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Abstract: The polygon wear of railway wheel (PWRW) is a wear fault that is ubiquitous in railway 
vehicles. PWRW can induce a strong periodic excitation to both vehicle and track, which not only 
decreases passenger comfort but also is detrimental to the operational reliability and safety. Both 
the degree and the order of PWRW are important parameters used to quantify the fault. Because the 
fault-related components distribute at a wide range in the frequency domain, it is easy to alias with 
some radiated vibrations from vehicle and track components, which makes the on-board detection 
for both parameters of PWRW very difficult. To address the practical engineering problem, this 
paper proposes a detection framework based on the angle domain synchronous averaging technique 
(ADSAT). The detection method employs the vertical axle-box vibration acceleration (ABVA), 
which is easy to obtain and can also be used to monitor the conditions of axle-box bearings. The 
paper compares the proposed and traditional methods. The results reveal that the proposed method 
not only achieves the order detection which the traditional method cannot, but also mitigates the 
influence of background noise. The feasibility and effectiveness of the proposed method to improve 
the detection accuracy of PWRW is demonstrated through simulation and real field investigations. 
 

Key word: railway wheel polygonization; rotating machine fault diagnosis; angle domain 
synchronous averaging technique; axle-box vibration acceleration;  

1. Introduction 

Steel railway wheels in service invariably wear, which contributes to out-of-roundness (OOR) 
imperfections such as isolated flats and tread polygonization. Research on the tread polygonization 
fault has been undertaken since last century[1][2]. In 1999, Meinke[3] proposed a dynamics model 
with 40-DOF to explain the process of railway wheel tread polygonization. The study mainly 
focused on the effects of the gyroscopic and inertial moments of wheels to PWRW. In 2000, 
Nielsen[4] defined the difference between polygon wear and other forms of OOR in railway wheels. 
They studied the generation mechanism of 1st-5th order PWRW and proposed a wheel re-profiling 
standard as well as some strategies to reduced PWRW. However, their strategies cannot be applied 
to all situations. In 2005, Johansson[5] established a three-dimensional multi-body system model of 
wheel-rail interaction considering wheel-rail wear based on the FASTSIM algorithm. The model 
was used to simulate the dynamics of the wheels with 1st-20th order polygon tread separately. In 
2012, Jin[6] analyzed the generation mechanism of polygon wear of subway vehicles by the modal 
analysis method. They found that the first-order bending frequency of the wheelset is same as the 
passing frequency of 9th order PWRW. They proposed that enlarging radius of wheelset shaft can 



eliminate the polygonization phenomena of subway vehicles. However, the causes of PWRW are 
diverse which include disc brakes[1], wheelset bending modes[2], clamping methods during re-
profiling procedures[4], P2 resonance[5], unsprung mass[7] and so on. The order of wheel 
polygonization for a single wheel is variable, which makes the causes analysis more difficult. 
PWRW has many detrimental influences on vehicle-track systems and passenger comfort. In 2014, 
Jie[8] studied the influence of PWRW on the interior noise of high-speed trains based on hybrid finite 
element and statistic energy analysis (FE-SEA) method. Their research showed that wheel polygon 
wear had a great impact on interior noise and that wheels with different order of polygon wear and 
the same roughness levels can cause different noises. The higher order polygon wear has the more 
serious consequences on passenger comfort so that the order is important parameter to represent the 
fault of PWRW. In 2016, Bogacz[9] studied the effect of PWRW on the vertical wheel-rail force of 
train vehicles. Their research showed that a train with a polygon wheel can easily reach its critical 
speed and can even derail, whilst running at moderate speeds. PWRW also increases the risk of rail 
breaks, sleeper cracking, axle damage, bearing damage and so on[10]. Therefore, it is desirable to 
monitor the health status of PWRW in time. 
Many works on the generation mechanism and the influence of PWRW have been studied, but few 
are related to the on-board detection technology of PWRW. In 2013, Ding[11] proposed to extract a 
time-frequency indicator for evaluating the wheel OOR based on frequency slice wavelet transform 
(FSWT) and verified the effectiveness based on simulated data. However, the method was not used 
to be proved by any real field data and cannot recognize the order of PWRW. In 2016, Yifan[12] 
proposed a method based on Hilbert-Huang Transform (HHT) to detect the OOR of railway wheels. 
This method requires empirical mode decomposition (EMD), which has a significant calculation 
cost. Therefore, the method cannot be easily used to monitor the wheel health condition in on-board. 
In 2018, Qi[13] proposed a method to detect the fault of PWRW according to wavelength-fixing 
generation mechanism that PWRW caused by the fixed distance between two adjacent rail sleepers . 
The effectiveness was verified by real field data, but the method is not suitable for all conditions of 
PWRW. In 2019, Xu[14] proposed an automatic detection method based generalized resonance 
demodulation method. They believed that railway wheel polygonization induces impulsive 
excitation to tracks and vehicles rather than harmonic excitation. In 2020, Wang[15] proposed an on-
board detection method by using Bayesian forecasting and dynamic model but it can’t come true 
the detection of the order of wheel polygonization.  

PWRW has become an urgent problem to address in high-speed railways[16]. Some certain lines 
matching with certain vehicles are extremely easy to occur wheel polygonization. To solve the issue, 
maintenance departments always adopt the excessively frequent wheel re-profiling and intensive 
manual measurement. These strategies not only reduce the service life of wheels but also require 
excess human resource. In summary, there is currently no on-board detection algorithm that is 
simple, highly versatile, reliable, low cost and independent of the track or vehicle structures 
monitoring the PWRW. On the other hand, the continuous development of high-speed train 
technology, particularly in China, using holographic systems for monitoring railway vehicle 
mechanical parts is gradually become more commonplace. All of these make it imperative to design 
and implement an on-board detection system for PWRW. This paper proposes a novel on-board 
detection framework for PWRW based on vertical axle-box vibration acceleration (ABVA) with the 
angle domain synchronous averaging technique (ADSAT). This method meets the requirements of 
accuracy, stability and speed for on-board monitoring of detecting the structural fault of PWRW. 



2. Dynamic performance of PWRW  

2.1. Polygon wear of railway wheel 

The OOR of railway wheel is divided into global defects and local defects. Local defects are discrete, 
such as wheel flats, which generate impulse excitation to vehicles and tracks[17]. PWRW is a main 
type of global tread defects and is defined as a periodic deviation, formed by uneven wear in the 
circumferential direction[18]. A wheel with polygon wear is shown in Figure 1.  

 

Figure 1  Polygon wheel tread 

Generally, the quantitative characterization of PWRW is expressed in polar coordinates. There are 
three parameters to describe polygon wear on a wheel, which are the roughness, the order and the 
phase. An illustration of the three parameters is shown in Figure 2: (a) the roughness level parameter 
of PWRW describes the peak-to-peak value of geometrical irregularities of wheel tread, (b) the order 
parameter of PWRW represents how many wavelengths within one wheel circumference, and (c) 
the phase parameter of PWRW represents the phase shift between the left and the right wheels on a 
wheelset. The greater phase shifts mean the faster the wheels exhibit OOR[1]. For a single wheel, 
there are just two parameters to represent PWRW, the roughness level and the polygonal order.  

 

Figure 2 Different examples of wheels with polygonal wear 
The roughness level of PWRW can be calculated based on the measured profile deviation from the 
mean wheel radius[17], as: 
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where 𝐿𝜃  is the roughness level of θ𝑡ℎ  order PWRW, 𝑟̃𝜃   is the RMS in 133 octave bands with 
center frequency 𝑓𝜃 of power spectral density (PSD) of measured profile deviation, a reference 
value 𝑟𝑟𝑒𝑓 = 1𝜇𝑚. The center wavelength 𝜆𝜃 corresponds to the order of PWRW by: 
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where 𝑐 stands for the nominal wheel circumference. 

2.2. Dynamic performance of PWRW 

In general, PWRW induces several narrowband harmonic excitations, of significant amplitude, in 
tracks and vehicles through wheel-rail contact. The displacement function 𝑧(𝑡) of the excitation 
model of PWRW is given by[18]: 
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where 𝑧(𝑡) is the displacement excitation, 𝜃 is the order, t is the time, H is the maximum of the 
order, typical H=40, v is the forward speed of vehicle, R is the nominal wheel radius, 𝐴𝜃 is the 
amplitude of the harmonic vibration caused by the 𝜃th-order polygon wear which responds to the 
roughness level, 𝜑𝜃  is the original phase of the harmonic vibration caused by the 𝜃 th-order 
polygon wear. The fundamental passing frequency of PWRW is the wheel rotational frequency, so 
that the 𝜃th-order fault-related feature frequencies are: 
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Normally, several different PWRW orders exist simultaneously. In this paper, only the dominant 
order is the critical parameter. PWRW can cause high vertical force and noise by wheel-rail 
interactions[2], which radiates to affect the increasing of the vibration in the axle-box[19]. More 
specifically, the Root Mean Square (RMS) value of the ABVA with a polygonal wheel will reach 
20g to 40g, while a value of is less than 5g as usual.  

3. Detection methods for PWRW 

The detection technologies of PWRW are divided into direct measurements and indirect 
measurements. The direct methods often have higher accuracy but they require the train to be stable 
or running at extremely low speed[20]. Hence, direct methods are not easy to be carried out by on-
board detection. In general, the on-board detection process of mechanical structural health diagnosis 
involves four steps, namely data acquisition (DAQ), feature extraction, classification and 
maintenance decision. Normally, shaft temperature, wheel-rail contact force, sound, vibration, 
ultrasonic and acoustic signals can be used to monitor mechanical wheel health state[21]. However, 
temperature signals cannot capture the incipient wheel faults. Sound signals are easily influenced 
by environmental sound noise. Wheel-rail force signals are not easily obtained. Vibration signals 
can capture the mechanical structural incipient faults and have higher stability for mechanical 
structural health monitoring (SHM). The axle-box is the nearest stationary mechanical structure. So 



that the proposed detection method of PWRW are based on vibration signals emanating from railway 
vehicle axle-boxes. The monitoring point is shown as Figure 3.  
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Figure 3  The monitoring point based on ABVA 

3.1. Traditional diagnosis method 

The traditional method to detect the fault of PWRW relies on the use of a Discrete-time Fourier 
transform (DTFT) of the ABVA 𝑦(𝑛): [18] 

( ) ( )
11 2

0

kN jn
N

n

Y k y n e
 −− −

=

=        (5) 

Where Y(k) is the DTFT of 𝑦(𝑛), k is a is a series of natural numbers which correspond to the 
discrete frequencies f (=kfvs3N), fvs is the sampling frequency of the monitoring vibration data, j is 
Imaginary unit. N is the discrete points number of 𝑦(𝑛) . The roughness level of PWRW is 
represented by: 
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Then the final decision is made upon two empirical thresholds(𝑇𝑍𝑑 = 0.5 𝑎𝑛𝑑 𝑇𝑍𝑑 = 1), which are 
shown in Figure 4, when 𝑇𝑍𝑑 ≤ 0.5 it is diagnosed as healthy state (the roughness level less than 
18dB) , 0.5＜𝑇𝑍𝑑 ≤ 1 as light fault state (the roughness level between 18dB and 24dB) and 1.5 >𝑇𝑍𝑑 as heavy fault state(the roughness level more than 24dB).  
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Figure 4 The two diagnosis decision thresholds by the traditional method 

However, railway vehicles always run in the presence of fluctuating speed. This is illustrated in 
Figure 5 which highlights a difference of around 6 km3h within a notional constant speed section of 



the route. The traditional DTFT method has limitations on non-stationary signals. Therefore, the 
misdetection is possible based on the traditional method of DTFT to detect PWRW. 
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Figure 5  Forward speed data from a real site high-speed train 

The passing frequency, 𝑓𝜃, related to PWRW is between 0Hz to 1400Hz while the forward 
speed is under 300km3h, which represents a broad range of frequencies[22]. Sets of real fields ABVA 
data from CRH1, CRH2, CRH3, CRH5, with healthy wheels are shown as Figure 6 both in the time 
and the frequency domains. From Figure 6, ABVA data have a main frequency band around 500 Hz. 
Actually, the dominant broadband component around 500 Hz is the natural frequency of wheel-rail 
coupling[23]. Because the broadband component, the existing DTFT method and other signal 
decomposition methods, for example the HHT method[23], can also induce misjudgments. 
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Figure 6 ABVA with health wheels from real sites 

3.2. The proposed method 

A series of equal impact forces are generated each time when the same area on the wheel tread 
contacts with standard tracks as the vehicle goes forward[19]. D'Alembert's principle demonstrated 
that impact forces are proportional to vibration accelerations. Hence, the fault related vibration 
acceleration component is stationary in wheel angular domain. Based on the mechanism, this paper 
proposes a on-board detection framework for PWRW combining the ABVA data which is easily 
available and the ADSAT which can eliminate the angle domain asynchronous and non-coherent 
random noise. The proposed detection framework, Figure 7, consists of a DAQ system that capture 
the vehicle speed along with the ABVA data, an outline of the feature extraction methodology and 



the process of condition estimation.  
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Figure 7  The proposed detection framework 

The proposed method is based on the raw vertical ABVA 𝑦(𝑛) sampled at 𝑓𝑣𝑠 Hz and the 
vehicle forward speed  𝑣  sampled at 𝑓𝑠𝑠  Hz. First, obtain the wheel rotational frequency f0 
according to train forward speed 𝑣: 
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To transform 𝑦(𝑛) from time domain to angle domain, a speed coder is needed. Define the discrete 
points number of AVBA for each rolling turn is 𝑀𝑟 which is easy to solve by:  
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Define a vector to describe the wheel vibration condition in the angular domain, which is named 
the inner-circle vibration of wheel (IVW), remarked as 𝑐𝑟, where 𝑟 is the number of turns of 
wheel rolling. As formula (8) shows, 𝑀𝑟 is a constant when 𝑣 is constant. The reconstruction 
process under variable forward speed 𝑣(𝑛) is shown as Figure 8. 



 

Figure 8  The reconstruction process of the data 𝑦(𝑛) to the vector 𝑐𝑟 at a variable speed. 
After reconstruction, a series of IVW vectors are obtained. ABVA data is noisy because of 
uncertainties of the operating background, other input disturbances and sampling errors. Even 
though resampling into angle domain, the IVWs remain too complex to represent the fault of PWRW. 
The 𝑐𝑟 can be divided into three components: 𝑐𝑟(𝛼) = 𝑆(𝛼) + 𝑁𝑆𝑟(𝛼) + 𝑅𝑟(𝛼)       (9) 
where 𝑆(𝛼) is the angle domain synchronous coherent component which are mainly generated by 
wheel conditions and define it as the feature vector (FV) to describe the PWRW, 𝑁𝑆𝑟(𝛼) is the 
angle domain asynchronous coherent components generated by other external excitations, 𝑅𝑟(𝛼) 
is the non-coherent random noise component. In order to enhance the fault-related component, the 
asynchronous components and the non-coherent random components should be eliminated. The 
angle domain synchronous averaging technique (ADSAT) is employed to remove 𝑁𝑆𝑟(𝛼) 
and 𝑅𝑟(𝛼) by: 
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where 𝑁  is the number of sampled points of ABVA data within a diagnosis step, 𝑀̂  is the 
maximum of 𝑀(𝑟).  

Because the proposed method does not really measure the radial geometry deviation of the wheel, 
therefore, a health indictor is proposed to represent the roughness level of PWRW, which remains 
the form of 𝐿𝜃 and replaces the measured radial geometry deviation with the vibrational vector FV, 
which is: 
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where 𝑄̂ is the RMS value of 𝑆(𝛼), an empirical reference value 𝑄𝑟𝑒𝑓 is 0.1 g. We set 𝑇𝑍𝑑′ = 0, 
which means the wheel is healthy, when 𝑇𝑍𝑑′  is less than 0dB. The order of PWRW is the number 
of the peaks of the feature vector 𝑆(𝛼). It is calculated by: 𝑇𝑍𝑜′ = 12 𝑁𝑢𝑚(𝑆′(𝛼) == 0)       (12) 

Where 𝑆′(𝛼) is the first derivative of 𝑆(𝛼), Num means the number. In summary, the data flow of 
the proposed detection method is shown as Figure 9. 
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Figure 9  Key steps and data flow within the proposed framework  
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In order to overcome the negative influence of various operating conditions and increase the robust 
of the proposed diagnosis algorithm, the diagnosis decision is made by the trend of the indictors for 
a detection point rather than a certain threshold.  

4. Verification of the proposed detection algorithm 

The proposed detection framework for PWRW aims at resolving the practical problem. Hence, it 
should be verified by real field data. However, the noise reduction ability is not easy to be quantified 
because the calculation of Signal-to-Noise ratio (SNR) needs the power of desired signal component 
which is difficulted to evaluate in field data. Therefore, the numerical verification is applied to prove 
the noise reduction ability and the practical verification for the effectiveness of the proposed two 
indictors. 

4.1. Numerical Verification 

Based on PWRW’s dynamic response mechanism, the ABVA with PWRW can be simulated by: 

( ) ( )1 2 3,y n x x h x= + +        (13) 

where 𝑥1 represents the fault excitation of PWRW to the axle-box subsystem ℎ, 𝑥2 represents 
other harmonic excitations to ℎ, 𝑥3(𝑛)~𝑁(0,2) represents the random interference. Specifically: 
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Where sampling time T=10-5s, the total simulated time nT=1s, simulated speed v=250km3h, wheel 
nominal radius R=0.46m, fault excitation amplitude 1A = , order 18 = , phase 0 = , harmonic 

interference excitation amplitude 1,2 1A = , frequencies 1,2 823,2001f = Hz, phase 0 = , system unit 

impulse response amplitude Ah=1, attenuation symbol 1000 = , nature frequency 580Hz. u(nT) is 
unit step function. The synthesis process is explained by Figure 10. The simulated data in the time 
domain is shown in Figure 11 and in the frequency domain in Figure 12. The subsystem natural 
frequency, 𝑓𝑛, is set at 580Hz which is a main natural frequency of the bogie frame [19] and the 
PWRW order, 𝜃, is set at 18 which is the commonest order of PWRW fault[16]. 
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Figure 10  The synthesis process of simulated data 
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Figure 11  The simulated data in time domain 
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Figure 12  The simulated data 𝑦 in frequency domain 

The ADSAT can enhance the synchronous component and eliminate the asynchronous or the random 
noise components. Based on the numerical simulation data, the de-noising effect is shown as Figure 
13. After processing the FV with ADSAT, the SNR (signal-noise ratio) is improved by a factor of 
four. 
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Figure 13  The FVs without processing and with ADSAT 



4.2. Practical verification 

The proposed method has been used in real filed on high-speed trains. The sensor point in real field 
are shown in Figure 14.  
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Figure 14 the monitoring point in real field 

Two sets of raw ABVA data from the same axle-box before and after re-profiling are shown as Figure 
15. Before re-profiling, the wheel had a serious polygonal wear. The raw data was acquired at the 
operation mileage of 184,962km. After re-profiling the wheel become healthy. Another raw data 
was acquired at the operation mileage of 199,286km. The wheel’s nominal radius was 0.43m. The 
vibration data sampling frequency and speed data sampling frequency are 10kHz and 10Hz 
respectively. 
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Figure 15 the raw ABVA data and wheel rotational speed from real field 

First, the proposed method was used to transform the ABVA data to the angle domain. An L*M 
matrix is obtained to describe the health status of the wheel, 3 of those IVWs are shown in Figure 



16, in which it is easier to recognize the roughness level but still difficult to recognize the order of 
PWRW.  
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Figure 16 Examples of IVWs from real file data 

Hence, the process of IVMs by ADSAT to de-noise and FVs are obtained as shown in Figure 17 (a). 
The degrees of PWRW are quantified as 7.84 and 0. The effectiveness of the proposed method for 
detection of the degree parameter of PWRW has been proved. The manual measurement polygonal 
wear profile, shown as Figure 17 (b), has 24th order PWRW. Compared with the manual 
measurement result, the proposed method can also detect the 24 wavelengths within one 
circumference, which means the proposed method is effective to detect the order parameter of 
PWRW. However, because of properties of vibration data, the proposed method cannot detect the 
direct component of wheel irregularity, as shown in Figure 17 (b) where there is a strong direct 
component in the manual measurement result. 

The position on the wheel circumference [mm]

T
h

e
 m

e
a
su

r
e
d

 r
o

u
g

h
n

e
ss

 [
m

m
]

0° 60° 120° 180° 240° 300° 360°

The position on wheel circumference

-2

-1

0

1

2

A
m

p
lit

u
d

e
 o

f
 F

V
[g

]

184962km

199286km

(a) (b)

TZ'd=7.84dB

TZ'o=24

TZ'd=0

TZ'o=0

Roughness: 18dB

Order: 24

 

Figure 17  Detection results based on: (a) the proposed method; (b) the manual measurement 
DTFT method is typically used to analyze stationary periodic signal. It has limitation to deal with 
the real field ABVA data. Two sets of one-second data from the real field at fault condition and 
healthy condition respectively are used to illustrated it. The original ABVA data is shown in the left 
of Figure 18 and the DTFT result is shown in the right of Figure 18. According to the empirical 
thresholds mentioned in Figure 4, both are at heavy fault states. Obviously, the traditional DTFT 
method has a false positive diagnosis. Specially, the diagnosis decision step time usually is one 
second or shorter to avoid inducing fake harmonic components by DTFT. 



 

Figure 18  the false positive detection example by the traditional method 

5. Conclusions 

The traditional on-board detection method for polygon wear of railway wheel based on 
discrete-time Fourier transform has limitations both on the false positive ratio and the ability to 
detect the order parameter. In this work, a simple and effective fault detection framework for 
polygon wear of railway wheel is proposed. It is based on the easily acquired axle-box vibration 
acceleration data to detect both the level and the order parameters of polygon wear of railway wheel. 
Since, axle-box vibration acceleration data is usually used to monitor the condition of axle-boxes, 
it can be accessible as sensor-less method for polygon wear of railway wheel. The de-noising 
effectiveness is demonstrated using simulated data and the accuracy of the proposed two indictors 
is proven using two sets of real field data. The proposed method is insensitive to the small-scale 
speed fluctuation and meets the requirement of on-board detection.  
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Notation 

Nomenclature 𝛼 Angle domain independent variable, [⸰] β The attenuation coefficient of the simulated axle-box subsystem function, [] 𝜆𝜃 The wavelength of 𝜃𝑡ℎ order PWRW, [m] 𝜃 The order of PWRW, [-] 𝜑𝜃  The initial phase of 𝜃𝑡ℎ order PWRW, [rad] 𝜑1,2 The initial phases of simulated data, [rad] 𝐴ℎ The proportional coefficient of the simulated axle-box subsystem function, [-] 𝐴𝜃 Amplitude of 𝜃𝑡ℎ order PWRW, [g] 𝑐 The nominal circumference of wheel, [m]  𝑐𝑟(𝛼) The IVW vector which is the vibration acceleration data of a whole rolling, [g] 𝐷 Wheel diameter, [m] 𝑓0 Wheel rotational frequency, [Hz] 𝑓𝜃 Fault-related frequency of 𝜃𝑡ℎ order PWRW, [Hz] 𝑓𝑛 A natural frequency in the simulated axle-box subsystem function, [Hz] 𝑓𝑠𝑠 Train forward speed sampling frequency, [Hz] 𝑓𝑣𝑠 Axle-box acceleration vibration sampling frequency, [Hz] 

g Acceleration of gravity, 1g≈9.8m3s2 ℎ(𝑛) The simulated axle-box subsystem unit impulse response, [-] 𝐻 Maximum order usually considered, as usual 𝐻 = 40 𝐿 Distance between points on wheel circumference to a fixed point, [m] 𝐿𝜃 Roughness level of 𝜃𝑡ℎ order PWRW, [dB] 𝑀(𝑟) Dimension of 𝑐𝑟(𝛼), [-] 𝑀̂ Maximum of 𝑀(𝑟), [-] 

n Independent variable of discrete data, [-] 𝑁 The number of ABVA sampled points within a diagnosis step, [-] 𝑁𝑆𝑟(𝛼) The angle domain non-synchronous coherent components of 𝑐𝑟 , [g] 𝑄̂ The RMS of the feature vector 𝑆(𝛼), [g] 𝑄𝑟𝑒𝑓  An empirical reference value of 𝑆(𝛼), 𝑄𝑟𝑒𝑓 = 0.1g 

r The number of revolution of railway wheel, [-] 𝑟̃𝜃  The RMS in 1/3 octave bands at centre frequency 𝑓𝜃 of PSD of profile deviation, [mm]  𝑟𝑟𝑒𝑓  An empirical reference value of 𝑟̃𝜃, 𝑟𝑟𝑒𝑓 = 10−3𝑚𝑚 𝑅 The number of roll circumference, [m] 𝑅𝑟(𝛼) The angle domain non-coherent random noise component of 𝑐𝑟(𝛼), [g] 𝑆(𝛼) The proposed feature vector (FC) to describe the PWRW, [g] 

t Time domain independent variable, 𝑡 = 𝑛𝑇, [s] T Time resolution of ABVA data, [s] 𝑇𝑍𝑑 The characteristic to represent the degree of PWRW based on traditional method, [g] 𝑇𝑍𝑑′  The characteristic to represent the degree of PWRW based on proposed method, [dB] 𝑇𝑍𝑜′  The order parameter of PWRW based on proposed method, [-] 



𝑢(𝑡) Unit step function about time 𝑡, [-] 

v The speed of vehicle, [km/h] 𝑥1(𝑛) A simulated PWRW excitation to axle-box subsystem, [-] 𝑥2(𝑛) A simulated harmonic noise excitation to axle-box subsystem, [-] 𝑥3(𝑛) A simulated random interference to axle-box vibration response, [-] 𝑦(𝑛) The discrete ABVA data, [g] 𝑌(𝑘) The result of Fourier Transform of 𝑦(𝑛), [g] 𝑧(𝑡) The displacement function of the dynamic excitation of PWRW, [m] 

Abbreviations 

ABVA: axle-box vibration acceleration 

ADSAT: angle domain synchronous averaging technique  

CRH13CRH23CRH33CRH5: China Railway High-speed (different EMU in China) 
DAQ: data acquisition  

DTFT: Discrete-time Fourier transform 

FE-SEA: the finite element method and the statistic energy analysis  

FSWT: frequency slice wavelet transform 

FV: feature vector 
HHT: Hilbert-Huang transform  

IVW: the inner-circle vibration acceleration vector of the wheel 
OOR: out-of-roundness 

PSD: power spectral density 

PWRW: polygon wear of railway wheel 
RMS: root mean square 

SNR: signal-noise-ratio 

 


