA 

People with previously untreated 

EGFR-TK mutation positive locally 

advanced or metastatic NSCLC  

Gefitinib Yes 

TA227 Lung 

Erlotinib monotherapy for 

maintenance treatment of 

non-small-cell lung cancer 

29/06/2011 STA 

People with advanced or metastatic 

(stage IIIB and IV) NSCLC whose 

disease has not progressed 

following treatment with platinum-

based first-line chemotherapy 

Erlotinib monotherapy No 

TA258 Lung 

Erlotinib for the first-line 

treatment of locally 

advanced or metastatic 

27/06/2012 STA 

Adults with previously untreated 

EGFR-TK mutation positive locally 

Erlotinib monotherapy Yes 
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EGFR-TK mutation-positive 

non-small-cell lung cancer 

advanced or metastatic non-small-

cell lung cancer 

TA310 Lung 

Afatinib for treating 

epidermal growth factor 

receptor mutation-positive 

locally advanced or 

metastatic non-small-cell 

lung cancer 

23/04/2014 STA 

People with locally advanced or 

metastatic non-small cell lung 

cancer with positive epidermal 

growth factor receptor tyrosine 

kinase mutation TKI naive (first 

line) TKI pre-treated (after at least 

one line of chemotherapy and an 

EGFR TKI) 

Afatinib Yes 

TA347 Lung 

Nintedanib for previously 

treated locally advanced, 

metastatic, or locally 

recurrent non-small-cell lung 

cancer 

22/07/2015 STA 

Patients with locally advanced, 

metastatic or recurrent NSCLC of 

adenocarcinoma tumour histology 

after first-line chemotherapy. 

Nintedanib Yes 

TA374 Lung 

Erlotinib and gefitinib for 

treating non-small-cell lung 

cancer that has progressed 

after prior chemotherapy 

16/12/2015 MTA 

Adults with locally advanced or 

metastatic NSCLC that has 

progressed following prior 

chemotherapy 

Gefitinib No 

Erlotinib Yes 
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TA395 Lung 

Ceritinib for previously 

treated anaplastic lymphoma 

kinase positive non-small-

cell lung cancer 

22/06/2016 STA 

Adult patients with ALK positive 

non-small cell lung cancer 

previously treated with crizotinib 

Ceritinib Yes 

TA402 Lung 

Pemetrexed maintenance 

treatment for non-squamous 

non-small-cell lung cancer 

after pemetrexed and 

cisplatin 

24/08/2016 STA 

People with advanced or metastatic 

(stage IIIB and IV) NSCLC, other 

than predominately squamous 

histology, whose disease has not 

progressed following induction 

treatment with pemetrexed and 

cisplatin 

Pemetrexed Yes 

TA403 Lung 

Ramucirumab for 

previously treated locally 

advanced or metastatic non-

small-cell lung cancer 

24/08/2016 STA 

People with locally advanced or 

metastatic non-small cell lung 

cancer (NSCLC) that has 

progressed after platinum-based 

chemotherapy.  

Ramucirumab in 

combination with 

docetaxel  

No 

TA406 Lung 

Crizotinib for untreated 

anaplastic lymphoma kinase-

28/09/2016 STA 

People with untreated, ALK-

positive, advanced NSCLC.  

Crizotinib Yes 
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positive advanced non-

small-cell lung cancer 

TA411 Lung 

Necitumumab for untreated 

advanced or metastatic 

squamous non-small-cell 

lung cancer 

28/09/2016 STA 

People with untreated advanced, 

metastatic, squamous non-small cell 

lung cancer  

Necitumumab in 

combination with 

gemcitabine and cisplatin 

No 

TA416 Lung 

Osimertinib for treating 

locally advanced or 

metastatic EGFR T790M 

mutation-positive non-small-

cell lung cancer 

26/10/2016 STA 

People with locally advanced or 

metastatic, EGFR and T790M 

mutation positive non-small cell 

lung cancer  

Osimertinib CDF 

TA422 Lung 

Crizotinib for previously 

treated anaplastic lymphoma 

kinase-positive advanced 

non-small-cell lung cancer 

21/12/2016 STA 

People with previously treated 

locally advanced or metastatic non-

small-cell lung cancer that is 

positive for anaplastic lymphoma 

kinase fusion (ALK) genes. 

Crizotinib Yes 

TA428 Lung 

Pembrolizumab for treating 

PD-L1-positive non-small-

12/09/2017 STA 

People with advanced non-small-

cell lung cancer that is PD-L1 

positive: 

Pembrolizumab Yes 
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cell lung cancer after 

chemotherapy 

- whose disease has progressed 

after platinum-containing doublet 

chemotherapy, or; 

- whose disease has progressed on 

both platinum-containing doublet 

chemotherapy and targeted therapy 

for EGFR or ALK positive tumours 

TA483 Lung 

Nivolumab for previously 

treated squamous non-small-

cell lung cancer 

01/11/2017 STA 

People with previously treated 

locally advanced or metastatic 

(stage IIIB or IV) squamous 

NSCLC 

Nivolumab CDF 

TA484 Lung 

Nivolumab for previously 

treated non-squamous non-

small-cell lung cancer 

01/11/2017 STA 

People with previously treated non-

squamous locally advanced or 

metastatic NSCLC  

Nivolumab CDF 

TA500 Lung 

Ceritinib for untreated 

ALK-positive non-small-cell 

lung cancer 

24/01/2018 STA 

People with untreated ALK+ 

advanced NSCLC 

Ceritinib Yes  

TA520 Lung 

Atezolizumab for treating 

locally advanced or 

16/05/2018 STA 

People with locally advanced or 

metastatic non-small-cell lung 

Atezolizumab Yes 
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metastatic non-small-cell 

lung cancer after 

chemotherapy 

cancer whose disease has 

progressed after chemotherapy 

TA529 Lung 

Crizotinib for treating 

ROS1-positive advanced 

non-small-cell lung cancer 

04/07/2018 STA 

People with ROS1-positive 

advanced non-small cell lung 

cancer  

Crizotinib CDF 

TA531 Lung 

Pembrolizumab for 

untreated PD-L1-positive 

metastatic non-small-cell 

lung cancer 

18/07/2018 STA 

People with PD-L1 positive 

metastatic non-small cell lung 

cancer (NSCLC) not treated with 

chemotherapy in the metastatic 

setting 

Pembrolizumab Yes 

TA536 Lung 

Alectinib for untreated 

ALK-positive advanced non-

small-cell lung cancer 

08/08/2018 STA 

Adults with untreated anaplastic 

lymphoma kinase positive (ALK-

positive) advanced non-small cell 

lung cancer (NSCLC)  

Alectinib Yes 

TA557 Lung 

Pembrolizumab with 

pemetrexed and platinum 

chemotherapy for untreated, 

10/01/2019 STA 

Adults with untreated, metastatic, 

non-squamous non-small cell lung 

cancer (NSCLC)  

Pembrolizumab plus 

chemotherapy 

CDF 
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metastatic, non-squamous 

non-small-cell lung cancer 

TA571 Lung 

Brigatinib for treating 

ALK-positive advanced non-

small-cell lung cancer after 

crizotinib 

20/03/2019 STA 

People with anaplastic lymphoma 

kinase (ALK)-positive advanced 

non-small cell lung cancer 

(NSCLC) previously treated with 

crizotinib  

Brigatinib Yes 

TA578 Lung 

Durvalumab for treating 

locally advanced 

unresectable non-small-cell 

lung cancer after platinum-

based chemoradiation 

01/05/2019 STA 

Adults with locally advanced, 

unresectable non-small cell lung 

cancer (NSCLC) whose disease has 

not progressed after platinum-based 

chemoradiation therapy (CRT) 

Durvalumab CDF 

TA584 Lung 

Atezolizumab in 

combination for treating 

metastatic non-squamous 

non-small-cell lung cancer 

05/06/2019 STA 

People with untreated advanced, 

non-squamous NSCLC 

 

People with EGFR-or ALK-

positive advanced, non-squamous 

NSCLC who were previously 

Atezolizumab in 

combination with 

carboplatin plus paclitaxel 

with or without 

bevacizumab  

Yes 
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treated with targeted therapy (or 

cannot have a targeted therapy)  

TA595 Lung 

Dacomitinib for untreated 

EGFR mutation-positive 

non-small-cell lung cancer 

14/08/2019 STA 

People with untreated locally 

advanced or metastatic NSCLC 

with EGFR activating mutation(s). 

Dacomitinib Yes 

TA600 Lung 

Pembrolizumab with 

carboplatin and paclitaxel 

for untreated metastatic 

squamous non-small-cell 

lung cancer 

11/09/2019 STA 

Adults with untreated metastatic 

squamous non-small-cell lung 

cancer (NSCLC) 

Pembrolizumab in 

combination with: 

 - carboplatin and 

paclitaxel 

 - carboplatin and nab-

paclitaxel  

CDF 

TA621 Lung 

Osimertinib for untreated 

EGFR mutation-positive 

non-small-cell lung cancer 

22/01/2020 STA 

People with previously untreated 

locally advanced or metastatic, 

EGFR mutation positive non-small-

cell lung cancer 

Osimertinib No 

TA55 Ovarian 

Guidance on the use of 

paclitaxel in the treatment 

of ovarian cancer 

22/01/2003 STA Women with ovarian cancer 

Paclitaxel (alone or in 

combination with other 

drugs as part of a 

chemotherapy regimen) 

Yes 
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TA284 Ovarian 

Bevacizumab in 

combination with paclitaxel 

and carboplatin for first-line 

treatment of advanced 

ovarian cancer 

22/05/2013 STA 

Women with newly diagnosed, 

stage III or IV ovarian cancer who 

have not received prior 

chemotherapy  

Bevacizumab in 

combination with 

paclitaxel and carboplatin  

No  

TA285 Ovarian 

Bevacizumab in 

combination with 

gemcitabine and carboplatin 

for treating the first 

recurrence of platinum-

sensitive advanced ovarian 

cancer 

22/05/2013 STA 

Women with recurrent platinum 

sensitive or partially platinum 

sensitive advanced epithelial 

ovarian, fallopian tube of primary 

peritoneal cancer 

Bevacizumab in 

combination with 

gemcitabine and 

carboplatin 

No 

TA381 Ovarian 

Olaparib for maintenance 

treatment of relapsed, 

platinum-sensitive, BRCA 

mutation-positive ovarian, 

fallopian tube and peritoneal 

cancer after response to 

second-line or subsequent 

27/01/2016 STA 

Adult women with platinum-

sensitive relapsed (PSR) BRCA-

mutated (germline and/or somatic) 

high-grade serous epithelial 

ovarian, fallopian tube or primary 

peritoneal cancer who are in 

response (complete response or 

Olaparib Yes 
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platinum-based 

chemotherapy 

partial response) to platinum-based 

chemotherapy. 

TA389 

 

 

 

 

Ovarian 

 

 

 

 

Topotecan, pegylated 

liposomal doxorubicin 

hydrochloride, paclitaxel, 

trabectedin and 

gemcitabine for treating 

recurrent ovarian cancer 

 

 

 

 

27/04/2016 

 

 

 

 

MTA 

 

 

 

 

Women with ovarian cancer that 

has recurred after first line (or 

subsequent) platinum-based 

chemotherapy or that is refractory 

to platinum-based chemotherapy. 

 

 

 

 

Paclitaxel alone or in 

combination with platinum 

chemotherapy 

Yes 

Pegylated liposomal 

doxorubicin 

hydrochloride (PLDH) 

alone or in combination 

with platinum 

chemotherapy 

Yes 

Gemcitabine in 

combination with 

carboplatin 

No 

Trabectedin in 

combination with PLDH 

No 

Topotecan No 

TA528 Ovarian 

Niraparib for maintenance 

treatment of relapsed, 

04/07/2018 STA 

Women who have recurrent, 

platinum-sensitive ovarian, 

Niraparib CDF 
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platinum-sensitive ovarian, 

fallopian tube and peritoneal 

cancer 

fallopian tube, or peritoneal cancer 

that has responded to the most 

recent course of platinum-based 

chemotherapy 

TA598 Ovarian 

Olaparib for maintenance 

treatment of BRCA 

mutation-positive advanced 

ovarian, fallopian tube or 

peritoneal cancer after 

response to first-line 

platinum-based 

chemotherapy 

28/08/2019 STA 

Women with newly diagnosed 

BRCA mutated advanced ovarian, 

fallopian tube or peritoneal cancer, 

who are in response (complete or 

partial) to first line platinum-based 

chemotherapy 

Olaparib CDF 

TA611 Ovarian 

Rucaparib for maintenance 

treatment of relapsed 

platinum-sensitive ovarian, 

fallopian tube or peritoneal 

cancer 

13/11/2019 STA 

Women with platinum sensitive 

relapsed highgrade epithelial 

ovarian, fallopian tube, or primary 

peritoneal cancer who are in 

response (complete or partial) to 

platinum-based chemotherapy. 

Rucaparib CDF 
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TA620 Ovarian 

Olaparib for maintenance 

treatment of relapsed 

platinum-sensitive ovarian, 

fallopian tube or peritoneal 

cancer 

15/01/2020 STA 

Women who have platinum-

sensitive relapsed high-grade 

epithelial ovarian, fallopian tube or 

peritoneal cancer that is in response 

(complete or partial) to platinum-

based chemotherapy 

Olaparib Yes/CDF  

5-FU/FA: 5-fluorouracil and folinic acid; ALK: anaplastic lymphoma kinase; BRCA: BReast CAncer gene; CDF: cancer drugs fund; CRC: colorectal cancer DNA: 

deoxyribonucleic acid; EGFR: epidermal growth factor receptor; EGFR-TK: epidermal growth factor receptor tyrosine kinase; FIGO: international federation of 

gynaecology and obstetrics; FOLFIRI: 5 fluorouracil, folinic acid and irinotecan; FOLFOX: 5 fluorouracil, folinic acid and oxaliplatin; mCRC: metastatic colorectal 

cancer; MTA: multiple technology appraisal; NHS: national health service; NSCLC: non-small-cell lung cancer; PD-L1; programmed death-ligand 1; PLDH: pegylated 

liposomal doxorubicin hydrochloride; PSR: platinum-sensitive relapsed; ROS1: ROS proto-oncogene 1, receptor tyrosine kinase; SCLC: small-cell lung cancer; STA: 

single technology appraisal; VEGF: vascular endothelial growth factor 

*Targeted therapies in the ‘Technologies’ column are shaded grey  
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Supplemental Appendix 4 

 

Appendix Figure: Maturity of data from which economic analyses were based 

[Points represent the proportion of confirmed events that had occurred at the time of analysis; the intervention 

arm of the trial was used where available – if this was not available the whole trial population was used; trend 

line for colorectal cancer ignores TA100 as outliers – with these included the trend line observes a positive 

correlation] 
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Appendix Figure: Length of clinical study follow-up  
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Supplemental Appendix 5 

 

Appendix Figure: Median ages of trial participants reported in pivotal clinical studies
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Appendix Figure: Proportion of patients that are male in pivotal clinical trials 
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Appendix Figure: Proportion of patients that have an ECOG PS of 0-1 or 2-3 in pivotal clinical studies 
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Appendix Figure: Proportion of patients that are Asian or White/Caucasian in pivotal clinical studies 


