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Biases in Indian summer monsoon precipitation1

forecasts in the Unified Model and their relationship2

with BSISO index.3
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Key Points:7

• The low-precipitation bias in the Indian Summer Monsoon is dominated by break8

and break-to-active transition periods.9

• There is evidence that the bias is strongly linked to an inability to simulate low-10

pressure systems.11

• A reduction in the incoming moisture flux from the Arabian Sea also occurs from12

about 3 days for all modes of intraseasonal variability.13
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Abstract14

This study shows that the Boreal Summer Intraseasonal Oscillation (BSISO) dominates15

the Indian summer monsoon low-precipitation bias in the Met Office Unified model. An-16

alyzing a recent 9-year period (June, July, August only), it is found that the precipita-17

tion bias is dominated by break and break-to-active transition BSISO phases, while some18

of the other phases have no bias at all over a 7-day forecast. Evidence of a link to up-19

stream effects is found, in that there is a delayed reduction in the moisture flux enter-20

ing India from the west. It is also shown that an increase in the net flow of moisture out21

of India to the east is strongly linked to the low-precipitation bias, and there is some ev-22

idence that this is related to a lack of low-pressure systems over India. Most atmospheric23

models have substantial rainfall biases over India, and these results may indicate the cir-24

culation patterns responsible.25

Plain Language Summary26

The Met Office Unified Model (UM) is widely used worldwide for weather forecast-27

ing, climate prediction and environmental research. An important deficiency of the UM,28

in common with many other weather and climate models, is that it simulates significantly29

too little rainfall over India, when averaged over the summer monsoon season. Indian30

monsoon rainfall is important to the livelihoods of hundreds of millions of people, and31

these errors in the models have knock-on consequences for weather and climate predic-32

tion around the world. This study shows that the UMs rainfall bias is dominated by pe-33

riods when the general monsoon behavior is in transition from low-activity to high-activity,34

while in other periods, the rainfall forecasts perform much better. These results will help35

us to better understand the causes of the model bias. A systematic evaluation of the UM36

moisture flow has also been carried out; this suggests that a key problem in these low37

to high-activity transition periods is a replacement of monsoon cyclonic systems with38

too much purely westerly flow out of India. The results should also be of value in weather39

forecasting, in identifying weather regimes where we have relatively high, and relatively40

low, confidence in the forecasts.41

1 Introduction42

The lack of sufficient precipitation over India during the Indian Summer Monsoon43

(ISM) is one of the most significant and persistent biases in the Met Office Unified Model44

(UM) (Walters et al., 2017; Williams et al., 2018; Keane et al., 2019), a General Circu-45

lation Model used at operational centers and research institutions worldwide (Brown et46

al., 2012; Bi et al., 2013; Bermous & Steinle, 2015; Noh et al., 2016; Kar et al., 2019; Wal-47

ters et al., 2019, for example). As well as its considerable soicioeconomic importance,48

the ISM is one of the most challenging atmospheric phenomena to simulate, and is there-49

fore of great dynamical interest. Although interannual variability in all-India rainfall is50

only about 10%, sub-seasonal active and break periods significantly affect agriculture and51

industry (Krishnamurthy & Shukla, 2000). These active and break cycles can be char-52

acterised in numerous ways. Here we use the Boreal Summer Intraseasonal Oscillation53

(BSISO) (Zhu & Wang, 1993; Wang & Xie, 1997; Webster et al., 1998) to characterise54

active and break spells in the ISM. The BSISO is in many ways the boreal summer ana-55

logue to the MJO, but it is differentiated from the latter in its northwest to southeast56

tilt and its northeastward propagation, rather than purely eastward propagation. The57

BSISO strongly influences Indian rainfall on 20–60 day timescales.58

Substantial progress has been made in understanding the causes and nature of the59

bias in seasonal and climate simulations: it has been related to a high-precipitation bias60

over the Indian ocean (Bush et al., 2015), an inability to correctly simulate low pressure61

systems in the region (Levine & Martin, 2018), poor representation of deep convection62

(Willetts et al., 2017), a southward shift of the Intertropical Convergence Zone (Haywood63
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et al., 2016, ITCZ) and an anticyclonic bias (Martin & Levine, 2012; Levine & Martin,64

2018). However, the low-precipitation bias remains in the most recent version of the UM65

(Walters et al., 2019). There are also many other widely used models with similar bi-66

ases (Sperber et al., 2013; Almazroui et al., 2020; Pathak et al., 2019; Wang et al., 2020;67

Gusain et al., 2020), so understanding the bias in the UM could have wider implications68

for atmospheric modeling more generally.69

Keane et al. (2019) recently demonstrated that some of the findings mentioned above,70

on understanding the low-precipitation bias in the UM, also apply on shorter time scales,71

by investigating moisture budgets in operational weather forecasts. They identified that72

the dry bias is associated with (i) a reduction in moisture-carrying flow from the Ara-73

bian Sea, which only appears approximately three days into the forecast, suggestive of74

upstream effects over the Indian Ocean, and (ii) an anticyclonic bias over north-eastern75

India, which moves within this region throughout the forecast. A drying of the air it-76

self flowing into India was also identified, including both moist air from the Arabian Sea77

and already dry air from the land to the northwest; this drying occurred from very early78

in the forecast. Kar et al. (2019) also found a reduction in precipitation for shorter-range79

UM forecasts during the ISM, accompanied by an anticyclonic bias.80

The present study extends the work of Keane et al. (2019) to cover operational fore-81

casts for June–August (JJA) of all the years 2011–2019. Using this extended period, it82

is possible to divide the dataset into categories, here defined by the BSISO index, and83

to investigate how the low-precipitation bias varies with category.84

2 Data and Methods85

2.1 Operational forecasts86

Global NWP forecasts were taken from the Met Office operational archive, valid87

within JJA 2011–2019. During this period the forecasts were initialized four times per88

day, and fields were here retrieved at lead times every 12 hours starting at 0 hours and89

ending at the end of the forecast (here 168 hours for forecasts starting at 0000 and 120090

UTC and 60 hours for forecasts starting at 0600 and 1800 UTC). Only forecasts with91

valid times occurring inside the JJA period (0000 UTC on 1st June to 1800 UTC on 31st92

August inclusive) were included, so that forecasts initialized towards the end of May were93

partially included and forecasts initialized towards the end of August were partly excluded.94

For the precipitation accumulations, only forecasts starting at 0000 and 1200 UTC were95

used.96

Two versions of the UM, at three different resolutions, were used during the pe-97

riod studied, with an upgrade from GA3.1 to GA6.1 in July 2014 (Table S1 provides de-98

tails). The output fields used in this study are 12-hour accumulated precipitation, in-99

stantaneous values of pressure, specific humidity, eastward wind, northward wind (all four100

on model levels), precipitation, upward surface moisture flux and 6-hour or 3-hour (de-101

pending on year) mean surface latent heat flux.102

2.2 Moisture budget analysis103

The moisture budget analysis is described in detail in Keane et al. (2019). It is based104

on evaluating the net moisture flux into a region bounded between two latitudes, here105

8◦N and 29◦N, and two longitudes, here 69◦E and 89◦E (making a region somewhat larger106

than that studied in Keane et al. (2019); the precise boundaries are given in Table S1).107

The rate of change of moisture into the region is given by:108

Qt = MW +ME +MS +MN + E− P. (1)
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Here MW, ME, MS and MN are the horizontal moisture flux into the region on the west-109

ern, eastern, southern and northern sides, respectively, integrated over the length of the110

side and the full height of the column. E and P are horizontal area integrals over the whole111

region of, respectively, surface upward water flux and precipitation. A further quantity112

MA = MW +ME +MS +MN + E (2)

is defined as the total net moisture flux ‘available’ for precipitation in the region. Each113

quantity is given in kg/s and, as in Keane et al. (2019), is divided by the total area of114

the region (which varies slightly as shown in Table S1), to give a value in kgm−2 hr−1,115

which is expressed here as mm/hr.116

Each of the terms in Eq. 1 is evaluated for each forecast lead time and each valid117

time (so that, for a given valid time, the quantities for each lead time will have come from118

a different forecast). For each year, the evaluation period is divided into 184 12-hour sec-119

tions, with each section containing a 168-hour forecast starting at 0000 or 0012 UTC and120

a 60-hour forecast starting at 0600 or 1800 UTC. For lead times up to 60 hours, the quan-121

tity taken is the average of the forecast pair at that lead time. After 60 hours, the 0000122

or 0012 UTC forecast at that lead time is used, but it is calibrated to estimate what the123

average of the forecast pair would have been, if an 0600 or 1800 UTC forecast had also124

been available. This is done by assuming a constant offset between each pair of forecasts,125

and estimating this based on the average difference of all 184 pairs of forecasts, over all126

lead times up to 60 hours. The upward surface moisture flux is not available at all af-127

ter 60 hours so this is estimated using the surface latent heat flux. The calibration pro-128

cess is described in detail in the Appendix of Keane et al. (2019).129

2.3 BSISO index130

In order to categorise the data by BSISO state, we use the bimodal ISO index of131

Kikuchi et al. (2012). This index is calculated using extended empirical orthogonal func-132

tion analysis on 25–90-day filtered daily NOAA outgoing longwave radiation data and133

has both an MJO mode (for boreal winter) and a BSISO mode (for boreal summer). The134

BSISO index is defined with a phase and amplitude analogous to that of Wheeler and135

Hendon (2004). The daily phase and amplitude data were accessed at http://iprc.soest136

.hawaii.edu/users/kazuyosh/ISO index/data/BSISO 25-90bpfil.rt pc.txt in Oc-137

tober 2019. For each 12-hour period in the UM data, quantities are allocated the phase138

corresponding to that day, unless the amplitude for that day is less than 1, when it is139

allocated phase 0 (so there are always two consecutive 12-hour sections with the same140

phase).141

In this study, forecasts are categorised according to the BSISO phase at the fore-142

cast valid time. Longer forecasts will therefore have passed through one or two other BSISO143

phases before reaching the valid time: the typical BSISO period is about 39 days so that,144

with 8 phases, a forecast changes phase approximately every 4.9 days on average. Quan-145

tities relating to each BSISO phase are calculated by averaging over all 12-hour periods146

that have been allocated that phase, over the nine 3-month periods.147

3 Results148

3.1 Precipitation accumulation149

Keane et al. (2019) showed that Indian summer monsoon (ISM) precipitation de-150

creases with forecast lead time in the Met Office operational NWP forecast, for each year151

2012–2017, although the initial bias with respect to observations varied. Figure S1 ex-152

tends this to 2011–2019 and shows that the reduction in precipitation with forecast lead153

time is widespread within the study region for all years. The climate bias against GPCP154
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observations (Adler et al., 2003) is also shown for comparison; it is conceivable that the155

reduction in precipitation over 7 days of NWP forecast is relevant to why the climate156

simulation produces too little precipitation over a much longer period. The situation is157

somewhat complicated by the fact that the NWP forecast at the shortest lead times ac-158

tually has a positive bias against observations (see below) but, despite this, by day 7 the159

NWP forecast already has a negative bias against observations (see below and Figure160

S2).161

Figure 1 shows the precipitation accumulation, averaged over the inside of the green162

box shown in Figures S1, 3, 4 and S6 (and defined in subsection 2.2), as a function of163

BSISO phase, at the start of the forecast, at the end of the forecast and in observations164

from IMERG (Huffman et al., 2019) and GSMaP (Kubota et al., 2020). From this, we165

define the phases as follows: 4–6 as ‘active’ phases; 8, 1 and 2 as ‘break’ phases; 2–4 as166

break→active transition phases; and 6–8 as active→break transition phases (so that the167

even phases are each defined in two categories: for example, phase 2 is a break phase but168

starting to transition to active). Active/break periods are thus defined according to a169

dynamical driver of precipitation, rather than actual values of precipitation during each170

period. The accumulation at the start of the forecast is clearly too high, which is indica-171

tive of issues with the convection parameterization on short time scales, although it does172

follow broadly the same distribution as the observed precipitation.173

The precipitation at the end of the forecast is lower than that at the start of the174

forecast for all phases, indicating that a reduction in precipitation does occur through175

all phases. However, the reduction varies substantially with phase, to the extent that,176

for phases 5–8, the final accumulation is still higher than or close to the observed pre-177

cipitation. For these phases, it is not clear whether or not there is a low-precipitation178

bias at all: if the forecast were continued for longer, then the precipitation could plau-179

sibly either remain close to the observed value, or continue to decrease so that after a180

longer time it was substantially below the observed value. This behavior of initial pre-181

cipitation being higher than observed, but reducing systematically in NWP forecasts,182

was also demonstrated by Kar et al. (2019), and has been shown to occur over a recent183

9-year period by (Sharma et al., 2019) (their Figure 4).184

For phases 1–4, meanwhile, there is clearly a low-precipitation bias by the end of185

the forecast, with respect both to observations and to the values at the start of the fore-186

cast. These phases account for most of the low-precipitation bias with respect to obser-187

vations, and for a substantial part of that with respect to the start of the forecast. Since188

local processes are particularly important during these phases, it is possible that the re-189

duction in precipitation is partly caused by the atmosphere drying out excessively at the190

start of the forecast due to the high-precipitation bias. It is plausible that this decrease191

in precipitation would continue in a longer forecast, and could potentially be linked to192

the low-precipitation bias seen in climate simulations, although further work on seasonal193

UM forecasts would be required to establish this connection.194

The transition periods are delayed in the model, so that the bias is worst for break→active195

transition phases (this could, for example, represent a delayed northward propagation196

of large-scale rainbands into India) and least bad for active→break transition phases. The197

greater bias for break→active transitions could be caused by the fact that they are gen-198

erally more chaotic, associated with fast-growing convective instability, while the active→break199

transitions are governed by more predictable low-frequency Hadley cell oscillations (Goswami200

& Xavier, 2003). In general the bias is more negative for break than for active phases,201

although this is secondary to the effect of the transitions (biases for phases 4–6 are less202

negative than phases 8, 1 and 2 as a whole, although that for phase 4 alone is more neg-203

ative).204
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Figure 1. Top panel: Precipitation accumulation as a function of phase for observations,

NWP 0–12hr and NWP 156–168hr. The two dashed lines give an idea of the uncertainty in

the observations, showing the values with and without the use of infrared observations where

microwave observations are not available. Middle panel: As top panel, but showing differences

compared with IMERG data. Bottom panel: Distribution of phases across the 9×3-month period.
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Figure 2. Moisture budget terms as a function of BSISO phase and forecast lead time (phase

0 omitted). Black contours representing precipitation are reproduced in each panel and the col-

ored contours represent other moisture budget terms defined in equations 1 and 2. The dashed

grey lines represent the progress of an actual forecast, given a typical BSISO period of 39 days.

3.2 Moisture budget terms205

Figure 2 shows the variation in moisture budget terms as a function of BSISO phase206

and forecast lead time. The same information is presented differently in Figures S3 and207

S4. Although the black contours in Figure 2 (and the black lines in Figures S3 and S4)208

represent instantaneous, rather than accumulated, precipitation, the similarities with Fig-209

ure 1 (top panel) are clear. For example, values are generally highest for phases 4–6, and210

lowest for phases 8, 1 and 2, while the bias between the end and start of the forecast is211

smallest for phases 5 and 6, and largest for phases 1–3.212

Looking at the variation of the terms with phase at day 0, the overall moisture bud-213

get is initially well balanced (MA ≈ P for all phases) and the variation in MA with BSISO214

phase is driven mainly by variation in MW, ME and MS. The overall westerly flow is gen-215

erally weakest (lower values of MW and higher, so less negative, values of ME) during216

break→active phases, and strongest during active→break phases.217

The bias in P is very similar to that in MA, with only a slight drying of the region218

as the forecast develops (in terms of forecast bias, i.e., MA < P), mainly for the break219

phases. The fact that MA decreases more quickly than P is suggestive of biases in hor-220

izontal moisture flux causing the bias in precipitation, at least in an overall sense, but221

further investigation would be required to determine the causality relationship defini-222

tively or in detail.223

The terms E, MN and MS are almost constant with lead time and phase, except224

that MS increases substantially from about 4 days for phases 5 and 6. The variation with225

lead time of ME looks very similar to those of MA and P, but shifted around two phases226

earlier, suggesting that an increase in the total moisture flux out of the eastern side of227

the region is a key driver of the reduction in precipitation. MW also clearly reduces from228

around day 3 for all phases, as was found in Keane et al. (2019), where this delayed re-229

duction was linked to upstream effects over the equatorial Indian Ocean (which may take230

approximately 3 days to reach the study region).231
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For phases 6–8, the precipitation recovers somewhat after an early reduction, sug-232

gesting that, even for a longer forecast, there may be no low-precipitation bias at all for233

these phases. It is generally the case that the model performs best when the overall west-234

erly flow is strongest. This could be linked to the fact that there is a tendency for the235

overall westerly flow to increase near the start of the forecast for all phases.236

As mentioned in subsection 2.3, days where the BSISO amplitude is below a thresh-237

old of 1 are allocated a phase of 0. In order to determine the effect of this amplitude thresh-238

old, Figure 2 is reproduced in Figure S5, but with the allocation to phase 0 removed (so239

that all days retain their phase 1–8, regardless of amplitude, and the threshold is effec-240

tively 0). This looks very similar to Figure 2, but with rather less detail, suggesting that241

removing the low-amplitude days is effective in enhancing the signal of the variation in242

phase, without distorting the underlying behavior.243

3.3 Spatial variation of moisture fluxes244

Figure 3 shows vertically integrated moisture flux (a quantity similar to M, but as245

a function of space rather than assigned to a specific longitude or latitude line), over-246

laid on vertically integrated humidity, as a function of horizontal position, for day 0. All247

phases are characterized by a westerly flow up to 20◦N, and cyclonic flow in the north-248

east of India. Phase 4 is anomalously dry in the north-east of India, coinciding with a249

much less coherent cylonic flow, but this is outweighed by moist air to the west, mak-250

ing it a wet phase overall. Phases 3 and 4, for which the bias is particularly bad, are both251

characterized by relatively dry air in north-east India, while phases 5–7, for which the252

bias is relatively small, are characterized by relatively very moist air over northern In-253

dia, suggesting that moisture over northern India could be an important factor in the254

low-precipitation bias.255

Figure 4 shows vertically integrated moisture fluxes, overlaid on vertically integrated256

humidity, as a function of horizontal position, for day 7, and the bias against the anal-257

ysis. Phases 8, 1, 2 and 3 show a clear drying of the region, in agreement with Figure258

2. The other phases show a smaller amount of drying, similar to Figure 2.259

For all phases, the cyclonic flow to the north-east of India is weaker by day 7, and260

the easterlies over the Indo-Gangetic plane have been replaced, to a varying extent, by261

a purely westerly flow. This effect is more pronounced for the phases where the bias is262

worst (e.g., 2, 3 and 4). There is a general slight northward shift in the flow into the west263

side of the region: this seems to account for the increase in flow into the south side of264

the region for phases 5 and 6 in Figure 2 (there seems to be a slight repositioning of the265

flux in the southern half of the west side of the box, to the western half of the south side266

of the box).267

The anticyclonic bias seen in Keane et al. (2019) is clearly apparent in this larger268

dataset. Moreover, it seems to be very important to the low-precipitation bias, as it is269

clearly worse where the low-precipitation bias is worse. It is certainly reasonable to ex-270

pect weaker cyclonic flow to lead to lower precipitation, but it is also the case that lower271

precipitation itself reduces tropospheric heating, leading in turn to weaker low-level cir-272

culation. There could, therefore, be a feedback process occurring between the two bi-273

ases as the forecast develops.274

The delayed reduction in flow from the west, seen in Keane et al. (2019) and con-275

firmed in Figure 2 is also apparent in Figure S6, which shows a reduction in westerly flow276

into the region for all phases, between days 3 and 7. This figure otherwise looks simi-277

lar to Figure 4, suggesting that the biases seen are not simply due to spin-up or an ini-278

tial shock from the initial conditions, but may persist in longer UM simulations.279
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Figure 3. Total column water overlaid with vertically integrated moisture flux vectors. The

top panel shows the actual values and the bottom panel reproduces the actual value for phase 0

and shows the anomaly with respect to phase 0 for the other phases (so that the colorbar in the

top panel applies to phase 0 in both panels).
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Figure 4. Total column water overlaid with vertically integrated moisture flux vectors for day

7, for each BSISO phase. The top panel shows the actual value and the bottom panel shows the

bias against day 0.
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4 Conclusions280

The well-known low-precipitation bias in the UM for the ISM has been shown to281

occur for operational weather forecasts during the period 2011–2019. It is found that a282

substantial part of the bias is accounted for by periods where the BSISO index suggests283

a break-to-active transition (or, to a lesser extent, a monsoon break). There is some ev-284

idence that, when the BSISO index suggests an active-to-break transition, there is no285

bias at all, although further research (for example looking at seasonal forecasts) will be286

required to confirm this.287

The bias has been shown to be concurrent with an approximately equal bias in the288

moisture flux entering the region, suggesting that the problem is insufficient moisture289

entering the region, more than the UM convection scheme reacting incorrectly to the fields290

produced by its model dynamics. This reduction in moisture flux occurs earlier in the291

forecast, which is indicative of it being a cause of the reduction in precipitation, but of292

course further investigation is required to confirm this.293

The reduction in precipitation with forecast lead time seems to be strongly linked294

to an increase in moisture flux leaving the region to its east side that, in turn, is asso-295

ciated with anticyclonic flow to the northeast of India being replaced by purely westerly296

flow. This suggests that an inability to simulate low-pressure systems may be an impor-297

tant factor in the low-precipitation bias (it is also the case that an inability to simulate298

developing low-pressure systems moving into India from the east would be associated with299

a net increase in the westerly flow out of the region). The importance of low-pressure300

systems to the low-precipitation bias has previously been suggested by Levine and Mar-301

tin (2018), and this could also be tested by tracking low-pressure systems for different302

BSISO phases in forecasts and observations/reanalyses (or for different forecast lead times),303

for example by using methods described by Hunt and Fletcher (2019).304

The general flow entering the region from the west is also shown to decrease strongly,305

particularly from approximately day 3. This delayed reduction is consistent with the find-306

ings of Bush et al. (2015), who linked the low-precipitation bias over India with a high-307

precipitation bias over the Equatorial Indian Ocean, and found that changing the en-308

trainment parameter over the Equatorial Indian Ocean could lead to improvements in309

the bias over India. It is possible that this bias dipole is exacerbated by a southward ITCZ310

bias in the UM. Kar et al. (2019) also found a reduction in flow from the west leading311

to reduced precipitation from 4 days in weather forecasts; this was also associated with312

an anticyclonic bias, but this time to the west of India and directly related to the reduc-313

tion in westerly flow.314

As well as looking at seasonal forecasts, it will be interesting to apply the analy-315

sis carried out in this study to longer simulations, to determine whether the same BSISO316

indices account for most, or even all, of the low-precipitation bias in these simulations,317

which would further confirm that the bias is due to similar mechanisms across time scales.318

Similarly, having ascertained that certain BSISO phases account for most of the bias,319

a useful next step would be to look at how other properties vary with BSISO index, to320

determine, for example, whether the UM is producing incorrect vertical profiles for the321

most problematic phases, or reacting incorrectly to realistic profiles.322
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obtained from hokusai.eorc.jaxa.jp/standard/v6/daily Grev/00Z-23Z/$YYYY$MM345

on 14–15 October 2020. GPCP Precipitation data were provided by the NOAA/OAR/ESRL346

PSL, Boulder, Colorado, USA, from their Web site at https://psl.noaa.gov/347
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