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2 Georg Keilbar, Weining Wang

1 Introduction

The issue of systemic risk attracts a lot of attention from academics as well as
from regulators in the aftermath of the financial crisis of 2007-2009. Systemic
risk refers to banks and other economic agents with substantial importance
to the financial system due to their size (too big to fail) or their centrality
within the financial network (too interconnected to fail). A bankruptcy of a
systemically important financial institution can lead to the malfunctioning
of the financial system or central banks and governments might be under
pressure to interfere by bailing out respective firm. Due to these negative
externalities, it is a crucial task for central banks and supervising agencies to
identify systemically relevant firms.

A conventional quantitative risk measure is value-at-risk (VaR), which mea-
sures maximum losses at a certain confidence level. The Basel II Accord in-
troduced VaR as a preferred measure for market risk. However, VaR is not
capturing systemic risk adequately, as it is not capable to analyze the inter-
dependency among firms. Given the subprime mortgage crisis in 2008, the
Basel Committee on Banking Supervision has revised its Accords to focus on
strong governance and risk management. Basel III is thus set up to control the
systemic risk of the whole financial system, and it enforces additional require-
ments for identifying systemic risk important banks and generates demands
on evaluating the interdependency of risk among banks. Adrian and Brun-
nermeier (2016) came up with conditional value-at-risk (CoVaR), a systemic
extension of VaR. However, their original approach is restricted to analyze
systemic risk in a linear and bivariate context. Namely, they focus primarily
on the risk contribution of an individual financial firm to the entire system,
controlling for variables indicating general macroeconomic conditions.

This paper provides a new perspective for estimating CoVaR using neural
networks. Nonlinearity is an important issue for the prediction performance of
risk measures due to the complex dependency channels of financial institutions
(Chao et al. (2015)). Neural networks have proved to be a suitable method for
fitting nonlinear functions. Over the last years, neural networks have become
state of the art models for prediction. They have been applied extensively and
successfully to various fields, including image classification (Simonyan and Zis-
serman (2014)) as well as speech recognition problems (Graves et al. (2013)).
Gu et al. (2020) and Bianchi et al. (2020) apply neural networks and other
machine learning methods to asset pricing with promising results. We take the
off-shelf neural network methodology and apply it to quantify financial risk.
Our findings show that the quantile neural network-based approach provides
a unique angle compared to the linear model for calibrating the systemic risk
due to its flexibility. In particular, we find better out-of-sample prediction with
our fine-tuned nonlinear neural network relative to the baseline linear quantile
model of Koenker and Bassett Jr (1978, 1982).

We briefly summarize the steps of calibrating the systemic risk using a
quantile neural network procedure. In the first step, we estimate the VaR
for each global systemically important financial institution (G-SIB) from the
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Modelling Systemic Risk Using Neural Network Quantile Regression 3

United States by regressing their stock returns on a set of risk factors using
linear quantile regression. Next, we estimate the CoVaRs of the same firms
using neural network quantile regression. To characterize the interdependency
among banks, we regress the return of one asset on the remaining returns
respectively and aggregate the results into a systemic fit. By approximating
the conditional quantile with a neural network we aim for capturing possible
nonlinear effects. To estimate risk spillover effects across banks we calculate
the marginal effects by taking the derivative of the fitted quantile with respect
to the other banks’ stock returns, evaluated at their VaR. By doing so we come
up with a network of spillover effects represented by an adjacency matrix. This
adjacency matrix is time-varying, i.e. we estimate a network for each window
in our moving window estimation procedure. In the final step, we propose three
systemic risk measures building on the previous results. As a first measure,
we propose the Systemic Fragility Index, which identifies the most vulnerable
banks in a given financial risk network. The second measure is the Systemic
Hazard Index, which identifies the financial institutions which potentially pose
the largest risk to the financial system. These two measures characterize the
firm-specific aspects of systemic risk. Thus, we propose a third measure which
estimates the total level of systemic risk, the Systemic Network Risk Index.

Our empirical findings confirm that systemic risk increased sharply during
the height of the financial crisis in 2008. We also observe a high level of systemic
risk at the end of 2011 due to the uncertainty surrounding the European
debt crisis. By comparing our systemic risk measure to existing approaches
for network-based interconnectedness, we find that our method offers a novel
perspective due to the focus on the lower tail of the return distribution and
due to the allowance for nonlinear dependencies. An out-of-sample comparison
shows the superiority of our approach over a baseline model based on linear
quantile regression. This leads to the conclusion that nonlinear effects are
crucial for the modelling of systemic risk. Finally, we identify systemically
relevant financial institutions during the financial crisis using our SFI and
SHI measures. An advantage of our approach is the ability to capture the
asymmetries of systemic risk, by differentiating between firms that affect and
firms that are affected by the financial system. We also discover a risk cluster
of four banks, which corresponds to the list of banks that received the largest
funding in the course of the bank bailout of 2008.

This paper is an addition to the existing literature on systemic risk. Hautsch
et al. (2014) modified the estimation of CoVaR further to analyze systemic risk
in a multiple equation setup using the LASSO. Härdle et al. (2016) followed up
this setup, and extended it to a nonlinear regression setting. In the meanwhile,
there are numerous other methods for calibrating systemic risk. Acharya et al.
(2017) built an economic model of systemic risk and measured the systemic
risk externality of a financial institution by the systemic expected shortfall.
Brownlees and Engle (2017) developed a systemic risk measure capturing the
capital shortage given its degree of leverage and marginal expected shortfall.
Diebold and Yılmaz (2014) analyzed the connectedness of financial firms in a
network context using forecast variance decompositions in a vector autoregres-
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4 Georg Keilbar, Weining Wang

sive framework. Bianchi et al. (2019) proposed a Markov-switching graphical
SUR model to model systematic and systemic risk.

There is a growing literature on econometric analysis using neutral net-
works. White (1988) started to investigate the usefulness of adopting a neural
network for economic prediction. Unfortunately, the message is that even with
simple neural networks the prediction performance is not ideal due to the over-
fitting issues. Kuan and White (1994) provided a further overview of neural
networks with some basic concepts and theory. White (1992) provided the
theoretical foundations of a nonparametric quantile neural network approach
allowing for cases of dependent data. In terms of economic risk prediction,
Taylor (2000) is concerned with predicting conditional volatility by adopting
a quantile neural network approach. Xu et al. (2016) considered a quantile
neural network procedure for evaluating VaR in the stock market. Cannon
(2011) focused on the computational perspective of a quantile neural network.

The remainder of this paper is organized as follows. Section 2 provides a
brief introduction to neural networks in general and neural network quantile
regression in particular. Section 3 describes in detail the methodology of this
paper. After establishing the research framework step by step, we present the
results in section 4. Section 5 discusses the results and concludes.

2 Neural Network Quantile Regression

2.1 Neural Network Sieve Estimation

Neural networks attract increasing attention due to their success in a variety of
prediction problems. Often described as a black box, single hidden layer neural
networks can be seen as a special case of the nonparametric sieve estimator,
see Grenander (1981) and Chen (2007). With increasing sample size n the
complexity of the estimator of hθ is required to increase appropriately fast.
The structure of the neural network sieve is as follows, with t = 1, 2, · · · , n,

Yt = hθ(Xt) + εt

=

Mn∑

m=1

wo
mψ

(
K∑

k=1

wh
k,mXk,t + bhm

)
+ bo + εt

(1)

where Yt is the dependent variable, Xt is a K-dimensional vector of indepen-
dent variables and εt is an error term. The nonlinear activation function ψ(·)
is assumed to be fixed and known. Typical choices are sigmoid functions, e.g.
ψ(z) = tanh(z) or the ReLU (rectifier linear unit) function, ψ(z) = max(z, 0).
There are two types of parameters, hidden layer parameters wh

k,m and bhm and
output layer parameters wo

m and bo. The sieve parameter space Θn expands
with n. In particular, the number of basis functions (i.e. the number of hidden
nodes) goes to infinity, Mn → ∞ as n→ ∞. Single layer neural networks have
proved to be universal function approximators, as shown by Cybenko (1989)
for sigmoid activation functions and Hornik et al. (1989) for the general case
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of bounded, non-constant activation functions. Sonoda and Murata (2017) ex-
tend the universal approximation property to unbounded activation functions,
which includes the popular ReLU function.

The large sample properties of neural networks have been studied exten-
sively in the literature. Notably, Chen and White (1999) show consistency and
asymptotic normality of the nonparametric neural network sieve estimator
under certain regularity conditions. Given that the number of basis functions
grows appropriately with increasing sample size, the root mean square conver-
gence rate to an unknown (suitably smooth) true function is of order op(n

−1/4).
This rate is crucial to obtain root-n asymptotic normality for plug-in estima-
tors (Chen and Shen (1998)).

All of the above results concern with neural networks with a single hidden
layer. The approximation theory and the asymptotic results of deep neural
networks, i.e. neural networks with more than one hidden layer, is less un-
derstood compared to the shallow neural network case. Johnson (2018) shows
that deep neural networks with limited width are not universal function ap-
proximators. Rolnick and Tegmark (2017) prove that deep neural networks
can learn polynomial functions more efficiently (in terms of number of nodes
required) than shallow ones.

2.2 Neural Network Sieves and Quantile Regression

Predominantly, neural networks have been applied to classification and mean
regression problems. However, an extension to a quantile regression setting is
straightforward. Consider the linear quantile regression equation for a fixed
quantile level τ , as formulated in Koenker and Bassett Jr (1978, 1982).

Yt = Xtβ + εt, t = 1, . . . , n (2)

with Qτ (εt|Xt) = 0. In this setting the dependent variable Yt is modelled as
a linear function of independent variables Xt. The linear quantile estimator is
then the solution to the following minimization problem:

min
β

n∑

t=1

ρτ (Yt −Xtβ) (3)

where ρτ (z) = |z|·|τ−I(z < 0)| is the quantile loss function. This minimization
problem can be formulated as a linear program and can thus be solved by
simplex or interior point algorithms. Neural network quantile regression is a
nonlinear generalization of this regression framework. Instead of using a linear
function, the conditional quantile is approximated by a neural network sieve
estimator as defined in 2.1. The resulting optimization problem is nonconvex
and cannot be solved by linear programming methods:

min
θ

n∑

t=1

ρτ {Yt − hθ(Xt)} (4)
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6 Georg Keilbar, Weining Wang

A possible alternative is to use the gradient-based backpropagation algorithm
of Rumelhart et al. (1988). The asymptotic properties of nonparametric neural
network estimators for the conditional quantile are analyzed in White (1992).
Under certain regularity conditions the estimator is consistent, see Appendix
A. This result holds both for i.i.d. and dependent data.

2.3 Regularization Methods

Neural networks are prone to overfitting due to their high capacity. An ef-
fective tool to counteract overfitting lies in the choice of the structure and
the hyperparameters of the neural network. In our single hidden layer set-
ting, the most important hyperparameter is the number of hidden nodes, Mn.
Other relevant parameters are the number of epochs and the specification of
the learning algorithm. Typically, hyperparameters are selected according to
a cross-validation criterion. A different approach is to put an extra penalty
term on the weight parameters, wh

k,m and wo
m. We are considering both L1

and L2 penalties which we summarize under the term elastic net (Zou and
Hastie (2005)). This penalization method leads to the following optimization
problem:

min
hθ

n∑

t=1

ρτ {Yt − hθ(Xt)}+ λ1‖(w
h⊤
k,m, w

o⊤
m )⊤‖1 + λ2‖(w

h⊤
k,m, w

o⊤
m )⊤‖22 (5)

where ‖ · ‖1 is the L1-norm, ‖ · ‖2 is the L2-norm. λ1 and λ2 are regularization
parameters. A different method to prevent overfitting is the dropout method,
proposed by Hinton et al. (2012) and Srivastava et al. (2014). In each iteration
of the backpropagation algorithm, a given node is only considered with a
probability 1 − p. Consequently, each node is excluded with a probability p
which is defined as the dropout rate. The motivation for this is to counteract
memorization of the data by preventing co-adaptation of the nodes. Dropout
is referred to be an ensemble method, as the final model is a result of training
multiple models with reduced capacity.

3 Methodology to Calibrate Systemic Risk

In this section, we explain the details of our systemic risk analysis. Our
methodology involves four steps. The first step is concerned with the esti-
mation of VaR based on a linear quantile regression using a set of risk factors
as explanatory variables. The results are used in the next step to estimate
the CoVaR for each financial institution using a quantile regression neural
network. Next, we calculate marginal effects to model systemic risk spillover
effects, resulting in a time-varying systemic risk network. In the final step, we
propose three systemic risk measures based on this systemic risk network.
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Step 1: Estimation of VaR

VaR is defined as the maximum loss over a fixed time horizon at a certain level
of confidence. The Basel II Accord introduced VaR as the preferred measure
for market risk. The calculation of VaR functions as the basis for capital
requirements of financial institutions. Mathematically, it is the τ -quantile of
the return distribution:

P(Xi,t ≤ VaRτ
i,t) = τ, (6)

where Xi,t is the return of a financial firm i at time t and τ ∈ (0, 1) is the
quantile level. There exist numerous ways to estimate VaR. We refer to Kuester
et al. (2006) for an extensive overview. One example is to assume a parametric
model, and the most popular formulation involves the estimation of the latent
volatility process via the GARCH model. Other approaches are based on the
direct estimation of the conditional quantiles. Chernozhukov and Umantsev
(2001) combine linear quantile regression with extreme value theory (EVT) to
estimate VaR for extreme quantile levels. Chao et al. (2015) and Härdle et al.
(2016) estimate VaR by using linear quantile regression on a set of macro state
variables.

In this study, we compare three different specifications. First, we consider
the dynamic quantile approach of Engle and Manganelli (2004), which is called
CAViaR. The VaR is modelled as a latent process. We consider the symmetric
absolute value (SAV) specification,

VaRSAV,τ
i,t = βi,1 + βi,2 VaR

SAV,τ
i,t−1 +βi,3|Xi,t−1|. (7)

Here the current level of VaR is determined by its lagged value as well as by
the absolute value of the lagged return. Second, we consider the asymmetric
slope (AS) CAViaR specification,

VaRAS,τ
i,t = βi,1 + βi,2 VaR

AS,τ
i,t−1 +βi,3(Xi,t−1)

+ + βi,4(Xi,t−1)
−. (8)

This specification allows for different responses to negative and positive re-
turns. Finally, we consider the approach of Härdle et al. (2016). The VaR of
each firm i is estimated by linear quantile regression using a set of macro state
variables Mt−1.

Xi,t = αi + γiMt−1 + εi,t, (9)

where the conditional quantile of the error term Qτ (εi,t|Mt−1) = 0. The VaR
estimate is the fitted value of the quantile regression,

VaRLQR,τ
i,t = α̂i + γ̂iMt−1 (10)

VaR is a frequently used measure for understanding the critical risk level
for an individual financial institution. The drawback of VaR is that it cannot
account for dependency in a systemic context. Estimating VaR as an individual
risk measure is a necessary first step to prepare for calibrating conditional risk.

Electronic copy available at: https://ssrn.com/abstract=3685748



8 Georg Keilbar, Weining Wang

Step 2: Estimation of CoVaR with Neural Network Quantile Regression

CoVaR was introduced as a systemic extension of standard VaR by Adrian
and Brunnermeier (2016). Similar to VaR, it is a risk measure defined as a
conditional quantile of the return distribution. But deviating from the VaR
concept, CoVaR is contingent on a specific financial distress scenario. The
motivation for using CoVaR is the identification of systemically important
banks. For the distress scenario, we assume that all other firms are at their
VaR. By doing this we follow the reasoning of Hautsch et al. (2014) and Härdle
et al. (2016).

P(Xj,t ≤ CoVaRτ
j,t |X−j,t = VaRτ

−j,t) = τ, (11)

where X−j,t is a vector of returns of all firms except j at time t and VaRτ
−j,t

is the corresponding vector of VaRs.

CoVaR can be estimated as a fitted conditional quantile, building on the
results for the VaRs obtained in step 1. Chao et al. (2015) and Härdle et al.
(2016) find evidence for nonlinearity in the dependence between pairs of finan-
cial institutions. Hence, linear quantile regression might not be an appropriate
procedure to estimate the risk spillovers, as the interdependencies are po-
tentially different in a state of worsening market conditions. The conditional
quantile function of one bank on another may react nonlinearly to the change
of critical level of another firm. We therefore propose the use of neural network
quantile regression. The flexibility of the approach allows detecting possible
nonlinear dependencies in the data.

The conditional quantile of bank j’s returns is regressed on the returns of
all other banks and using a neural network as defined in section 2.2:

Xj,t = hθ(X−j,t) + εj,t,

=

Mn∑

m=1

wo
mψ




K∑

k 6=j

wh
k,mXk,t + bhm


+ bo + εj,t,

(12)

with the conditional quantile of error term Qτ (εj,t|X−j,t) = 0. To calculate the
CoVaR of firm j, the fitted neural network has to be evaluated at the distress
scenario:

CoVaRτ
j,t = ĥθ(VaR

τ
−j,t), (13)

where ĥθ is the estimated neural network. Nonlinearity is introduced by the
use of the nonlinear activation function. CoVaR can be interpreted as the
hypothetical τ -quantile of the loss distribution if we are in a hypothetical
distress scenario. In our case, this distress scenario is all other firms being at
their VaR.
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Modelling Systemic Risk Using Neural Network Quantile Regression 9

Step 3: Calculation of Risk Spillover Effects

Based on the weights estimated by the neural network quantile regression pro-
cedure, it is now possible to obtain risk spillover effects between each directed
pair of banks. We propose to estimate the spillover effects by taking the par-
tial derivative of the conditional quantile of firm j’s return with respect to the
return of firm i.

∂Qτ (Xj,t|X−j,t)

∂Xi,t
=

∂

∂Xi,t

Mn∑

m=1

wo
m ψ




K∑

k 6=j

wh
k,mXk,t + bhm


+ bo (14)

In the case of a sigmoid tangent activation function we have

∂Qτ (Xj,t|X−j,t)

∂Xi,t
=

Mn∑

m=1

wo
mw

h
i,mψ

′




K∑

k 6=j

wh
k,mXk,t + bhm


 (15)

with

ψ′(z) =
2

(exp−z/2 +expz/2)2
. (16)

In the case of a ReLu activation function we have

∂Qτ (Xj,t|X−j,t)

∂Xi,t
=

Mn∑

m=1

wo
mw

h
i,mI




K∑

k 6=j

wh
k,mXk,t + bhm > 0


 , (17)

where I(·) is the indicator function. Note that the non-differentiability of the
ReLU function is not an issue in practice since the input of the function is
zero with probability zero. As we are interested in the lower tail dependence,
we consider the marginal effect evaluated at the distress scenario as defined in
the previous subsection:

∂Qτ (Xj,t|X−j,t)

∂Xi,t

∣∣∣∣
X

−j,t=VaRτ
−j,t

=

Mn∑

m=1

wo
mw

h
i,m ψ′




K∑

k 6=j

wh
k,m VaRτ

k,t +b
h
m


 .

(18)

Calculating such a marginal effect for each directed pair of firms yields an
off-diagonal adjacency matrix of risk spillover effects at time t:

At =




0 a12,t . . . a1K,t

a21,t 0 . . . a2K,t

... . . .
. . .

...
aK1,t aK2,t . . . 0


 , (19)

Electronic copy available at: https://ssrn.com/abstract=3685748



10 Georg Keilbar, Weining Wang

with elements defined as absolute values of marginal effects:

aji,t =





∣∣∣∣
∂Qτ (Xj,t|X−j,t)

∂Xi,t

∣∣∣
X

−j,t=VaRτ
−j,t

∣∣∣∣ , if j 6= i

0, if j = i

. (20)

Note that the risk spillover effects are not symmetric in general, thus aji,t 6=
aij,t. This adjacency matrix specifies a weighted directed graph modelling the
systemic risk in the financial system.

Step 4: Network Analysis of Spillover Effects

To further analyze the systemic relevance of the financial institutions we can
calculate several network measures building on the work of Diebold and Yılmaz
(2014). They measure the connectedness of financial firms in terms of variance
decomposition in a vector autoregressive framework. Their methodology is
thus limited to capturing linear spillover effects.

First, the total directional connectedness to firm j at time t is defined as
the sum of absolute marginal effects of all other firms on j.

Cj←·,t =

K∑

i=1

aji,t (21)

Analogously, one can define the total directional connectedness from firm i at
time t as the sum of absolute marginal effects from i to all other firms.

C·←i,t =

K∑

j=1

aji,t (22)

Lastly, Diebold and Yılmaz (2014) define the total connectedness at time t as
the sum of all absolute marginal effects.

Ct =
1

K

K∑

i=1

K∑

j=1

aji,t (23)

The total connectedness is a measure for the connectedness level of the entire
system without differentiating the roles of individual nodes of the network.
Building on this network analysis, we refine the approach by incorporating VaR
and CoVaR in the measurement of the systemic risk relevance. In particular,
we propose the Systemic Fragility Index (SFI) and the Systemic Hazard Index
(SHI) to rank financial institutions according to their relevance.

SFIj,t =

K∑

i=1

(
1 + |VaRτ

i,t |
)
· aji,t, (24)

SHIi,t =
K∑

j=1

(
1 + |CoVaRτ

j,t |
)
· aji,t. (25)
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Modelling Systemic Risk Using Neural Network Quantile Regression 11

The SFI is a measure for the risk exposure of a financial institution j. It
increases if those adjacency weights pointing to j are large and also if the
VaRs of firms i (i.e. the risk factors for j) increase. This implies that the SFI
will increase in times of financial distress. The index can be used by regulators
to identify banks which have a high exposure to the tail risk in the financial
system.

The SHI is a measure for the risk contribution of firm i to the whole
system. It depends on the out-going adjacency weights from i weighted by
the other firms’ CoVaRs. Thus, the SHI tend to be large if the other firms
are already affected by whole system, weigted by their CoVaR. The SFI and
the SHI are firm-specific. It should be noted that our approach allows to
model asymmetries. For instance, a firm which has a high tail risk exposure
does not need to have a large impact on the whole system and vice versa. In
contrast to the original CoVaR approach of Adrian and Brunnermeier (2016),
our approach of identifying systemically important financial institutions has
two advantages. First, we are able to capture possible nonlinear relationships
in the data. Second, our approach operates in a network context which goes
beyond the pairwise analysis proposed in the original CoVaR methodology.

As a third measure, we propose the Systemic Network Risk Index (SNRI),
a measure for the total systemic risk in the financial system which depends
on the marginal effects, the outgoing VaRs, and the incoming CoVaRs. It is a
measure for tail connectedness focusing a lower quantile level.

SNRIt =

K∑

i=1

K∑

j=1

(1 + |VaRτ
i,t |) · (1 + |CoVaRτ

j,t |) · aji,t. (26)

Lastly, we define the adjusted adjacency matrix,

Ãt =




0 ã12,t . . . ã1K,t

ã21,t 0 . . . ã2K,t

... . . .
. . .

...
ãK1,t ãK2,t . . . 0


 . (27)

with elements defined as:

ãji,t =

{
aji,t · (1 + |VaRτ

i,t |) · (1 + |CoVaRτ
j,t |), if j 6= i

0, if j = i
. (28)

The adjusted adjacency matrix accounts for the level of outgoing VaRs and
incoming CoVaRs and is an improved representation of risk spillover effects.
Systemic spillover effects are thus determined by the marginal effects of the
neural network quantile regression procedure as well as by the VaRs and Co-
VaRs of the considered banks.
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12 Georg Keilbar, Weining Wang

4 Empirical Study: US G-SIBs

4.1 Data

For the empirical application of our systemic risk methodology we are focusing
on the global systemically important banks (G-SIBs) from the United States
selected by the Financial Stability Board (FSB), see Table 1. These eight
banks constitute systemic risk relevance to the global financial system and are
deemed to be too-big-to-fail. We consider daily log returns in a time period
between January 4, 2007 and May 31, 2018. The data is obtained from Yahoo
Finance.

Financial Institution NYSE symbol
Wells Fargo & Company WFC
JP Morgan Chase & co. JPM
Bank of America Corporation BAC
Citygroup C
The Bank of New York Mellon Corporation BK
State Street Corporation STT
Goldman Sachs Group, Inc. GS
Morgan Stanley MS

Table 1: List of G-SIBs in the USA.

In addition to these stock return data, we consider daily observations of
the following set of macro state variables:

i) Implied Volatility Index (VIX), from Yahoo Finance;
ii) the weekly S&P500 index returns, from Yahoo Finance;
iii) Moody’s Seasoned Baa Corporate Bond Yield Relative to Yield on 10-Year

Treasury Constant Maturity from Federal Reserve Bank of St. Louis;
iv) 10-Year Treasury Constant Maturity Minus 3-Month Treasury Constant

Maturity from Federal Reserve Bank of St. Louis.

These macro variables are the common risk factors for the estimation of
VaR in the first step of our systemic risk methodology.

4.2 Model Selection and Out-of-Sample Performance

The estimation of CoVaR based on neural network quantile regression involves
several tuning parameters. Most importantly, we have to make a choice about
the activation function and determine the sizes and structure of the neural
network. We recalibrate these tuning parameters at the start of each year in
a data-driven way. We propose the following moving-window model selection
and evaluation procedure.
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Following the common approach in the literature, e.g. Gu et al. (2020),
Bianchi et al. (2020), we repeatedly divide our sample into three disjoint sub-
samples. These subsamples are consequential to maintain the time series struc-
ture of the data. The first sample is called the training set, which is denoted
by T1. The training set is used to estimate the weight and bias parameters of
the neural network for each candidate model specification. The performance is
then evaluated using the validation set, denoted by T2. The tuning parameters
are optimized by choosing the model specification which minimizes the objec-
tive function. This division into training and validation sets is an effective way
to counteract overfitting. However, the validation fit is not truly out-of-sample
since it is used to select the tuning parameters. Therefore, we finally consider
the last subsample as the test set, which is denoted by T3. The test set is used
to get an unbiased estimate of the method’s performance.

To evaluate the predictive performance of our method, we calculate the
out-of-sample average quantile loss, (AQLoos),

AQLoos =
1

|T3|

∑

t∈T3

ρτ

{
Xj,t − Q̂τ (Xj,t|X−j,t)

}
. (29)

The tuning parameters include: the number of nodes in the neural network, the
L1 and L2 penalty terms on the weight parameters and the dropout probability
p. We recalibrate the tuning parameters for each financial firm at the start of
the year. We choose a sample size of 200 and 50 days for the training and
validation datasets respectively. This corresponds to one year of daily data.
We evaluate the performance on the subsequent 250 days in the test set. By
recalibrating the tuning parameters annually, we end up with ten windows in
total. A visualization of the sample splitting scheme can be found in Figure
1. In the following, we summarize the steps of our model selection and the
evaluation procedure.

Step 1: Split the data into training (T1), validation (T2) and test set (T3) for
each window.

Step 2: For each bank j and each window, fit the conditional quantile of Xj

contingent on X−j using T1.
Step 3: Choose the model specification which minimizes the average quantile

loss based on T2 .
Step 4: Calculate AQLoos based on the tuned neural network using T3.
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Fig. 1: Visualization of the rolling window model selection scheme. Training
data (blue), validation data (orange) and test data (red).

Finally, we compare the predictive performance of our neural network quan-
tile regression procedure to a simple baseline model based on the linear quantile
regression,

Xj,t = β0 +

K∑

i 6=j

Xi,tβi + εj,t, (30)

with Qτ (εt|X−j,t) = 0. The baseline model is estimated on training and val-
idation data sets T1 and T2. The estimation does not involve any tuning pa-
rameters so we can make use of the combined data set. The out-of-sample
forecast performance is then evaluated using the holdout data T3. We apply
the test of Diebold and Mariano (2002) to compare the forecast performance.
The test statistic is based on the quantile loss differentials between the neural
network and the linear baseline model and has an asymptotic standard normal
distribution. We choose a significance level of 1%. The test results are reported
in Table 2.

For all of the financial institutions in our sample, the neural network fit
performs better than the linear quantile regression fit. The outperformance
of the neural network forecast is statistically significant for the majority of
banks (seven out of eight). Only for Goldman Sachs the Diebold-Mariano fails
to reject the null hypothesis of similar forecast performance. Overall, the use
of a more complex model like a neural network appears to be recommendable.
A plausible explanation for this is that a linear model is not capable to capture
the complex interdependencies of financial firms under distress.

Firm WCF JPM BAC C BK STT GS MS
DM statistic -3.86 -2.44 -3.12 -3.27 -3.31 -2.76 -1.56 -2.88

p-value 0.000 0.008 0.001 0.001 0.001 0.003 0.059 0.002

Table 2: The table reports the results of the Diebold-Mariano test comparing
the neural network to the linear baseline model.
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For the selection of the VaR approach used in the first step of our systemic
risk analysis, we compare the predictive performance of the three candidate
models introduced in section 3. We consider a sliding window of 250 days,
which is used for estimation to predict the next day’s conditional 5% quantile of
the returns. The results are displayed in Table 3. For every bank in our sample,
the linear quantile approach performs best. Results from the Diebold-Mariano
test show that the difference is significant at the 1% confidence level after
accounting for the multiple testing issue by using the Bonferroni correction
for critical values. In the following, all VaR calculations are based on the
linear quantile approach.

Firm WCF JPM BAC C BK STT GS MS
CaViaR SAV 2.42 2.47 3.39 3.40 2.48 3.05 2.49 3.26
CaViaR AS 2.63 2.60 3.50 3.46 2.73 3.10 2.58 3.45
LQR 2.16 2.20 2.90 2.89 2.15 2.73 2.10 2.76

Table 3: The table reports the out-of-sample average quantile loss of the can-
didate models for every financial institution (×103).

4.3 Estimation Results

4.3.1 VaR and CoVaR

2008 2010 2012 2014 2016 2018

−
0
.4

−
0
.2

0
.0

0
.2

Fig. 2: Plot of Returns (black dots), VaR (blue line) and CoVaR estimated by
neural network quantile regression (red line) for Wells Fargo.

As explained in section 3, the analysis is carried out in four steps. In the
first two steps, VaR and CoVaR are estimated for each firm, using linear
quantile regression and neural network quantile regression, respectively. To
account for potential non-stationarity, we employ a sliding window estimation
framework for both measures. The window size is chosen to be 250 observations
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Fig. 3: Fitted quantile regression neural network for Wells Fargo on March
13, 2008. Red connections indicate negative weights, blue connections indicate
positive weights.

(representing one year of daily stock returns). We choose a quantile level of
τ = 5%, which is the standard in the related literature, see Hautsch et al.
(2014) and Härdle et al. (2016). A lower value for the quantile level leads
to less reliable estimates, due to the inverse relation of the variance and the
density of the error term. As a sensitivity analysis, we also report the results
for τ = 1%, see Figure 11 and 12 in Appendix B. The results are robust with
respect to the choice of the quantile level.

The estimation results for Wells Fargo are visualized in Figure 2. The esti-
mated VaR and CoVaR follow a similar pattern. In the course of the financial
crisis both risk measures explode, indicating an increase in systemic risk dur-
ing this period. A second persistent spike appears in the second half of 2011
caused by the European debt crisis. In the following, both VaR and CoVaR
stabilize with a few non-persistent spikes. Similar patterns can be found in
the estimation results for the other financial institutions (see Figure 13 in
Appendix B). An example of a fitted neural network is visualized in Figure 3.

4.3.2 Risk Spillover Network

Based on the estimation results of the neural network quantile regression proce-
dure and on the fitted VaRs and CoVaRs, we calculate the directional spillover
effects for each pair of banks over our prediction horizon. The result is a time-
varying weighted adjusted adjacency matrix (as defined in equation 27). This
risk spillover network provides insights into the cross-section and the time dy-
namics of systemic risk. Figure 4 visualizes the evolution of the network in
the course of the financial crisis. The first half of 2008 shows a moderate level
of lower tail connectedness. This setting changes dramatically in the second
half of 2008 with the bankruptcy of Lehman Brothers. As a consequence, the
United States Department of the Treasury was compelled to bail out financial
institutions to avoid a total collapse of the financial system. Also, the Federal
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(d) 2010

Fig. 4: Time average of risk spillover effects across banks for different time periods.

Reserve Bank had to adjust its monetary policy. The time average of the adja-
cency matrix for 2009 shows a continuing state of financial distress. However,
compared to the previous periods one can visually identify a risk cluster in the
lower left part of the adjacency matrix. Finally, 2010 shows a decline in sys-
temic risk spillover effects caused by a regained trust in the financial system.
Figure 5 restricts the visualization to the largest edges of the financial risk
network. As a first observation, spillover effects across banks tend to be sym-
metric. If bank i has a large impact on bank j, the converse is also very likely.
A second observation is the identification of the risk cluster mentioned above.
This cluster includes four financial institutions, Citigroup, Bank of America,
JP Morgan and Wells Fargo. This cluster coincides with the list of the largest
beneficiaries of the bailout program in 2008 and 2009.
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Fig. 5: Time average of risk spillover effects across banks after thresholding (ãji > 0.4) for
different time periods.

4.3.3 Network Risk Measures

In this subsection, we estimate the systemic risk measures using the results
from the previous steps. First, we consider the Systemic Network Risk Index
(SNRI), as a measure for total systemic risk in the financial system. Figure 6
shows the development over time. As expected, we see a sharp increase in sys-
temic risk during the financial crisis in the second half of 2008. A second peak
appears in the second half of 2011 as a result of the uncertainties associated
with the European debt crisis. After a short period of stabilization, we see
another rise in systemic risk from 2014 till 2016. In contrast to the previous
peaks, this increase appears to be more gradual.
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Fig. 6: The figure shows the time series of the SNRI.
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Fig. 7: Plot of SNRI (black line), the Granger causality measure of Billio
et al. (2012) (red line) and total connectedness of Diebold and Yılmaz (2014)
(blue line). Dashed vertical line marks the bailout and acquisition of Bear
Stearns by JP Morgan on March 14, 2008, the dotted vertical line indicates
the bankruptcy of Lehman Brothers on September 15, 2008.

We now discuss the systemic risk measure calibration during the financial
crisis in detail. We restrict our focus on the two-year period, i.e. from the start
of 2008 to the end of 2009. We compare our SNRI to the Granger causality
measure of Billio et al. (2012) and the total connectedness measure based on
variance decomposition proposed by Diebold and Yılmaz (2014). Both mea-
sures are estimated using the same set of financial institutions and a rolling
window of 250 days. The results are displayed in Figure 7. As reference dates,
we have added the bailout of Bear Stearns and the resulting acquisition by
JP Morgan on March 14, 2008, as well as the bankruptcy of Lehman Broth-
ers on September 15, 2008. A few significant differences in the time series of
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the risk measures are apparent. While the Granger causality measure and the
total connectedness increase sharply after the Bear Stearns event, the SNRI
decreases slightly. In contrast to both alternatives, our measure is exclusively
concerned with the lower quantile of the return distribution. We infer that
the resulting intervention had a calming effect on the financial markets and
thus prevented an increase in lower tail dependence. The Bear Stearns shock
seemed to have a systematic but not necessarily a systemic effect. In contrast,
we observe a simultaneous sharp increase of all three measures immediately
after the Lehman Brothers bankruptcy. The increase in connectedness thus
affected the mean as well as the lower tail of the distribution. We deduce that
the shock from the Lehman bankruptcy had a truly systemic impact. In the
aftermath of the collapse, the SNRI has its maximal point in March of 2009
and remains at a high level until the second half of the same year. The com-
paring measures have an earlier peak in the end of 2008 followed by a fast
decrease. We conclude that the SNRI complements the network-based risk
measures proposed by Billio et al. (2012) and Diebold and Yılmaz (2014) as
it is more sensitive to shocks in the lower tail.
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Fig. 8: The figure shows the co-movement of the SNRI (black line) and the
aggregate SRISK (Brownlees and Engle (2017), red line).

We also compare the SNRI to the aggregated SRISK of Brownlees and
Engle (2017) in Figure 8. One can identify a co-movement of both indices.
In particular, both the financial crisis and the European debt crisis lead to a
sharp increase in both risk measures. However, we have to acknowledge that
the aggregated SRISK already detects vulnerabilities in the financial system
as early as the beginning of 2008. The reason for this is that the SRISK
incorporates additional information on micro-prudential variables, namely the
book value of debt and the quasi value of assets. An advantage of the SNRI is
that it is entirely based on market data. Also, the SRISK requires assumptions
on a number of structural parameters, such as the prudential capital ratio and
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the threshold loss, while our approach does not. Finally, another advantage of
our approach is the estimation of spillover effects in a network context.

2008 Q1-Q2 2008 Q3-Q4 2009 2010
Rank Ticker SFI Ticker SFI Ticker SFI Ticker SFI
1 C 2.239 C 2.395 BAC 2.633 WCF 1.689
2 GS 1.962 MS 2.046 BK 2.426 JPM 1.640
3 WFC 1.822 BAC 1.983 MS 2.393 STT 1.541
4 MS 1.748 GS 1.970 JPM 2.222 BAC 1.472
5 BAC 1.709 WCF 1.907 GS 1.900 GS 1.442
6 JPM 1.546 JPM 1.752 WCF 1.847 BK 1.442
7 STT 1.300 STT 1.497 C 1.572 MS 1.260
8 BK 1.100 BK 1.365 STT 1.561 C 1.164

Table 4: The table reports the ranking of financial institutions according to
their SFI averaged over different time intervals.

2008 Q1-Q2 2008 Q3-Q4 2009 2010
Rank Ticker SHI Ticker SHI Ticker SHI Ticker SHI
1 JPM 2.209 JPM 2.203 WCF 2.440 JPM 2.010
2 BAC 2.021 MS 2.149 JPM 2.438 BAC 1.616
3 MS 1.939 BAC 2.138 GS 2.377 STT 1.574
4 C 1.828 GS 1.981 BAC 2.349 WCF 1.555
5 GS 1.568 BK 1.976 BK 2.187 BK 1.488
6 BK 1.530 C 1.881 C 2.162 GS 1.475
7 WCF 1.426 WCF 1.820 MS 2.149 MS 1.254
8 STT 1.316 STT 1.721 STT 2.089 C 0.965

Table 5: The table reports the ranking of financial institutions according to
their SHI averaged over different time intervals.

While the SNRI is an index for total systemic risk, we now consider firm-
specific measures. Table 4 ranks financial firms according to their Systemic
Fragility Index (SFI). A large SFI indicates high systemic exposure to the
financial system. Our findings suggest that Citigroup is among the most fragile
banks during the height of the financial crisis, being top-ranked in the first and
in the second half of 2008. Due to heavy exposure to troubled mortgages, the
US government decided to bail out the bank in November 2008. In the periods
following the bail-out, Citigroup’s SFI rank dropped sharply. Figure 9 shows
the time dynamics of the SFI of Citigroup. Another high-ranked financial
institution is Bank of America, which is on position three in the second half
of 2008 and the number one in 2009. In contrast, State Street Corporation
is ranked at the bottom of the table throughout 2008 and 2009. This result
is plausible since State Street was the first major financial institution to pay
back its loans to the US Treasury in July 2009.
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We conduct a similar ranking with respect to the Systemic Hazard Index
(SHI), which ranks the financial institutions according to the risk contributed
to the financial system. In each of the time periods we consider, JP Morgan
is listed in the top two of the ranking. Similar, Bank of America is ranked in
the top four consistently, being the second highest ranked bank in the first
half of 2008. Figure 10 visualizes the time dynamics of the SHI for Bank of
America. In the aftermath of the crisis in 2009, Wells Fargo also emerges as a
systemic risk factor to the financial system. An advantage of our approach is
that we are able to differentiate between firms, which transmit systemic risk,
and firms which are affected by systemic risk. By doing this we capture the
asymmetric nature of the systemic risk. As an example, JP Morgan is ranked
high according to the SHI in 2008 but relatively low in SFI. The opposite
can be observed for Citigroup, which is ranked low in SHI and high in SFI
during the same time periods. However, State Street is at the bottom of both
rankings during the height of the financial crisis, implying that it is neither a
large risk factor nor strongly affected by the financial system.
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Fig. 9: Time series of the SFI for Cit-
igroup.
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Fig. 10: Time series of the SHI for
Bank of America.

5 Conclusion

This paper proposes a novel approach to estimate the conditional value-at-risk
(CoVaR) of financial institutions based on neural network quantile regression.
Our methodology allows for the identification of risk spillover effects across
banks in a nonlinear and multivariate context. We define three network-based
measures for systemic risk, the Systemic Fragility Index and the Systemic Haz-
ard Index as firm-specific measures and the Systemic Network Risk Index as
a measure for the overall risk in the financial system. These measures quan-
tify the connectedness of the financial system while restricting the analysis
on the lower tail of the distribution. The neural network framework allows
us to model systemic risk in a highly nonlinear setting. A comparison to a
linear baseline model shows the predictive superiority of our neural network
approach in terms of the out-of-sample performance.
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We apply our methodology to global systemically important banks (G-
SIBs) from the United States in the period 2007 - 2018. Consistent with pre-
vious findings in the literature, we observe the Systemic Network Risk Index
increasing sharply during the financial crisis and during the European debt
crisis. A comparison to the connectedness measures proposed in Billio et al.
(2012) and Diebold and Yılmaz (2014) shows that our systemic risk measure
captures different aspects of connectedness and offers therefore a new per-
spective on systemic risk. Furthermore, our approach allows to identify a risk
cluster of banks which corresponds to the list of banks that receive the largest
amount of funding from the US Department of Treasury. By ranking the fi-
nancial firms according to their Systemic Fragility Index and their Systemic
Hazard Index we are able to identify those firms which bear significant expo-
sure to the financial system and those firms which impose the greatest risk to
the financial system.

Appendix A. Consistency of neural network sieve estimator for the
conditional quantile

White (1992) shows the consistency of the neural network quantile regression
estimator.

Assumption A.1: The data Zt = (X⊤t , Y
⊤
t )⊤ is generated from a bounded

stochastic process defined on a complete probability space (Ω,F , P ), Xt is a
random r × 1 vector, Yt is a random scalar and

(i) Zt is an i.i.d. process or
(ii) Zt is a stationary φ− or α−mixing process with such that the mixing

coefficients φ(k) = φ0ξ
k or α(k) = α0ξ

k, 0 < ξk < 1, φ0, α0, k > 0.

Without loss of generality, we may assume Zt : Ω → I
r+1 def

= [0, 1]r+1.
Let ψ : R → R be a bounded function and let (Θ, ρ) be a metric space,

where ρ is the L1-metric. For any q ∈ N and ∆ ∈ R
+ define T (ψ, q,∆) =

{θ ∈ Θ : θ(x) = β0 +
∑q

j=1 βjψ(x
⊤γj) for all x in I

r,
∑q

j=0 |βj | ≤ ∆,∑q
j=1

∑r
i=1 |γji| ≤ q∆}. Further let Qn(θ) = n−1

∑n
t=1 |Yt− θ(Xt)||τ − I(Yt <

θ(Xt))|.
Assumption A.2:Θn(ψ) = T (ψ, qn,∆n), n = 1, 2, . . ., where ψ is bounded,

satisfies a Lipschitz condition and is either a cdf or is l-finite. qn and ∆n are
such that qn → ∞ and ∆n → ∞ as n → ∞. ∆n = o(n1/2) and either (i)
qn∆

2
n log qn∆n = o(n) or (ii) qn∆n log qn∆n = o(n1/2).
Assumption A.3: For given quantile level τ ∈ (0, 1), θτ : Ir → I is a

measurable function such that P {Yt ≤ θτ (Xt)|Xt} = τ and for every θ ∈ Θ
and all ǫ > 0 sufficiently small E {θ(Xt)− θτ (Xt)} > ǫ implies that for some
δǫ > 0,

E [I {(θτ (Xt) + θ(Xt))/2 ≤ Yt < θτ (Xt)} |θ(Xt) < θτ (Xt)] > δǫ

and

E [I {θτ (Xt) ≤ Yt < (θτ (Xt) + θ(Xt)) /2} |θ(Xt) ≥ θτ (Xt] > δǫ.
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Theorem 2.5 White (1992): Given assumptions A.1(i), A.2(i) and A.3 or
A.1(ii), A.2(ii) and A.3, there exists a measurable connectionist sieve estimator

θ̂n : Ω → Θ such that Qn(θ̂n) ≤ Qn(θ), θ ∈ Θn(ψ), n = 1, 2, . . .. Further,

ρ(θ̂n, θτ )
p
→ 0.

Appendix B. Estimation Results
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Fig. 11: Plot of Returns (black dots), VaR (blue line) and CoVaR estimated
by neural network quantile regression (red line) for Wells Fargo, τ = 1%.
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Fig. 12: The figure shows the co-movement of the SNRI (black line) and the
SRISK (Brownlees and Engle (2017), red line), τ = 1%.
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Fig. 13: Plot of Returns (black dots), VaR (blue line) and CoVaR estimated
by neural network quantile regression (red line), τ = 5%.
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Chao SK, Härdle WK, Wang W (2015) Quantile regression in risk calibration.
Springer

Chen X (2007) Large sample sieve estimation of semi-nonparametric models.
Handbook of econometrics 6:5549–5632

Chen X, Shen X (1998) Sieve extremum estimates for weakly dependent data.
Econometrica pp 289–314

Chen X, White H (1999) Improved rates and asymptotic normality for non-
parametric neural network estimators. IEEE Transactions on Information
Theory 45(2):682–691

Chernozhukov V, Umantsev L (2001) Conditional value-at-risk: Aspects of
modeling and estimation. Empirical Economics 26(1):271–292

Cybenko G (1989) Approximation by superpositions of a sigmoidal function.
Mathematics of control, signals and systems 2(4):303–314

Diebold FX, Mariano RS (2002) Comparing predictive accuracy. Journal of
Business & economic statistics 20(1):134–144

Diebold FX, Yılmaz K (2014) On the network topology of variance decompo-
sitions: Measuring the connectedness of financial firms. Journal of Econo-
metrics 182(1):119–134

Engle RF, Manganelli S (2004) Caviar: Conditional autoregressive value at
risk by regression quantiles. Journal of Business & Economic Statistics
22(4):367–381

Graves A, Mohamed Ar, Hinton G (2013) Speech recognition with deep recur-
rent neural networks. In: 2013 IEEE international conference on acoustics,
speech and signal processing, IEEE, pp 6645–6649

Grenander U (1981) Abstract inference. Tech. rep.
Gu S, Kelly B, Xiu D (2020) Empirical asset pricing via machine learning.
The Review of Financial Studies 33(5):2223–2273
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