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Intervortex forces in competing-order superconductors

Martin Speight∗and Thomas Winyard†

School of Mathematics, University of Leeds
Leeds LS2 9JT, England

January 18, 2021

Abstract

The standard Ginzburg-Landau model of competing-order superconductors, applica-
ble to various high Tc cuprates, is studied. It is observed that this model possesses two
distinct species of vortex, and consequently has two distinct integer valued topological
charges. A simple point particle model of long range forces between (anti)vortices of any
species is developed and compared with numerical simulations of the full field theory,
excellent agreement being found. Some of the results are quite counterintuitive. For
example, a parameter regime exists where vortices of one species repel both vortices and
antivortices of the other.

1 Introduction

High Tc cuprate superconductors often exhibit a superconducting ground state that is in
close proximity to other ordered ground states. The standard approach models these two
phases separately with separate order parameters. However, it has been shown that when
in close proximity the superconducting state competes with these other orders, for example
anti-ferromagnetic order [1, 2] or charge order [3, 4]. In particular there has been considerable
recent interest in such models, driven by experimental results, showing the importance of
charge order in underdoped cuprates [5, 3, 6, 7].

If a magnetic field is applied to such a system, vortices form, locally suppressing the
superconducting state in the core. This leads to competing correlations in the core, studied
both theoretically [1, 8, 9] and experimentally [10, 2, 11, 12] in cuprates. In addition it has
also been shown that in Y Ba2Cu3Oy, vortex cores overlap before Hc2 is reached, allowing
charge order across the system [4].

A common tool used to study competing phases, is extending the target space to include
the competing order parameters. The extended target space comes with additional constraints,
such that suppression of the dominant phase is matched by excitation of the competing phase.
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Historically this was introduced in cuprates to model the competition between the supercon-
ducting phase and anti-ferromagnetic phase as an SO(5) model. The approach considered
a coupled complex valued order parameter ∆ for the superconducting phase, and a vector
valued order parameter m = (m1,m2,m3) for the antiferromagnetic phase, and phase compe-
tition introduced through the constraint |∆|2 + |m|2 = const [1]. Hence the composite order
parameter (∆,m) takes values in a 4-dimensional sphere inside R

5.
Recently it has been proposed that a similar approach using an SO(3) model, where the

target space is expanded to a two-sphere S2 ⊂ R
3, can be used to model the competition

between superconductivity and charge order [13]. Restricting a half filled attractive Hubbard
model to nearest neighbour hopping leads to the superconducting and charge density wave
orders becoming degenerate in energy. This suggests an S2 order parameter [14, 15, 16, 17, 18],
formed of a superconducting component, written as the complex field ∆, and charge density
wave component, written as the real field ρ. These fields are subject to the constraint |∆|2 +
ρ2 = c2, such that |ρ| is maximal where |∆| vanishes, and vice versa. Hence, we will assume
that the north pole (ρ = c) and south pole (ρ = −c) of the S2 target space correspond to
two different charge density wave orders (with different dominating sub-lattices), while the
equator (ρ = 0) exhibits the U(1) superconducting phase.

Note that there have been studies of such competing phase models in uncharged systems
[19, 20, 21, 22], but such systems do not admit finite energy vortex solutions. As we are
interested in vortices in this paper we will deal entirely with the charged model.

We also note that the effect of competing order is of general interest in superconductivity.
It is important to understand such systems and their generalizations, with a focus on their
solitonic excitations, from multi-component systems with density-density couplings [23] (which
also exhibits non-trivial vortex interactions) to competition with spin density waves [24, 25].

This paper will focus on the continuous effective Ginzburg-Landau (GL) formalism pro-
posed in [13, 26], which is derived from the attractive SO(3) Hubbard model mentioned
above. It is similar to other phenomenologically proposed models [27, 28, 29], introduced in
an attempt to model the experimental observation of competing phases in charged systems.
To derive a GL model one must take the Hubbard model and assume that anisotropy near
the charge ordered, superconducting transition is negligible. Taking this isotropic limit and
assuming a quadratic symmetry breaking term gives fields subject to the free energy density,

E =
χ

2

∣∣∣∣(∇− 2ie

~
A)∆

∣∣∣∣
2

+
1

8π
|∇ ×A|2 + χ

2
|∇ρ|2 − |∆|2 − (1− δ)ρ2, (1.1)

where A is the electromagnetic gauge potential coupled to the charged field ∆, and χ and
δ are positive constants, δ representing the strength of next-nearest neighbour hopping. As
with the Hubbard model, order competition is imposed via the constraint |∆|2 + ρ2 = c2. In
mathematical terms, this is an example of a gauged sigma model, objects of strong intrinsic
interest.

The purpose of this paper is to develop a theory of the long range interactions between
vortices in this model within the point vortex formalism. A key observation is that the model
supports two distinct species of vortex which we call North vortices, with ρ = c in the vortex
core, and South vortices, with ρ = −c in the vortex core, and that each of these has an
antivortex counterpart (possessing a quantum of negative magnetic flux).
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While vortices have been previously studied [13, 26, 30], there has been no detailed study
of the different (anti)vortex interactions in the model. One paper briefly considered the effect
that introducing charge order has on the strength of purely superconducting interactions in
the Hubbard model[31]. In that paper, vortex interactions were approximated to be that of a
strongly type II single component model, with a numerically motivated exponential correction
term, dependent on the value of δ. However, in this paper we demonstrate that to understand
the interactions, one cannot separate the superconducting and charge order components and
treat them separately. We will also show that the interactions act as Bessel functions. Our
detailed study of the interactions in the model will lead to a typology argument, similar to the
standard single component Ginzburg-Landau model, but with additional complications due
to the multiple species of vortex.

Since the model supports two different species of vortex, it possesses two integer-valued
topological charges: the total number n of magnetic flux quanta, and the half-degree d of the
map R

2 → S2 defined by (x1, x2) 7→ (Re∆(x1, x2), Im∆(x1, x2), ρ(x1, x2))/c, or, equivalently
the net numbers of North vortices k+ and South antivortices k−. This pair of integers cannot
change under any smooth deformation of the fields ∆, ρ, Ai preserving finite total energy.

We will see that the interaction between (anti)vortices of all types depends crucially on
the coupling parameter

µ =
~δ

2
√
2πeχc

(1.2)

which plays a role analogous to the Ginzburg-Landau parameter in conventional (single com-
ponent) GL theory. If µ > 1, vortices of any species repel one another, as do antivortices
of any species, while vortices always attract antivortices. If µ < 1, the behaviour is more
surprising: like vortices attract, as do like antivortices, but unlike vortices repel, as do unlike
antivortices, and unlike vortex-antivortex pairs. The regime of critical coupling µ = 1 is par-
ticularly subtle with various combinations of vortices and antivortices experiencing no static
interactions at all. The situation is summarized in table 1. This constitutes the equivalent of
the familiar typology argument for the standard single component Ginzburg-Landau model,
where the parameter µ is now the Ginzburg-Landau parameter, determining the interaction
type. Hence for µ > 1 we call this a type II superconductor, for µ < 1 a type I superconductor
and µ = 1 a critically coupled superconductor.

µ < 1 µ = 1 µ > 1
N N̄ S S̄

N attract attract repel repel

N̄ attract repel repel

S attract attract

S̄ attract

N N̄ S S̄
N 0 attract repel 0
N̄ 0 0 repel

S 0 attract

S̄ 0

N N̄ S S̄
N repel attract repel attract

N̄ repel attract repel

S repel attract

S̄ repel

Table 1: Summary of interactions between (anti)vortex pairs. N denotes North vortex, S
denotes South vortex and an overbar denotes the corresponding antivortex. The 0 entries in
the µ = 1 table indicate (anti)vortex pairs which experience no interaction: their total energy
is independent of their separation.
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The rest of this paper is structured as follows. In section 2 we choose length, energy and
charge units to reduce the GL model to a standard gauged sigma model, review its topological
properties, and construct its (anti)vortices, paying particular attention to their asymptotics
at spatial infinity. In section 3 we develop a theory of long range intervortex interactions
by modelling vortices as solutions of the linearization of the sigma model about its vacuum,
in the presence of appropriate point sources at the vortex centre, chosen to replicate the
vortex’s large r behaviour. This models vortices as composite point particles carrying a scalar
monopole charge, inducing a real scalar field of mass µ (roughly, the field ρ) and a magnetic
dipole moment inducing a vector field of mass 1 (roughly, Ai). The interaction energy between
pairs of such point particles is easily computed, producing the predictions of table 1, as well as
precise asymptotic formulae for the interaction energies valid at large separation. In section
4 we verify these predictions by numerically computing the interaction energy of (anti)vortex
pairs via a gradient descent energy minimization method. Finally, section 5 presents some
concluding remarks.

2 Competing-order vortices

We first choose scales to minimize the number of parameters in the free energy (1.1). Let

E = λEEnew − c2, xi = λxx
new

i , Ai = λAA
new

i ,

(u1 + iu2, u3) = (∆/c, ρ/c),

Diu =
∂u

∂xnew

i

− Anew

i e× u, (2.1)

where e = (0, 0, 1). Then, with the choices

λE = 4πχ2c4
(
2e

~

)2

, λ2
x =

χc2

λE

, λA =
~

2eλx

, (2.2)

we find that

Enew =
1

2
Diu ·Diu+

1

2
(Bnew)2 +

µ2

2
(e · u)2 (2.3)

where Bnew = ∂new

1 Anew

2 − ∂new

2 Anew

1 and µ is defined in equation (1.2). We henceforth discard
the superscript “new.”

The total energy of a pair of fields (u, A) is the integral

E =

∫

R2

Edx1dx2. (2.4)

In order for this to be finite, u, at large r (where (x1, x2) =: r(cos θ, sin θ)), must approach
the equator u3 = 0 on S2. It need not, however, be constant: it may wind around the equator

u ∼ (cosnθ, sinnθ, 0) (2.5)
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some integer n times. Then finite energy also implies |Du| ∼ 0 as r → ∞, so A ∼
n
r
(− sin θ, cos θ), whence, by a standard application of Stokes’s Theorem one finds that the

total magnetic flux of any finite energy configuration is quantized,∫

R2

Bdx1dx2 = 2πn. (2.6)

If n 6= 0, there must be points in the plane where u1 + iu2 = 0. Note, however, that these
come in two distinct species since u3 may take the value +1 or −1 at each such point. Consider
a point x+ where u(x+) = (0, 0, 1). This point itself may be assigned a sign σ(x+) according
to whether the field u(x) is locally an orientation preserving (σ = +1) or orientation reversing
(σ = −1) map close to x+. The sum of these signs over all points where u = (0, 0, 1) is an
integer-valued topological invariant of the field u,

k+ =
∑

x∈u−1(e)

σ(x) (2.7)

which we may interpret as the net excess of North vortices over North antivortices in the
field configuration. We may similarly assign a sign σ(x−) to each point x− in the plane
at which u(x−) = (0, 0,−1). Again, σ(x−) = +1 if u(x) is locally orientation preserving
and u(x−) = −1 if it is locally orientation reversing. One should note, however, that, while
(u1, u2) is a good oriented local coordinate system for S2 in a neighbourhood of (0, 0, 1), it
is anti-oriented in a neighbourhood of (0, 0,−1), so each point with σ(x−) = +1 contributes
negatively to the winding of the field u about the equator in S2. Hence, the integer-valued
topological invariant associated with the South (anti)vortex positions

k− =
∑

x∈u−1(−e)

σ(x) (2.8)

represents the net excess of South antivortices over South vortices in the field configuration.
One sees that the winding number at spatial infinity, which determines the total magnetic
flux, is determined by k+, k− as

n = k+ − k−. (2.9)

Furthermore, the total signed area in S2 covered by the mapping u(x) is 2π(k+ + k−), so
we may identify k+ + k− has the half-degree of the map u : R2 → S2. The four types of
(anti)vortex supported by this model are summarized pictorially in Figure 1. We reiterate
that the difference between North and South vortices is the dominant sub-lattice for the
charge density wave order in the core of the vortex.

To understand the (anti)vortices in more detail, we must numerically solve the Euler-
Lagrange equations for the functional E,

Pu(−DiDiu+ µ2(e · u)e) = 0, (2.10)

−∂i∂iAj + ∂j∂iAi − e · (u×Diu) = 0, (2.11)

where Pu denotes projection orthogonal to u, that is, Pu(v) := v − (u · v)u. These are
consistent with the ansatz

uN = (sin f(r) cos θ, sin f(r) sin θ, cos f(r)) (2.12)

AN =
a(r)

r
(− sin θ, cos θ) (2.13)
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Figure 1: The field values attained by the four species of (anti)vortex. The field u(x) wraps
the circle at spatial infinity once around the equator in the direction indicated, anticlockwise
for vortices, clockwise for antivortices (viewed from above the North pole). The (anti)vortex
interior then covers either the Northern or the Southern hemisphere once. The topological
charges k+, k− measure the number of times the field assumes the pole values (0, 0, 1) and
(0, 0,−1) respectively, counted with orientation and multiplicity. These poles indicate two
different sub-lattices for the charge density wave order in the core of the (anti)vortex.
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where the profile functions f , a, satisfy the coupled ODE system

f ′′ +
1

r
f ′ − (1− a)2

r2
sin f cos f + µ2 sin f cos f = 0 (2.14)

a′′ − 1

r
a′ + sin2 f(1− a) = 0 (2.15)

subject to the boundary conditions f(0) = a(0) = 0, f(∞) = π/2, a(∞) = 1. Having found f
and a, we may easily construct the other three species of (anti)vortex,

uS = (sin f(r) cos θ, sin f(r) sin θ,− cos f(r)), AS =
a(r)

r
(− sin θ, cos θ),

uN̄ = (sin f(r) cos θ,− sin f(r) sin θ, cos f(r)), AN̄ =
a(r)

r
(sin θ,− cos θ),

uS̄ = (sin f(r) cos θ,− sin f(r) sin θ,− cos f(r)), AS̄ =
a(r)

r
(sin θ,− cos θ). (2.16)

The system (2.14), (2.15) does not appear to be integrable, so we resort to numerical
integration to find f, a. Regularity at the origin requires f(r) ∼ α1r and a(r) ∼ α2r

2 for some

constants α1, α2. For large r, f̂(r) := f(r)− π/2 and â(r) := a(r)− 1, being small, should be
asymptotic to decaying solutions of the linearization of the system about (f, a) = (π/2, 1),

f̂ ′′ +
1

r
f̂ ′ − µ2f̂ = 0, (2.17)

â′′ − 1

r
â′ − â = 0. (2.18)

Hence, at large r,

f(r) ∼ π

2
+

q

2π
K0(µr), a(r) ∼ 1 +

m

2π
rK1(r), (2.19)

where K0, K1 are modified Bessel’s functions of the second kind, and q,m are unknown con-
stants. The factors of 2π are included for later convenience. Our numerical strategy is to
solve (2.14), (2.15) on [r0, R], with r0 > 0 small and R large by shooting rightwards from r0,
using (α1, α2) as shooting parameters, leftwards from R using (q,m) as shooting parameters,
and imposing that f, a and their derivatives match at some interior point r1 of order 1. The
results of this scheme for various values of the coupling µ are depicted in Figure 2. Of par-
ticular interest are the values of the constants (q,m) as functions of µ, depicted in Figure 3.
Note that q ≡ m when µ = 1. This is not a coincidence: the system (2.14), (2.15) reduces to
a first order system at this critical value of the coupling,

f ′ =
1− a

r
sin f, a′ = r cos f, (2.20)

from which it follows immediately that q ≡ m. This is a symptom of the self duality (or
BPS property) enjoyed by the model at µ = 1, whose full consequences are both deep and far
ranging [32, 33]. In this paper we will concentrate on the case µ 6= 1, however.
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Figure 2: The profiles functions f(r) (blue curves) and a(r) (red curves) of a North vortex at
couplings µ = 2 (top), µ = 1 (middle) and µ = 0.5 (bottom).

3 The point vortex model

It is convenient to think of (anti)vortices as static solutions of the Lorentz invariant model
on (2 + 1)-dimensional Minkowski space whose static energy is E, that is, the model with
Lagrangian density

L =
1

2
Dµu ·Dµu− 1

4
FµνF

µν − µ2

2
(e · u)2, (3.1)

where Fµν = ∂µAν − ∂νAµ, spacetime indices µ, ν run over 0, 1, 2, and the Minkowski metric
has signature + − −. We have merely extended the indices to include time components
for all derivatives and the gauge field. We emphasize that this is a mathematical device,
introducing 2nd order Lorentzian dynamics. This allows us to access some techniques and
results familiar in the study of topological solitons in high energy physics. We certainly do not

assert that the time dynamics defined by this relativistic extension is relevant to competing
order superconductors.

The key observation is that static vortices, far from their core, are indistinguishable from so-
lutions of the linearization of the model (3.1) about the vacuum (meaning Aµ = 0, u = (1, 0, 0))
in the presence of appropriate point sources placed at the vortex centre. Since physics is model
independent, the forces between well-separated vortices should coincide with those between
the corresponding point sources interacting via the fields they induce in the linear theory.
These are easily computed, yielding an asymptotic formula for the interaction energy between
well-separated vortices. This underlying idea was introduced by Manton to study long-range
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Figure 3: The large r shooting parameters q,m of the North vortex solution as functions of
the coupling µ. These may be interpreted as the scalar monopole charge (q) and magnetic
dipole moment (m) of the corresponding point vortex.
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forces between magnetic monopoles [34], and subsequently applied to nuclear Skyrmions by
Schroers [35]. It was adapted to vortices in the conventional Ginzburg-Landau model in [36],
then multicomponent vortices in [37, 38, 39].

Our first task is to identify the point sources that replicate the vortex asymptotics, and
to do this we must first re-write it in the gauge in which, as r → ∞, u → (1, 0, 0) in every
direction, that is, the gauge where u2 = 0 and u1 ≥ 0. This is accomplished by applying
the singular (at r = 0) gauge transformation (u1 + iu2, u3) 7→ (e−iθ(u1 + iu2), u3). The order
parameter takes the form u = (cosΘ, 0, sinΘ) in this gauge, the vacuum is Θ = 0 and the
North vortex has

Θ(r) = f(r)− π

2
∼ q

2π
K0(µr),

(A0, A1, A2) =
a(r)− 1

r
(0,− sin θ, cos θ) ∼ m

2π
(0, ∂2,−∂1)K0(r). (3.2)

These are precisely [36] the fields induced in the linearized model

Llin =
1

2
∂µΘ∂µΘ− µ2

2
Θ2 + ρΘ− 1

4
FµνF

µν +
1

2
AµA

µ + jµA
µ (3.3)

by the static sources

ρ = qδ(x), (j0, j1, j2) = m(0, ∂2,−∂1)δ(x), (3.4)

so our linearized model of a North vortex is a composite point source consisting of a scalar
monopole of charge qN = q, inducing a real scalar field Θ of mass µ, and a magnetic dipole
of moment mN = m inducing a Proca field Aµ of mass 1. The corresponding sources for
the other species of (anti)vortex follow immediately by unwinding (2.16). All are scalar
monopole/magnetic dipole composites, with charges

(qN ,mN) = (q,m), (qS,mS) = (−q,m), (qN̄ ,mN̄) = (q,−m), (qS̄,mS̄) = (−q,−m).
(3.5)

The interaction Lagrangian for a pair of sources (ρ(1), j
(1)
µ ), (ρ(1), j

(1)
µ ) is

Lint =

∫

R2

(ρ(1)Θ(2) + j(1)µ Aµ

(2))dx1dx2 (3.6)

where (Θ(2), A
(2)
µ ) are the fields induced by the second source. We apply this in the case where

the sources are static scalar monopole/magnetic dipole composites of charges (q1,m1), (q2,m2)
located at y and z respectively. The result is a function of s := |y−z|, the vortex separation.
It may be interpreted as minus the interaction energy of the source pair, so

Eint(s) = −Lint =
1

2π
[m1m2K0(s)− q1q2K0(µs)] . (3.7)

If µ > 1, the first term, representing magnetic interactions, dominates at large s, whereas
if µ < 1, the second term, representing scalar interactions dominates. By choosing (q1,m1),
(q2,m2) from the list (3.5), we obtain long range interaction energies between (anti)vortices
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of any species. The nature of these interactions is summarized in Table 1. The zero entries
for critical coupling, µ = 1, follow from the observation that q = m here. Our calculation
establishes that the leading order interactions for NN , SS, NS̄ and SN̄ pairs vanish in this
case. In fact, the self-duality structure can be used to prove that the interaction vanishes
exactly for these pairs [32]: static solutions exist with the individual vortices placed at any
points in the plane when µ = 1.

Of course, these predicted interaction potentials are based on a leap of faith – that physics is
model independent. This particular faith allows, indeed encourages, scepticism in its acolytes.
Luckily it also admits a definitive test: we can compute the energy between vortices held at a
fixed separation by numerical simulation of the original nonlinear model. This is the subject
of the next section.

4 Numerical results

How can we compute the interaction energy ENN
int (s) between two North vortices held distance

s apart? Note that no such static solution exists (unless s = 0, or µ = 1), precisely because
vortices exert forces on one another. The answer is that we solve a constrained minimization
problem for the energy functional E: we minimize among all fields having k+ = 2 and k− = 0
subject to the constraint that u(s/2, 0) = u(−s/2, 0) = e. In practice, we discretize space,
replacing spatial derivatives by difference operators on a regular n1 × n2 lattice of spacing h
(we used n1 = n2 = 251 and h = 0.1). This replaces the continuum energy functional E(u,A)
by a discrete approximant Edis : Cdis → R where Cdis = (S2)n1n2 × (R2)n1n2 is the discretized
configuration space. We then construct an appropriate initial guess ui,j, Ai,j with, around
the boundary of the lattice, ui,j · e = 0 and winding 2, and

u±i0,0 = e, (4.1)

where s = 2i0h. We then minimize Edis among all points in Cdis satisfying the constraint (4.1)
using arrested Newton flow [40] for the function Edis, but never updating u±i0,0 (or u, A on
the boundary of the lattice). This automatically produces a solution of the Euler-Lagrange
equations for our energy functional on R

2\{(±s/2, 0)} satisfying the constraint (4.1) at the
missing points. An alternative to this procedure is to solve the Euler-Lagrange equations on
R

2\{(±s/2, 0)} directly, an approach exploited for the standard GL model in [41]. Having
computed the lowest energy among all (k+, k−) = (2, 0) field configurations with u(±s/2, 0) =
e, we then subtract twice the energy of a single North vortex to obtain ENN

int (s).
Interaction energies for any other vortex combination can be computed similarly by mod-

ifying the constraint (4.1) and boundary behaviour of the field configuration appropriately.
By symmetry, NN ≡ N̄N̄ ≡ SS ≡ S̄S̄, NN̄ ≡ SS̄, NS ≡ N̄ S̄ and NS̄ ≡ N̄S, so only 4 of
the 10 distinct (anti)vortex pairs need be considered, and we can, without loss of generality,
assume that the left vortex is N . The results are depicted in Figure 4. They match perfectly
the predictions of our simple point vortex model.
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Figure 4: Plot of the interaction energies for different vortex pairs and separations Eint =
E − 2E1. The dashed lines are the point vortex approximations given by (3.7). Note that the
interactions agree with table 1.
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5 Concluding remarks

In this paper we have developed a simple point vortex model of long range interactions between
(anti)vortices in the usual Ginzburg-Landau model of competing-order superconductors. The
model supports two distinct species of vortex, each with a matching antivortex, and hence
there are 10 different (anti)vortex pairs possible. Symmetries reduce this to 4 energetically
distinct pairs: NN , NN̄ , NS and NS̄. The point vortex model predicts asymptotic formulae
for the interaction energy of each of these pairs, as a function of separation, with considerable
success. This allows us to make typology like arguments similar to those in the standard
single component Ginzburg-Landau model. The qualitative nature of the interactions depends
on a single parameter µ, the equivalent of the Ginzburg-Landau parameter in the standard
model. If µ < 1 (equivalent of type I) the interactions display some counterintuitive features.
For example, the interaction between vortices of one species and antivortices of the other is
repulsive.

It would be interesting to study vortex lattices in this model in an applied magnetic field.
Although, for µ > 1, pure N (or pure S) arrays are energetically favoured over NS mixtures,
if the state emerges from disorder, presumably some species mixing is inevitable. Some work
on vortex lattices has already been done [26, 31], however there is further understanding to be
gleaned here, as even understanding the “type” of the superconductor is subtle. In addition,
for µ < 1, while it may be preferable for superconducting domains to form rather than vortices,
as in a single band superconductor, these domains can now be N or S domains, which will
repel each other, leading to meta-stable states.

Another possibility is the studying of vortex/anti-vortex bound states when applying a
magnetic field. While there is previous work on vortices in superconductors [13, 26, 30, 31],
the importance of anti-vortices has been completely ignored in the literature until now.

It would also be interesting to consider specific materials such as Y BCO. Note that while
it it is challenging to actually determine the parameter µ of a given material, it has been
suggested that Y BCO [20] exhibits vortices and is type II[26]. In this model this likely means
that µ >> 1 so we have vortex/vortex repulsion for all species.

Finally it would be particularly interesting to consider in detail the effect of adding a small
term linear in ρ to the original Ginzburg-Landau theory, breaking the energy degeneracy of
the two CDW ground states, the upshot of which is that (after rescaling) the energy density
becomes

E =
1

2
Diu ·Diu+

1

2
B2 +

µ2

2
(τ − e · u)2, (5.1)

where τ is an extra small parameter. This term breaks the symmetry between N and S
vortices: if τ > 0 then S vortices are slightly more energetically costly than N vortices
(and vice versa if τ < 0). Remarkably, when µ = 1, the model still enjoys a self-duality
structure, and N vortices exert no net force on S antivortices. The basic point-vortex model
of intervortex forces is similar to the one developed here, in that a point vortex still consists
of a scalar monopole of some charge q and a magnetic dipole of some moment m, but these
sources induce fields of mass

√
1− τ 2µ and

√
1− τ 2, and there is no symmetry relating qN

with qS or mN with mS. Introducing a linear term has the effect of increasing the range of
intervortex forces, therefore, as well as breaking the degeneracy of N and S vortices.
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