

This is a repository copy of *Tree species richness and diversity predicts the magnitude of urban heat island mitigation effects of greenspaces*.

White Rose Research Online URL for this paper: <u>https://eprints.whiterose.ac.uk/170137/</u>

Version: Accepted Version

Article:

Wang, X, Dallimer, M orcid.org/0000-0001-8120-3309, Scott, CE orcid.org/0000-0002-0187-969X et al. (2 more authors) (2021) Tree species richness and diversity predicts the magnitude of urban heat island mitigation effects of greenspaces. Science of The Total Environment, 770. 145211. ISSN 0048-9697

https://doi.org/10.1016/j.scitotenv.2021.145211

© 2021 Elsevier B.V. All rights reserved. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can't change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

1	Tree species richness and diversity predicts the magnitude of
2	urban heat island mitigation effects of greenspaces
3	
4	Xinjun Wang ^{a, b} , Martin Dallimer ^c , Catherine E. Scott ^d , Weiting Shi ^b , Jixi Gao ^{e*}
5	
6	^a Nanjing Institute of Environmental Science, Ministry of Ecology and Environment,
7	Nanjing, Jiangsu, 210042, China
8	^b Department of Environmental Design, School of Art and Design, Changzhou Institute
9	of Technology, Changzhou, Jiangsu, 213022, China
10	^c Sustainability Research Institute, School of Earth and Environment, University of
11	Leeds, Leeds LS2 9JT, United Kingdom
12	^d Institute for Climate and Atmospheric Science, School of Earth and Environment,
13	University of Leeds, Leeds LS2 9JT, United Kingdom
14	^e Ministry of Ecology and Environment Center for Satellite Application on Ecology and
15	Environment, Beijing, 100094, China
16	
17	

18 Abstract

The Urban Heat Island Effect (UHIE) is a widely recognised phenomenon that 19 profoundly affects the quality of life for urban citizens. Urban greenspace can help 20 mitigate the UHIE, but the characteristics that determine the extent to which any given 21 22 greenspace can cool an urban area are not well understood. A key characteristic is likely to be the properties of trees that are found in a greenspace. Here, we explore the 23 sensitivity of the strength of the cooling effect to tree community structure for 24 greenspaces in Changzhou, China. Land surface temperatures were retrieved from 25 26 Landsat 7 ETM+ and Landsat 8 TIRS and were used to evaluate the temperature drop amplitude (TDA) and cooling range (CR) of 15 greenspaces across each of the four 27 seasons. Tree community structure of the greenspaces was investigated using 156 28 29 sample plots across the 15 greenspaces. We found that a number of plant community structure indicators of greenspaces have a significant impact on the strength of the 30 cooling effect. The Shannon-Wiener diversity index, tree species richness and tree 31 32 canopy coverage of greenspaces are all positively correlated with the magnitude of the temperature drop amplitude, with the strength of their influence varying seasonally. We 33 also find that mean crown width is positively correlated with cooling range in summer 34 and autumn, whilst greenspace tree density is negatively correlated with cooling range 35 in winter. Our findings improve understanding of the relationship between plant 36 community structure and the cooling effect of greenspaces. In particular, we highlight 37 the important role that tree species diversity provides for mitigating the UHIE, and 38 suggest that if planners wish to improve the role of urban greenspaces in cooling cities, 39

40 they should include a higher diversity of trees species.

42	Keywords: cooling effect, plant community structure, land surface temperature,
43	Shannon-Wiener diversity index, species richness, ecosystem services, tree coverage
44	
45	Abbreviations: UHIE, Urban heat island effect; LST, Land surface temperature;
46	DBH, Diameter at breast height; TDA, Temperature drop amplitude; CR, Cooling
47	range
48	
49	1. Introduction
50	The proportion of the global human population living in towns and cities is
51	projected to reach 66% by 2050, with the majority of this growth occurring in Asia
52	and Africa (United Nations, 2014). The environmental impacts of rapid urbanization
53	have received greater attention and include increased, and more extreme temperatures
54	as part of the Urban Heat Island Effect (UHIE) (Buyantuyev and Wu, 2010; Liu et al.,
55	2009), poor air quality (Fu and Chen, 2017), increased water and energy consumption
56	and poorer health and wellbeing of urban residents (Morris et al., 2017; Santamouris,
57	2020; Yang et al., 2020b).
58	In parallel with this rapid urbanisation, global mean surface temperatures are
59	projected to rise throughout the century, to an extent that depends upon future
60	anthropogenic emissions (IPCC, 2018). The emergence of urban heat islands is one of
61	the key environmental issues of the 21st century (Oke, 1973), not least because rising

temperatures associated with global climate change may aggravate the impacts of the
UHIE that are already common in urban areas (Luber and McGeehin, 2008), leading
to more extreme heat stress, especially in megacities (Argüeso et al., 2015; IPCC,
2018).

Urbanization changes the reflection and absorption of solar radiation by the 66 Earth's surface, which leads to a higher temperature in urban areas than suburban and 67 rural areas. This difference in temperature has been termed the UHIE (Bowler et al., 68 2010). The UHIE can profoundly affect the quality of life for urban citizens, with 69 70 higher temperatures, water use increases, for instance when irrigation is required (Guhathakurta and Gober, 2007; McDonald et al., 2011). Similarly, the demand for 71 living and office spaces to be cooled, through the provision of air conditioning can 72 73 require more energy (Salvati et al., 2017; Yang et al., 2020b), which leads to higher levels of air pollution. Finally, raised temperatures in cities are associated with an 74 75 increase in mortality and heat-related health conditions (Boumans et al., 2014; Morris 76 et al., 2017). Mitigating the UHIE has therefore become a core concern for urban 77 sustainability.

Urban greenspaces have increasingly been recognized as providing multiple
benefits for improving urban sustainability and liveability (Grilo et al., 2020; Shekhar
and Aryal, 2019; Verdú-Vázquez et al., 2017). Greenspaces include parks and
reserves, sports fields, community gardens, street trees, and nature conservation areas,
as well as less conventional spaces such as green walls and green alleyways (Wolch et
al., 2014). In terms of the UHIE, greenspaces provide a cooling effect thereby

84	mitigating higher temperatures especially in summer (Bernatzky, 1982; Cao et al.,
85	2010; Chang and Li, 2014; Du et al., 2017; Qiu and Jia, 2020) while a lack of
86	greenspaces is associated with higher temperatures (Luber and McGeehin, 2008).
87	Greenspaces do this in two ways. First, trees and other vegetation can directly shade
88	surfaces and thereby reduce the amount of incident solar radiation (Dimoudi and
89	Nikolopoulou, 2003). Second, greenspaces enable the conversion of incident radiation
90	to latent rather than sensible heat, through transpiration by vegetation (Moss et al.,
91	2019). These effects combine to lower temperatures within greenspaces, compared to
92	the surrounding built-up areas. The cooling effect of greenspaces also extends beyond
93	the edge of the greenspace itself into surrounding streets (Lin et al., 2015).
94	The physical structure of greenspaces can alter their ability to mitigate the UHIE.
95	Size, impervious surface coverage, vegetation coverage and the presence of water
96	have all been shown to correlate with the magnitude of the cooling effect (Du et al.,
97	2017; Li et al., 2011; Lu et al., 2017; Srivanit and Hokao, 2013). The size of
98	greenspaces is positively correlated with the strength of the cooling effect (Vaz
99	Monteiro et al., 2016; Yang et al., 2020a). Further research has focused on threshold-
100	size of greenspaces that is helpful to optimize greenspace's cooling effects (Yu et al.,
101	2020; Yu et al., 2017). However, the requirement to provide more greenspaces is often
102	difficult in cities due to the intense pressure on land for development and construction
103	(Jim, 1998). An alternative approach could be to optimize plant community diversity
104	and structure within greenspaces to maximize any cooling effect and UHIE mitigation
105	(Tang et al., 2017).

106	Plant community structure, such as the number of trees, species composition, tree
107	size, tree canopy cover, tree height, tree location and tree health, all influence
108	ecosystem service provision from greenspaces (Chen et al., 2020; Moser et al., 2015;
109	Nowak, 2008; Zhang et al., 2013). However, not all urban vegetation is equally
110	effective in reducing temperatures. Indeed, tree canopies differ in their ability to
111	intercept and absorb radiation and to transpire (Kelliher et al., 1993). The foliage
112	characteristics and tree's mature shape (for example, canopy geometry and total
113	height) can affect the thermal performance and shade effectiveness (Leuzinger et al.,
114	2010; Shahidan et al., 2010). The particular type of treed habitat has also been shown
115	to have an influence on the cooling effect. For instance, in Singapore, secondary
116	forest was the most efficient in providing cooling. Vegetation in secondary forest was
117	denser than elsewhere, thus preventing more radiation from reaching the forest floor
118	and simultaneously increasing evaporation cooling (Richards et al., 2020). The
119	"forest-like" characteristics of secondary forest, with its complex vertical structure
120	and, by extension, varied species composition might be important. Further, for a range
121	of tree and bamboo species, tree foliage density makes the greatest contribution to the
122	cooling effect, followed by leaf thickness, leaf texture and leaf colour lightness (Bau-
123	Show and Yann-Jou, 2010). Thermal satellite data indicated that every unit increase in
124	leaf area index decreased land surface temperature by 1.2°C (Hardin and Jensen,
125	2007). Canopy density, leaf area index and tree height were the most significant
126	drivers of the magnitude of the cooling effect in Changchun, China (Tang et al.,
127	2017). Multilayer plant communities were the most effective in terms of the cooling

128 effect, and bamboo groves were the least effective (Zhang et al., 2013). Plant

129 community structure has a significant impact on the cooling effect of greenspaces

130 (Petri et al., 2019; Tang et al., 2017; Zhang et al., 2013). Despite this research, thus far

the particular contribution of tree diversity to the cooling effect remains poorly

132 explored.

The cooling effect of urban greenspaces will vary with the season as vegetation 133 cover, soil moisture, impervious surfaces, air humidity and albedo vary seasonally 134 (Haashemi et al., 2016; Jonsson, 2004). Seasonal variation in correlations between 135 136 vegetation and LST suggests much stronger coupling during warmer seasons than cooler seasons (Buyantuyev and Wu, 2010). Most of the previous studies have studied 137 the thermal environment relief function of the plant community structure at a specific 138 139 time, especially in summer (Du et al., 2017; Perini and Magliocco, 2014; Yang et al., 2017). We therefore know relatively little about the seasonal variations of cooling 140 effects in relation to plant community structure. 141 142 Here we address an important knowledge gap regarding the influence of tree

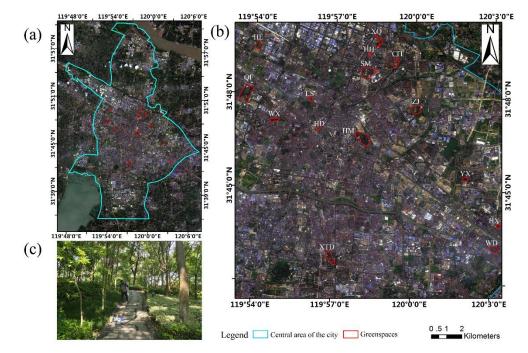
diversity in UHIE mitigation. We use two Landsat datasets (Landsat 8 TIRS and

Landsat 7 ETM+) and ground-based tree plots across the rapidly urbanizing city of

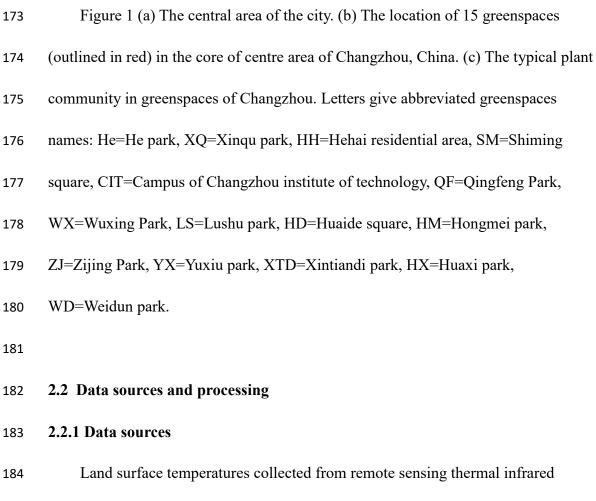
145 Changzhou, China. We answer the following three questions that have not previously

been adequately addressed: (1) How do the cooling effects of urban greenspaces vary

seasonally? (2) What role does tree species diversity play in underpinning the cooling


148 effect?

149


150 2. Materials and methods

2.1 Study area

152	Covering 4385 km ² Changzhou city, Jiangsu Province, China, is urbanizing
153	rapidly. In 2018, the city had 4,729,000 residents, living at a density of 1079
154	inhabitants/ km ² (Changzhou Statistics Bureau, 2019). Changzhou lies in the Yangtze
155	River Delta in the northern subtropical humid area (Zheng et al., 2010), and the
156	seasons are divided into spring, summer, autumn and winter from March to May, June
157	to August, September to November and December to February (Yu et al., 2014). Mean
158	seasonal temperatures for the city between 1952 and 2006 were 14.7°C, 26.7°C,
159	17.5°C and 4.4°C for spring, summer, autumn and winter respectively (Qin et al.,
160	2008). Around 57% of the city is covered in impervious surfaces such as buildings
161	and roads (Changzhou Statistics Bureau, 2019).
162	Based on the 2011-2020 Changzhou City Master Plan (Figure 1, a), the central
163	area is the construction concentration area of Changzhou, which includes the most
164	densely populated and built up region of the city, but also includes greenspaces and
165	infrastructure, as well as canals and rivers. Fifteen publicly accessible greenspaces in
166	the core area of the central city were selected (Figure 1, b). They varied in size, tree
167	canopy cover and tree community composition. Most of these greenspaces were
168	instigated in the last 40 years and are therefore characterised by relatively small trees
169	compared to more established public parks in Europe and North America (Figure 1,
170	c). As public spaces, most of the greenspaces is composed of impervious surfaces,
171	characterised by grassed areas and mixed plantings of deciduous and evergreen tree

172 species. Water bodies are also commonly present.

images are positively correlated with air temperatures (Ren et al., 2016). In this study,

186	we therefore used Landsat images of the study area to measure temperature across all
187	four seasons in 2017-2018. To achieve better results for the retrieved land surface
188	temperatures, four cloudless remote images were selected from Landsat datasets at
189	Row/Path: 38/119. Two Landsat 8 TIRS images covered winter (21 December 2017
190	GMT: 02:31:23) and spring (27 March 2018, GMT: 02:30:40). Two Landsat 7 ETM+
191	images were used for summer (07 June 2018, GMT: 02:31:02) and autumn (29
192	October 2018, GMT: 02:28:05). In all cases cloud cover was $<10\%$, images covered
193	daytime and were download from <u>https://glovis.usgs.gov/</u> . The lowest and highest air
194	temperature corresponding to the day of remote sensing images are $13^{\circ}C \sim 25^{\circ}C$ (27)
195	March 2018) as spring, $22^{\circ}C \sim 31^{\circ}C$ (7 June 2018) as summer, $11^{\circ}C \sim 23^{\circ}C$ (29
196	October 2018) as autumn and $1^{\circ}C \sim 11^{\circ}C$ 21 December 2017) as winter.
197	

198 2.2.2 Estimating land surface temperatures

We calculated land surface temperature (LST) based on a previously validated radiative transfer equation (Du et al., 2017; Masoudi and Tan, 2019; Qiu and Jia, 2020; Wang et al., 2018). Land surface emissivity (ε) is an essential parameter for retrieving LST from thermal infrared remote sensing data. The land surface can be viewed as composed of three land cover patterns: vegetation, bare soil and water (Qin et al., 2004). Land surface emissivity (ε) is estimated by using the values of NDVI and green cover ratio (P_v):

206
$$P_{v} = [(NDVI - NDVI_{soil})/(NDVI_{veg} - NDVI_{soil})]$$
(1)

207 Where NDVI is normalized difference vegetation index, NDVI_{soil} and NDVI_{veg}

are NDVI in bare land and vegetation area, set as 0.05 and 0.7, respectively.

Based on the land cover patterns, ε_{water} (the Land surface emissivity of water) is 0.995.

211
$$\varepsilon_{\text{vegetation}} = 0.9625 + 0.0614 P_{\text{v}} - 0.0461 P_{\text{v}}^2$$
 (2)

212
$$\varepsilon_{\text{building}} = 0.9589 + 0.086 P_{v} - 0.0671 P_{v}^{2}$$
 (3)

where $\varepsilon_{\text{vegetation}}$ is the emissivity of the natural surface, $\varepsilon_{\text{building}}$ is the emissivity of the built surface (Qin et al., 2004; Shi and Zhang, 2018).

215
$$B(T_s) = \left[L_{\lambda} - L^{\uparrow} - \tau(1 - \varepsilon)L^{\downarrow}\right]/\tau\varepsilon$$
(4)

216 L_{λ} is the radiance registered by the sensor, B(Loreau et al.) is the blackbody

radiance related to the surface temperature by Planck's law, L^{\uparrow} and L^{\downarrow} are the upward

and downward atmospheric radiance, respectively, τ is the atmospheric transmission.

219
$$T_s = K_2 / \ln[K_1 / B(T_s) + 1]$$
 (5)

220 T_s is the LST, calculated by Planck formula, for band 10 of TIRS, K_1 = 774.89

221 W/(m²·
$$\mu$$
m·sr), K₂ = 1321.08 K; for band 6 of ETM+, K₁= 666.09 W/(m²· μ m·sr),

222 $K_2 = 1282.71$ K (Yu et al., 2017). Atmospheric profile parameters (L^{\uparrow} , L^{\downarrow} , and τ) can

be obtained by entering the imaging time and the centre coordinate by latitude: 31.48,

- longitude: 119.53 on the website provided by NASA (http://atmcorr.gsfc.nasa.gov/).
- These data allow us to calculate the LST for each greenspace and each season, as well
- as the mean LST for the central area of the city (Fig. 2).

227

228 2.2.3 Metrics of cooling effects

The cooling effect of urban greenspaces is evaluated by quantifying the

230	difference in LST between a greenspace and the surrounding built area. There are
231	several metrics which can be used for this (Du et al., 2017; Sun et al., 2012; Yang et
232	al., 2020a). Here we used the cooling range and temperature drop amplitude. The
233	cooling range is defined as the distance from the greenspace boundary at which the
234	first turning point in LST occurs (Du et al., 2017; Qiu and Jia, 2020). The turning
235	point of an LST curve was identified by piecewise regression as the point where the
236	slope of LST curve changes sharply. To estimate the cooling range, we calculated the
237	mean LST within 15 m buffers around each greenspace. TDA is the temperature
238	difference between the mean LST of the greenspace and the mean LST at the cooling
239	range (Figure 3).

241 **2.2.4** Urban greenspace tree community structure

We followed the i-Tree Eco protocol (i-Tree, 2020), which generates sample plot 242 locations across a survey area in order to achieve a standard error of 12% for 243 estimates of the total number of trees present (Martin et al., 2013). In addition to the i-244 Tree Eco protocol, to ensure we captured variation in tree community structure, we 245 constrained plot site selection so that no portion of any plots fell on water or sealed 246 surface, and that plots were not clustered in small areas of larger greenspaces. Each 247 plot was approximately 400 m² (a circle with an 11.34 m radius). The plot selection 248 process resulted in 156 sample plots within our study greenspaces, which sampled 249 62400 m² from the total unsealed surface land area of the 15 greenspaces of 1300341 250 m^2 (Appendix 1). Within each plot we identified each tree to species, recorded its 251

252	height, diameter at breast height (1.37 m above ground, DBH), crown width, crown
253	height, crown health, crown base height, as well as the total number of trees in each
254	plot. Every tree with diameter greater than 4 cm was measured (Table 2). Data were
255	collected between June 2017 and February 2018. We further calculated the tree
256	coverage of each greenspace by using i-Tree Canopy (i-Tree Canopy, 2020) in which
257	tree coverage is assessed by a random sample of Google Maps aerial photography. In
258	i-Tree Canopy, sample points are generated randomly, and pre-defined cover types
259	can be chosen for the sample points. We evaluated between 300 and 1000 sample
260	points in each greenspace, with the number of points proportional to greenspace area.
261	We calculated two metrics of tree diversity, namely species richness (i.e., the
262	number of species) and the Shannon-Wiener diversity index which combines species
263	richness and the relative frequency of these species (evenness), as per equation (6).

273
$$H' = -\sum_{i=1}^{5} p_i \ln(p_i)$$
(6)

Where p_i is the relative frequency of species *i* in the community and S is the number 264 265 of species. Species richness is the number of different species in a community. In this study, large-sized greenspaces have more sample plots than small-sized greenspaces, 266 so we calculate richness per plot as an indicator of the richness to account for the 267 268 relationships that exist between sampled area and species richness. We wished to understand the strength of the relationship between tree diversity and the cooling 269 effects of urban greenspaces, taking into account the role of tree community structure. 270 We did this in two stages. Firstly, we used correlations (Pearson's or Spearman's 271 correlation coefficient depending on whether specific data were normally distributed) 272

274	to identify aspects of tree diversity and community structure that had a significant
275	association with TDA or the cooling range (Schober et al., 2018). Then, variables that
276	had a significant association with cooling effects were included in multiple regression
277	models. Analyses were repeated for each season, all analyses were carried out in
278	SPSS 22.
279	
280	3. Results
281	3.1 The cooling effect of the greenspaces
282	At the city scale, we found that the mean LST of the Changzhou central area was
283	26.8±2.4°C, 37.7±3.7°C, 25.0±2.3°C, 11.1±1.3°C in spring, summer, autumn and
284	winter respectively (Fig 2). Across the greenspaces, the mean LST was cooler
285	throughout the year, at 25.3±1.4°C, 34.2±2.4°C, 23.4±1.3°C, and 10.0±0.8°C
286	respectively. Most of the greenspaces had a lower LST than the surrounding area
287	throughout the year, except HH and CIT (greenspace abbreviations given in Figure 1
288	and Appendix 1). The temperature drop amplitude of HH was 0.0°C in spring, and the
289	temperature drop amplitude of CIT was 0.0°C in spring, summer, and autumn.

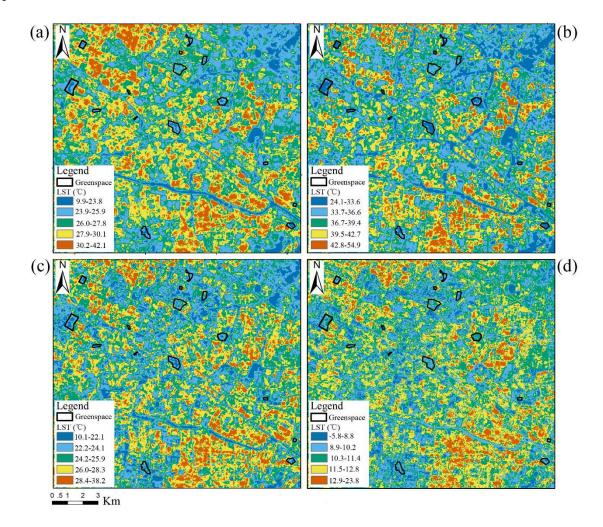
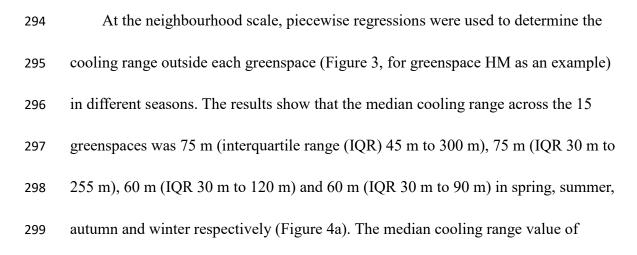



Figure 2 Land surface temperature for central Changzhou, China for (a) spring,
(b) summer, (c) autumn and (d) winter. The 15 sampled greenspaces are outlined in
black.

greenspaces was the same in spring and summer, and the same in autumn and winter, although they had different interquartile ranges. The cooling range of each greenspace varied across seasons, with the longest cooling ranges in spring, and the shortest in winter. For one of our greenspaces (CIT; Figure 1), the cooling range was near zero except in winter. Similarly XTD had no cooling range in winter. Greenspace XQ had the largest cooling range in spring and summer, while LS has the largest cooling range in autumn and winter (Table 1).

307

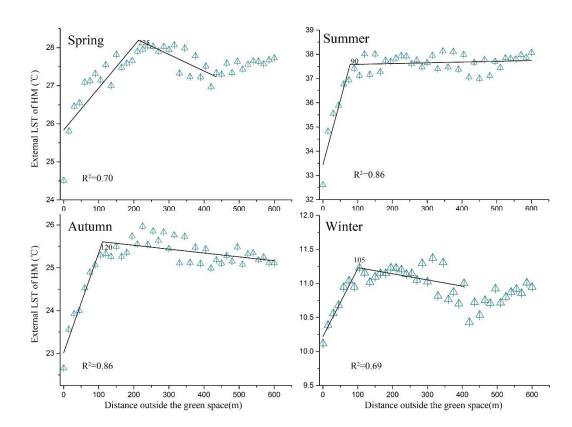


Figure 3 An example of cooling range and TDA for greenspaces "HM". Across the four seasons, the cooling range was 225m, 90m, 120m and 105m, as estimated via the identification of turning points using piecewise analysis. TDA was 28.0°C-24.5°C=3.5°C, 37.4°C-32.6°C=4.8°C, 25.3°C-22.7°C=2.6°C, 11.2°C-10.1°C=1.1°C.

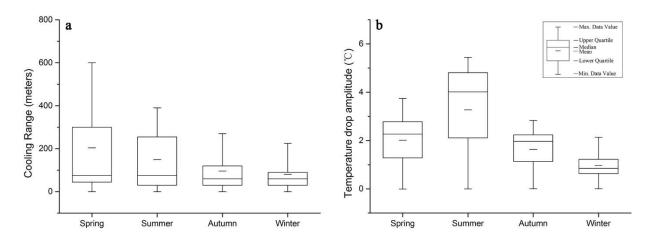


Figure 4 (a) The cooling range for 15 greenspaces in central Changzhou, China, across four seasons in 2017-2018. (b) The temperature drop amplitude of 15 green spaces across four seasons.

The TDA of each greenspace was calculated after the cooling range was 317 determined by piecewise regression analysis. The TDA of greenspaces varied 318 seasonally (Figure 4b); the median TDA of the 15 greenspaces was 2.3°C (IQR 1.3°C 319 to 2.8°C), 4.0°C (IQR 2.1 to 4.8°C), 2.0°C (IQR 1.1°C to 2.2°C), and 0.9°C (IQR 320 0.6°C to 1.2°C) in spring, summer, autumn and winter. The maximum TDA was, 321 therefore, in summer and the minimum in winter. The TDA of each greenspace also 322 varied seasonally (Table 1). The only exception to the general seasonal pattern was for 323 greenspace CIT which had a near zero TDA in spring, summer and autumn, and a 324 maximum, although still small, TDA in winter. 325 326

327 3.2 Plant community structure of the greenspaces

There was considerable variation in the number of trees present in each

329	greenspace. This was partly a consequence of the different proportion of green land,
330	water and impervious surface area in each greenspaces, and partly driven by the
331	history of the spaces. As Changzhou has urbanised, more greenspaces have been
332	constructed. The majority of these have been built within the last 20 years. Of those
333	we sampled, HM was the oldest. Built in 1960 it was redesigned in 2005. Given the
334	short history of greenspaces in the city, there are few mature trees. For instance, the
335	median DBH was 19.67 cm (IQR 17.30 cm to 21.54 cm), the 75% of trees have a
336	DBH smaller than 21.54 cm. This indicates that there are many young trees, as DBH
337	is a proxy of tree age. Similarly, median tree height was 7.1 m (IQR 6.9 m to 7.8 m),
338	and 25% of trees were between 7.8 m and 15 m tall. Around half of all trees were
339	shorter than 7.1 m. These trees can, therefore, act as a lower canopy layer and help to
340	form a more structured tree canopy, where taller trees are also present. Tree density
341	varied across the greenspaces. The median tree density was 235 trees/hectare (IQR
342	143 trees/hectare to 360 trees/hectare). The median crown height was 4.6 m (IQR 4.3
343	m to 4.7 m), the median crown width was 5.0 m (IQR 4.3 m to 5.7 m), and the median
344	tree canopy coverage was 52% (IQR 44% to 56%).
345	Of the 2082 trees that were sampled, 1253 (60.2%) were deciduous and the remainder
346	evergreen (Appendix 1). There were 49 deciduous tree species and 29 evergreen tree
347	species. The five most abundant deciduous tree species were Acer palmatum Thunb.
348	(195, 9.4%), Metasequoia glyptostroboides Hu et W. C. Cheng (140, 6.7%), Cerasus
349	serrulata (Lindl.) London var. lannesiana (Carri.) Makino (78, 3.8%), Lagerstroemia

indica Linn. (65, 3.1%), *Celtis sinensis* Pers. (63, 3%). The top five evergreen tree

- 351 species are *Cinnamomum camphora* (L.) Presl (223, 10.7%), *Osmanthus fragrans*
- 352 (Thunb.) Lour. (175, 8,4%), *Magnolia grandiflora* Linn. (83, 4%), *Trachycarpus*
- 353 *fortunei* (Hook.) H. Wendl. (59, 2.8%), *Photinia serrulata* Lindl. (46, 2.2%). The
- median Shannon-Wiener diversity index was 2.48 (IQR 2.07 to 2.72), and the median
- 355 richness per plot was 1.92 (IQR 1.37 to 2.67).

- Table 1. The cooling effect of 15 greenspaces within Changzhou city centre, China, across different seasons. Greenspace abbreviations are given
- in Figure 1 and Appendix 1.

Greenspace	Green land	TDA-spring	TDA-summer	TDA-autumn	TDA-winter	CR-Spring	CR-summer	CR-autumn	CR-winter
	Area (ha)	(°C)	(°C)	(°C)	(°C)	(m)	(m)	(m)	(m)
HD	1.03	0.65	2.05	1.13	1.12	75	60	45	90
НН	0.45	0.00	0.97	1.22	0.24	0	75	75	75
LS	2.12	2.61	3.07	2.20	1.23	255	225	270	225
НХ	2.05	3.45	5.35	2.19	1.54	300	270	60	90
YX	2.76	2.27	3.49	1.66	0.64	75	30	75	15
WX	4.54	2.02	4.29	2.25	0.83	60	165	165	60
XQ	5.25	2.46	4.15	0.54	0.21	600	390	210	30
CIT	4.73	0.00	0.00	0.00	1.31	0	0	0	180
HE	6.10	2.78	4.99	2.83	2.14	30	30	30	60

WD	7.16	3.74	5.44	1.97	1.01	75	40	60	30
ZJ	12.76	1.28	2.49	2.02	0.85	180	15	15	60
XTD	12.10	2.21	4.42	0.74	0.00	390	375	45	0
НМ	22.66	3.44	4.81	2.68	1.11	210	90	120	105
SM	19.54	1.31	2.11	1.42	0.64	45	45	30	15
QF	26.80	2.58	4.02	2.24	0.79	375	255	105	45

Greenspace	Mean DBH	Mean	Density	Mean crown	Mean crown	Tree canopy	Shannon-Wiener	Species
	(cm)	height	(trees/ha)	height (m)	width (m)	coverage	diversity index	richness per
		(m)				(%)		plot
HD	23.37	8.3	81.00	4.6	5.7	59.60	2.07	1.33
НН	19.67	7.1	15.00	3.4	3.3	13.80	1.27	1.00
LS	21.54	8.8	288.00	6.1	5.6	63.60	2.04	2.67
HX	18.88	6.9	231.00	4.7	5.9	56.30	2.40	2.50
YX	16.93	6.8	361.00	4.7	5.0	56.10	2.75	3.38
WX	21.25	7.2	235.00	4.2	5.9	54.20	2.51	2.13
XQ	20.27	7.1	219.00	4.6	5.7	52.30	2.24	1.87
CIT	19.67	7.1	48.00	3.4	3.0	29.30	1.52	1.37
HE	17.39	7.5	360.00	5.0	5.0	47.30	2.72	2.45

Table 2 Tree community structure of 15 greenspaces within Changzhou city centre, China.

WD	12.22	6.8	418.00	3.5	3.5	54.20	3.01	2.80
ZJ	19.01	7.7	305.00	5.1	4.3	48.70	2.60	1.79
XTD	18.41	7.8	326.00	4.6	4.8	40.30	2.48	1.54
НМ	26.46	9.2	143.00	6.9	5.5	60.20	2.67	1.92
SM	21.67	6.9	175.00	4.2	4.7	44.20	2.18	0.76
QF	16.31	6.1	678.00	3.8	4.5	45.40	3.24	3.19

	i v o
362	There were no significant correlations between mean DBH, tree height, crown
363	height and the two measures of cooling effect across all seasons (Table 3a). However,
364	significant correlations were found for the remaining plant community structure
365	indicators and cooling effect. Firstly, in spring and summer, TDA was significantly
366	correlated with tree density, tree coverage, Shannon-Wiener diversity index, and
367	richness per plot. In autumn, TDA had a significant correlation with the Shannon-
368	Wiener diversity index and tree richness. However, plant community structure had no
369	significant correlation with TDA in winter. The correlation between CR and plant
370	community structure indicators differed from those with TDA. In spring, indicators
371	had no significant correlation with the CR, while in summer and autumn there was a
372	significant correlation for mean crown width, and in winter with tree density (Table

3a).

3.3 Associations between plant community structure and cooling effects

Table 3 For 15 greenspaces in central Changzhou, China the (a) correlation between cooling effect and plant community structure variables by

seasons; and (b) correlation between variables. ** Significant at P<0.01, * Significant at P<0.05

376 (a)

Cooling effect	Seasons	Mean	Mean	Density	Mean Crown	Mean Crown	Tree-	Shannon-Wiener	Richness
		DBH	Height		Height	width	coverage	diversity index	per plot
Temperature drop	Spring	-0.246	-0.063	0.583*	0.454	0.438	0.653**	0.754**	0.681**
amplitude	Summer	-0.267	-0.02	0.569*	0.358	0.505	0.581*	0.772**	0.598*
	Autumn	-0.016	0.104	0.447	0.5	0.371	0.485	0.598*	0.534*
	Winter	-0.003	0.232	0.048	0.261	0.131	0.328	0.154	0.292
Cooling range	Spring	-0.095	0.145	0.368	0.435	0.425	0.344	0.274	0.359
	Summer	0.125	0.131	0.03	0.118	0.556*	0.159	-0.07	0.113
	Autumn	0.191	0.092	0.09	0.172	0.543*	0.487	0.075	0.448
	Winter	0.473	0.469	-0.518*	0.188	0.11	0.348	-0.455	-0.072

377 (b)

Variables	Height	Density	Crown	Crown	Tree-	Shannon-Wiener	Richness
			height	width	coverage	diversity index	per plot
Mean DBH	0.624*	-0.627*	0.587*	0.471	0.182	-0.406	-0.514
Mean height		-0.341	0.578*	0.331	0.358	-0.316	-0.318
Density			-0.022	0.06	0.296	0.851**	0.764**
Mean crown height				0.619*	0.639*	0.218	0.158
Mean crown width					0.745**	0.271	0.215
Tree coverage						0.558*	0.507
Shannon-Wiener							0.704**
diversity index							

379	To quantify the relationship between cooling effect variables and plant
380	community structure we carried out multiple regressions using those community
381	structure variables that had significant correlations with the cooling effect as predictor
382	variables. However, many of the plant community structure variables were also
383	significantly inter-correlated (Table 3b). To avoid violating assumptions of multiple
384	regression we therefore used the Shannon-Wiener diversity index (represented by 'H'
385	in equation 6 to 16) and tree coverage (%, represented by 'T') only in our regression
386	models. We selected the models from Table 4 with the highest adjusted R^2 value for
387	the final model of TDA and CR in different seasons. Equations 6 to 8 describe the
388	TDA prediction models for greenspaces community structure in spring, summer and
389	autumn.

Table 4. Parameter estimates for the relationship between TDA and plant community

	Shannon-Wiener	Tree	Intercept	Adjusted R ²	р
	diversity index	coverage			
TDA Spring	1.29	3.07	-2.49	0.59	0.002
TDA Summer	2.03	2.74	-2.72	0.57	0.003
TDA Autumn	0.93		-0.55	0.31	0.018
TDA Spr	ing = -2.49 + 3	3.07T + 1.2	29H (R ²	$^2 = 0.59, P=0.00$	2) (6)
TDA Sun	mmer = -2.72 +	2.74T + 2	2.03H (R	$h^2 = 0.57, P=0.00$)3) (7)
TDA Au	1100000000000000000000000000000000000	- 0.93H	($R^2 = 0.31, P=0.0$)18) (8)
For TDA	, in spring, our regre	ession model	(Equation 6	5) explained 59%	% of the

391 structure across different seasons.

396	variation. With the Shannon-Wiener diversity index kept constant, TDA increases
397	0.31°C for every 10% increase in tree coverage. When tree coverage is kept constant,
398	TDA increases by 0.13°C for every 0.1 increase in the Shannon-Wiener diversity
399	index. In summer, our model (Equation 7) explained 57% of the variance. When the
400	Shannon-Wiener diversity index is kept constant, TDA increases by 0.27°C for every
401	10% increase in tree coverage. When the tree coverage is kept constant, TDA
402	increases 0.2°C for every 0.1 increase in Shannon-Wiener diversity index. In autumn,
403	our model (Equation 8) explained 31% of the variance and TDA amplitude increases
404	0.09°C for every 0.1 increase in Shannon Wiener diversity index.
405	CR Summer = $-178.4 + 65.4W$ (R ² =0.15, P=0.082) (9)
406	CR Autumn = $-114.8 + 41.8W$ (R ² =0.21, P=0.048) (10)
407	CR Winter = $-0.13D + 105.5$ (R ² =0.06, P=0.201) (11)
408	In summer, autumn and winter, the cooling range (CR) is significantly correlated
409	with both the mean crown width and tree density; we therefore included mean crown
409 410	with both the mean crown width and tree density; we therefore included mean crown width in metres ('W' in Equations 9 and 10), and density (trees/hectare, represented as
410	width in metres ('W' in Equations 9 and 10), and density (trees/hectare, represented as
410 411	width in metres ('W' in Equations 9 and 10), and density (trees/hectare, represented as 'D' in Equations 11) in our regression models. In summer, our regression model
410 411 412	width in metres ('W' in Equations 9 and 10), and density (trees/hectare, represented as 'D' in Equations 11) in our regression models. In summer, our regression model (Equation 9) explained 15% of the variation. Cooling range increases 65.4 metres for
410 411 412 413	width in metres ('W' in Equations 9 and 10), and density (trees/hectare, represented as 'D' in Equations 11) in our regression models. In summer, our regression model (Equation 9) explained 15% of the variation. Cooling range increases 65.4 metres for every 1-metre increase in mean crown width. In autumn, our model (Equation 10)
410 411 412 413 414	width in metres ('W' in Equations 9 and 10), and density (trees/hectare, represented as 'D' in Equations 11) in our regression models. In summer, our regression model (Equation 9) explained 15% of the variation. Cooling range increases 65.4 metres for every 1-metre increase in mean crown width. In autumn, our model (Equation 10) explains 21% of the variation. The cooling range increases by 41.8 metres for every 1-

419 4. Discussion

420 4.1 Influence of tree diversity on cooling effect Biodiversity underpins the delivery of ecosystem function (Cardinale et al., 421 2011), and, therefore many ecosystem services. Indeed, tree species richness of forests 422 shows a positive relationship with the provision of multiple ecosystem services 423 (Gamfeldt et al., 2013). Despite this, to date, most research on the extent to which 424 urban greenspaces might mitigate urban heat island effects has concentrated on 425 426 quantifying the threshold size of greenspaces (Fan et al., 2019; Yu et al., 2020), greenspace configuration (Du et al., 2017; Lin et al., 2015), and particular structural 427 characteristics such as canopy coverage (Giridharan et al., 2008; Petri et al., 2019; 428 429 Yang et al., 2017) or tree height (Zhang et al., 2013), rather than exploring the role of tree diversity per se. Here we show that when the tree coverage keep constant the 430 diversity of the tree community within greenspaces can have a significant effect on 431 432 the magnitude of cooling effect in spring, summer and autumn, and maximum TDA benefit in summer. If cities, and their residents, are to make best use of greenspaces as 433 one way to mitigate urban heat island effects, then ensuring that tree diversity is taken 434 into account should be a central consideration. 435

436

There are substantial differences between tree species in terms of their ability to
cool the surrounding air (Bau-Show and Yann-Jou, 2010; Rahman et al., 2015). Tree
canopies with high leaf area and transpiration rates have been shown to be the most

effective in terms of cooling (Rahman et al., 2018). Canopy shape and leaf colour of 440 tree species may influence their cooling efficiency (Feyisa et al., 2014). Further, a 441 442 plant community with multiple layers of trees, shrubs and herbs can decrease air temperature by 1°C on a sunny day, and 0.5 °C on a cloudy day in summer, compared 443 with a simple biomass structure dominated by a tall canopy layer (Fung and Jim, 444 2019). A combination of tree species with high cooling efficiencies could improve the 445 magnitude of cooling effects provided by greenspaces. Where space is limited, such a 446 diversity of trees are likely to be more efficient at intercepting solar radiation before it 447 448 reaches the surface, and also in providing a greater leaf area to enhance transpiration rates, further ameliorating cooling effects. Further, such a community structure is 449 likely to result in greater levels of biomass production (Gamfeldt et al., 2013), which 450 451 will, over time, increase the effectiveness of cooling, as larger and larger leaf surface areas will be produced. 452

453 **4.2 Plant community structure and variation in cooling effects across seasons**

454 Our work was carried out in a sub-tropical location, characterised by seasons 455 delineated by changes in air temperature and solar radiation, we would therefore expect the cooling effects of greenspaces to vary seasonally. In line with our 456 expectations, we find that the cooling effects are greatest in summer and least in 457 winter (Jenerette et al., 2011; Mingjuan et al., 2019). Although we find some 458 differences in terms of the magnitude of cooling effects in spring and autumn, our 459 findings also align with research in Shenzheng, China, where the TDA of parks was 460 greatest in in summer (4.6 $^{\circ}$ C), followed by autumn (4.0 $^{\circ}$ C) and spring (3.8 $^{\circ}$ C), TDA 461

462	was least in winter (2.9 $^{\circ}$ C) (Zhang et al., 2013). Given the role that tree species
463	diversity plays in explaining cooling effects, the cooling effect efficacy of the main
464	species found in those cities, as well as climatic and seasonality variations, could
465	explain the differences between the two studies.
466	
467	We found that the importance of tree species diversity in explaining cooling
468	effects varies seasonally. This might be due to the fact that the dominant tree species,
469	which each constitute over 4% of the sampled tree numbers, namely Acer palmatum,
470	Metasequoia glyptostroboides, Cinnamomum camphora, Osmanthus fragrans,
471	Magnolia grandiflora., exhibit changes in transpiration rates between seasons, from
472	very high levels to in summer to very weak in winter (Mingjuan et al., 2019; Peters et
473	al., 2010). Shading efficiency is also associated with the seasonal variation of leaf
474	cover, resulting in deciduous tree species having very low shading function in winter,
475	while evergreen tree species can provide shade throughout the year. Therefore, the
476	cooling effect of a plant community is consistent with how the seasonal climate
477	changes alters vegetation physiology, as well as the specific characteristics of
478	individual tree species.
479	The picture for the cooling range of our greenspaces was more complex. There
480	are two sets of factors that will influence the cooling range of a greenspace, one is the
481	characteristics of the greenspace itself such as the size (Zhang et al., 2009) and shape
482	(Du et al., 2017; Lin et al., 2015). The second set of factors relate to the nature of the
483	built up area surrounding the greenspace (Lin et al., 2015; Shiflett et al., 2017). In

cities, heat is stored and re-radiated from massive and complex urban structures 484 (Rizwan Ahmed Memon et al., 2008) and these heat sources outside the greenspaces 485 bring uncertainty to the prediction of the cooling range, such as the uneven 486 distribution of buildings and the heat released from air conditioner units in the 487 summer. We found that the mean crown width and tree density of the greenspace can 488 explain part of the variation in the cooling range. In terms of plant community 489 structure, trees with the widest crowns will generate more shading and potentially 490 more evapotranspiration in summer and autumn. However, the explanatory power of 491 492 our models for the cooling range was substantially lower than those for temperature drop amplitude. CIT is an exception amongst the greenspaces in our study as it 493 provides no cooling to the surrounding area in spring, summer and autumn. There are 494 a number of possible reasons for this. Firstly, there are greater number of impervious 495 surfaces in CIT than other greenspaces. Additionally, the green land that is present has 496 some of the lowest tree coverage, tree density and tree diversity values of all the 497 498 greenspaces we studied. It is also possible that the urban area surrounding CIT has a better cooling potential than the CIT greenspace itself; specifically there is a river to 499 the east of CIT. Whilst previous research indicates that tree height may also influence 500 temperature reduction (Zhang et al., 2013), We do not find a significant relationship 501 between the mean tree height of a greenspace and its cooling effect (also see (Speak et 502 al., 2020). This emphasizes the greater complexity involved in understanding how 503 504 cooling effects from greenspaces propagate into the built-up areas that surround them.

505

C	ssland, and the components play a different cooling function in different seasons
500 (T	
509 (Fey	yisa et al., 2014; Oliveira and Costa, 2012; Yu et al., 2020). Trees act as heat-sinks
510 in al	ll seasons, grassland serves as a heat-sink only in summer and spring-autumn, but
511 it be	ecome a heat-source in winter as the increased amount of bare soil can change the
512 ther	mal characteristics of this vegetation type (Yu et al., 2020). Trees maintain greater
513 phys	siological activity in warm seasons with sufficient water to support them (Oliveira
514 and	Costa, 2012). More solar radiation energy can reach the ground surface and lower
515 laye	ers of greenspaces in winter after leaves fall from deciduous trees (Wang et al.,
516 2010	6). The increasing solar radiation and weak shading and transpiration of plant
517 com	munity decreases the total cooling effect of greenspaces in winter, and may
518 expl	lain the negative correlation between tree density and cooling range. Despite this
519 seas	sonal variation, enhancing tree diversity within greenspaces remains an important
520 UHI	IE mitigation tool as cooling effects will be more beneficial to a city and its
521 resid	dents in warmer, summer months, rather than cooler, winter months.
522	

523 **4.3** Conclusions and implications for future study and greenspace design

524 Urban greenspace planning needs to accommodate a wide range of conflicting 525 demands on space and resources (Littke, 2015). If urban planners wish to make the 526 most use of greenspaces as an UHIE mitigation tool, it will be increasingly important 527 to optimise tree community structure within those greenspaces. Shannon-Wiener

diversity index can, therefore, be used as an indicator of the likely cooling effect of tree stands, woodlands and forests as this metric is positively associated with cooling effects in spring, summer and autumn. Given the importance of tree diversity for the delivery of several other ecosystem services (McCarthy et al., 2011), taking such an approach, rather than planting stands of single/few species, is also likely to deliver other benefits for city residents.

Despite the benefits that diverse tree communities can deliver, it is common that 534 one or several tree species become dominant in urban greenspaces (Nagendra and 535 536 Gopal, 2011). We also found the tree species are not distributed evenly in Changzhou's greenspaces, with a few species, such as *Cinnamomum camphora*, Acer 537 palmatum, and Osmanthus fragrans, being substantially more abundant than others. 538 539 Ensuring that a handful of species do not become dominant is one way that urban planners can raise the Shannon-Wiener diversity index, which takes into account 540 species evenness as well as richness (Strong, 2016). For new greenspaces, landscape 541 542 designers and city planners could, therefore, include a greater diversity of species, and plant those species evenly if they wish to maximise the Shannon-Wiener diversity 543 index, and the resulting cooling effects. For the existing greenspaces, it may take 544 longer to diversify the tree community structure. This could be done, however, by 545 ensuring that a broader range of tree species are considered when replacing dead or 546 diseased trees. 547

In addition to diversity, we recommend that canopy coverage, canopy width, anddensity are all prioritised when it comes to designing greenspaces to maximise their

role in mitigating the UHIE. Increasing tree canopy coverage results in a greater cooling effect, as does ensuring that tree crowns are wide (Zhou et al., 2014; Ziter et al., 2019), something that is associated with higher light attenuation and, therefore a greater cooling effect (Speak et al., 2020). In contrast, we do not find a significant relationship between the mean DBH, tree height, and crown height of greenspace and its cooling effect, so these indicators should not be prioritised.

Our findings are based on observational data so are correlational only. Future 556 research should be undertaken using more rigorous designs, such as 'before-after-557 558 control-intervention (BACI)' which would enable cooling effects to be more directly attributed to tree community composition metrics that we have identified here. Further 559 potential research topics include: (1) identify how transpiration and shading efficiency 560 561 varies between tree species. Here we found that tree diversity could enhance the cooling effect of plant community. It is likely that the cooling benefit could be further 562 enhanced if the tree community was also composed of a mix of species that are known 563 564 to be particularly efficient in providing shade and/or transpiration. However, we still know relatively little about these particular characteristics and how they might result 565 in increased cooling potential (Rahman et al., 2015; Stratópoulos et al., 2018). What 566 we do know, suggests that substantial improvements could be made. For instance in 567 Manchester, UK Pyrus calleryana and Crataegus laevigata provided 3 to 4 times 568 greater cooling than Prunus 'Umineko', Sorbus arnoldiana or Malus 'Rudolph' 569 570 (Rahman et al., 2015).(2) The mechanism that underpins how tree diversity underpins any cooling effect is still unclear. Further studies, including those of a more 571

572 experimental nature, are required to explore and understand these mechanisms.

573

574

575 Declaration of Competing Interest

- The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
- 579 CRediT Author Statement

580 Xinjun Wang: Methodology, Investigation, Writing- Original draft preparation.

581 Martin Dallimer: Formal analysis, Writing- Reviewing and Editing. Catherine E.

582 Scott: Formal analysis, Writing- Reviewing and Editing. Weiting Shi: Investigation.

583 Jixi Gao: Conceptualization.

584 Acknowledgments

- 585 The research was supported by the National Key Research and Development
- Plan of China [No.2017YFC0506606], the Natural Environment Research Council
- 587 [grant NE/S015396/1], the Postdoctoral Research Funding of Jiangsu [grant
- 588 2019K270], Changzhou Landscape Technology Project [grant 19-20JH13], and
- 589 Jiangsu Overseas Visiting Scholar Program for University prominent Young &
- 590 Middle-aged Teachers and Presidents. The authors would like to express the sincere
- thanks to volunteers for helping collect field data from the sample plots.

593 **References**

- Argüeso D, Evans JP, Pitman AJ, Di Luca A. Effects of city expansion on heat stress under climate change
 conditions. PloS one 2015; 10: e0117066-e0117066.
- Bau-Show L, Yann-Jou L. Cooling Effect of Shade Trees with Different Characteristics in a Subtropical
 Urban Park. HortScience horts 2010; 45: 83-86.
- 598 Bernatzky A. The contribution of tress and green spaces to a town climate. Energy and Buildings 1982;
 599 5: 1-10.
- Boumans RJM, Phillips DL, Victery W, Fontaine TD. Developing a model for effects of climate change on
 human health and health–environment interactions: Heat stress in Austin, Texas. Urban
 Climate 2014; 8: 78-99.
- Bowler DE, Buyung-Ali L, Knight TM, Pullin AS. Urban greening to cool towns and cities: A systematic
 review of the empirical evidence. Landscape and Urban Planning 2010; 97: 147-155.
- Buyantuyev A, Wu J. Urban heat islands and landscape heterogeneity: linking spatiotemporal variations
 in surface temperatures to land-cover and socioeconomic patterns. Landscape Ecology 2010;
 25: 17-33.
- Cao X, Onishi A, Chen J, Imura H. Quantifying the cool island intensity of urban parks using ASTER and
 IKONOS data. Landscape and Urban Planning 2010; 96: 224-231.
- Cardinale BJ, Matulich KL, Hooper DU, Byrnes JE, Duffy E, Gamfeldt L, et al. The functional role of
 producer diversity in ecosystems. American Journal of Botany 2011; 98: 572-592.
- Chang C-R, Li M-H. Effects of urban parks on the local urban thermal environment. Urban Forestry &
 Urban Greening 2014; 13: 672-681.
- Changzhou Statistics Bureau. National Economic and Social Development Statistics Bulletin of
 Changzhou of 2018. 2019, 2019.
- 616 Chen G, Singh KK, Lopez J, Zhou Y. Tree canopy cover and carbon density are different proxy indicators
 617 for assessing the relationship between forest structure and urban socio-ecological conditions.
 618 Ecological Indicators 2020; 113: 106279.
- Dimoudi A, Nikolopoulou M. Vegetation in the urban environment: microclimatic analysis and benefits.
 Energy and Buildings 2003; 35: 69-76.
- Du H, Cai W, Xu Y, Wang Z, Wang Y, Cai Y. Quantifying the cool island effects of urban green spaces using
 remote sensing Data. Urban Forestry & Urban Greening 2017; 27: 24-31.
- Fan H, Yu Z, Yang G, Liu TY, Liu TY, Hung CH, et al. How to cool hot-humid (Asian) cities with urban trees?
 An optimal landscape size perspective. Agricultural and Forest Meteorology 2019; 265: 338348.
- Feyisa GL, Dons K, Meilby H. Efficiency of parks in mitigating urban heat island effect: An example from
 Addis Ababa. Landscape and Urban Planning 2014; 123: 87-95.
- Fu H, Chen J. Formation, features and controlling strategies of severe haze-fog pollutions in China.
 Science of The Total Environment 2017; 578: 121-138.
- Fung CKW, Jim CY. Microclimatic resilience of subtropical woodlands and urban-forest benefits. Urban
 Forestry & Urban Greening 2019; 42: 100-112.
- Gamfeldt L, Snäll T, Bagchi R, Jonsson M, Gustafsson L, Kjellander P, et al. Higher levels of multiple
 ecosystem services are found in forests with more tree species. Nature Communications 2013;
 4: 1340.
- 635 Giridharan R, Lau SSY, Ganesan S, Givoni B. Lowering the outdoor temperature in high-rise high-density

- residential developments of coastal Hong Kong: The vegetation influence. Building andEnvironment 2008; 43: 1583-1595.
- Grilo F, Pinho P, Aleixo C, Catita C, Silva P, Lopes N, et al. Using green to cool the grey: Modelling the
 cooling effect of green spaces with a high spatial resolution. Science of The Total Environment
 2020; 724: 138182.
- 641 Guhathakurta S, Gober P. The Impact of the Phoenix Urban Heat Island on Residential Water Use. Journal
 642 of the American Planning Association 2007; 73: 317-329.
- Haashemi S, Weng Q, Darvishi A, Alavipanah KS. Seasonal Variations of the Surface Urban Heat Island
 in a Semi-Arid City. Remote Sensing 2016; 8.
- Hardin PJ, Jensen RR. The effect of urban leaf area on summertime urban surface kinetic temperatures:
 A Terre Haute case study. Urban Forestry & Urban Greening 2007; 6: 63-72.
- 647 i-Tree. i-Tree Manuals & Workbooks. 2020, 2020.
- 648 i-Tree Canopy. i-Tree Canopy manual & workspace. 2020, 2020.
- 649 IPCC. Impacts of 1.5°C of Global Warming on Natural and Human Systems. 2020, 2018.
- Jenerette GD, Harlan SL, Stefanov WL, Martin CA. Ecosystem services and urban heat riskscape
 moderation: water, green spaces, and social inequality in Phoenix, USA. Ecological Applications
 2011; 21: 2637-2651.
- Jim CY. Impacts of intensive urbanization on trees in Hong Kong. Environmental Conservation 1998; 25:
 146-159.
- Jonsson P. Vegetation as an urban climate control in the subtropical city of Gaborone, Botswana.
 International Journal of Climatology 2004; 24: 1037-1322.
- Kelliher FM, Leuning R, Schulze ED. Evaporation and canopy characteristics of coniferous forests and
 grasslands. Oecologia 1993; 95: 153-163.
- Leuzinger S, Vogt R, Körner C. Tree surface temperature in an urban environment. Agricultural and Forest
 Meteorology 2010; 150: 56-62.
- Li J, Song C, Cao L, Zhu F, Meng X, Wu J. Impacts of landscape structure on surface urban heat islands: A
 case study of Shanghai, China. Remote Sensing of Environment 2011; 115: 3249-3263.
- Lin W, Yu T, Chang X, Wu W, Zhang Y. Calculating cooling extents of green parks using remote sensing:
 Method and test. Landscape and Urban Planning 2015; 134: 66-75.
- Littke H. Planning the Green Walkable City: Conceptualizing Values and Conflicts for Urban Green Space
 Strategies in Stockholm. Sustainability 2015; 7: 11306-11320.
- Liu W, You H, Dou J. Urban-rural humidity and temperature differences in the Beijing area. Theoretical
 and Applied Climatology 2009; 96: 201-207.
- Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A, et al. Biodiversity and Ecosystem
 Functioning: Current Knowledge and Future Challenges. Science 2001; 294: 804.
- Lu J, Li Q, Zeng L, Chen J, Liu G, Li Y, et al. A micro-climatic study on cooling effect of an urban park in a
 hot and humid climate. Sustainable Cities and Society 2017; 32: 513-522.
- Luber G, McGeehin M. Climate Change and Extreme Heat Events. American Journal of Preventive
 Medicine 2008; 35: 429-435.
- Martin NA, Chappelka AH, Somers G, Loewenstein EF, Keever GJ. Evaluation of Sampling Protocol for i Tree Eco: A Case Study in Predicting Ecosystem Services at Auburn University. Arboriculture &
 Urban Forestry 2013; 39: 56-61.
- Masoudi M, Tan PY. Multi-year comparison of the effects of spatial pattern of urban green spaces on
 urban land surface temperature. Landscape and Urban Planning 2019; 184: 44-58.

- McCarthy HR, Pataki DE, Jenerette GD. Plant water-use efficiency as a metric of urban ecosystem
 services. Ecological Applications 2011; 21: 3115-3127.
- McDonald RI, Green P, Balk D, Fekete BM, Revenga C, Todd M, et al. Urban growth, climate change, and
 freshwater availability. Proceedings of the National Academy of Sciences 2011; 108: 6312.
- Mingjuan Z, Xiao W, Xiaolei S, Chen L, Peifan L. Microclimate regulating effects of plant communities
 with different structures in summer and winter in Nanjing City. Chinese Journal of Ecology 2019;
 38: 27-34.
- Morris KI, Chan A, Morris KJK, Ooi MCG, Oozeer MY, Abakr YA, et al. Impact of urbanization level on the
 interactions of urban area, the urban climate, and human thermal comfort. Applied Geography
 2017; 79: 50-72.
- Moser A, Rötzer T, Pauleit S, Pretzsch H. Structure and ecosystem services of small-leaved lime (Tilia
 cordata Mill.) and black locust (Robinia pseudoacacia L.) in urban environments. Urban Forestry
 & Urban Greening 2015; 14: 1110-1121.
- Moss JL, Doick KJ, Smith S, Shahrestani M. Influence of evaporative cooling by urban forests on cooling
 demand in cities. Urban Forestry & Urban Greening 2019; 37: 65-73.
- Nagendra H, Gopal D. Tree diversity, distribution, history and change in urban parks: studies in Bangalore,
 India. Urban Ecosystems 2011; 14: 211-223.
- Nowak DJ, Crane, Daniel E., Stevens, Jack C., Hoehn, Robert E., Walton, Jeffrey T. A ground-based
 method of assessing urban forest structure and ecosystem services. Aboriculture & Urban
 Forestry 2008; 34: 347-358.
- 700 Oke TR. City size and the urban heat island. Atmospheric Environment (1967) 1973; 7: 769-779.
- Oliveira G, Costa A. How resilient is Quercus suber L. to cork harvesting? A review and identification of
 knowledge gaps. Forest Ecology and Management 2012; 270: 257-272.
- Perini K, Magliocco A. Effects of vegetation, urban density, building height, and atmospheric conditions
 on local temperatures and thermal comfort. Urban Forestry & Urban Greening 2014; 13: 495 506.
- Peters EB, McFadden JP, Montgomery RA. Biological and environmental controls on tree transpiration
 in a suburban landscape. Journal of Geophysical Research: Biogeosciences 2010; 115.
- Petri AC, Wilson B, Koeser A. Planning the urban forest: Adding microclimate simulation to the planner's
 toolkit. Land Use Policy 2019; 88: 104117.
- Qin D, Yan H, Zhengcui L, Tianjiao M, Hua C, Jie X. The characteristic of climate warming and it's impact
 on the severe climate. Climate Change Branch of Chinese Meteorological Society 2008 Annual
 Meeting, Beijing, China, 2008, pp. 10.
- Qin Z-h, Li W-j, Xu B, Zhang W-c. The estimation of land surface emissivity for LANDSAT TM6. Remote
 Sensing for Land & Resources 2004; 3: 28-36.
- Qiu K, Jia B. The roles of landscape both inside the park and the surroundings in park cooling effect.
 Sustainable Cities and Society 2020; 52: 101864.
- Rahman MA, Armson D, Ennos AR. A comparison of the growth and cooling effectiveness of five
 commonly planted urban tree species. Urban Ecosystems 2015; 18: 371-389.
- Rahman MA, Moser A, Gold A, Rötzer T, Pauleit S. Vertical air temperature gradients under the shade of
 two contrasting urban tree species during different types of summer days. Science of The Total
 Environment 2018; 633: 100-111.
- Ren Y, Deng L-Y, Zuo S-D, Song X-D, Liao Y-L, Xu C-D, et al. Quantifying the influences of various ecological
 factors on land surface temperature of urban forests. Environmental Pollution 2016; 216: 519-

529.

Richards DR, Fung TK, Belcher RN, Edwards PJ. Differential air temperature cooling performance of
 urban vegetation types in the tropics. Urban Forestry & Urban Greening 2020; 50: 126651.

Rizwan Ahmed Memon, Dennis Y. C. Leung, Chunho L. A review on the generation, determination and
 mitigation of urban heat island. Journal of environmental sciences 2008; 201: 120-128.

- Salvati A, Coch Roura H, Cecere C. Assessing the urban heat island and its energy impact on residential
 buildings in Mediterranean climate: Barcelona case study. Energy and Buildings 2017; 146: 38 54.
- Santamouris M. Recent progress on urban overheating and heat island research. Integrated assessment
 of the energy, environmental, vulnerability and health impact. Synergies with the global
 climate change. Energy and Buildings 2020; 207: 109482.
- Schober P, Boer C, Schwarte LA. Correlation Coefficients: Appropriate Use and Interpretation.
 Anesthesia & Analgesia 2018; 126.
- Seto KC, Güneralp B, Hutyra LR. Global forecasts of urban expansion to 2030 and direct impacts on
 biodiversity and carbon pools. Proceedings of the National Academy of Sciences 2012; 109:
 16083-16088.
- Shahidan MF, Shariff MKM, Jones P, Salleh E, Abdullah AM. A comparison of Mesua ferrea L. and Hura
 crepitans L. for shade creation and radiation modification in improving thermal comfort.
 Landscape and Urban Planning 2010; 97: 168-181.
- Shekhar S, Aryal J. Role of geospatial technology in understanding urban green space of Kalaburagi city
 for sustainable planning. Urban Forestry & Urban Greening 2019; 46: 126450.
- Shi Y-r, Zhang Y-f. Remote sensing retrieval of urban land surface temperature in hot-humid region.
 Urban Climate 2018; 24: 299-310.
- Shiflett SA, Liang LL, Crum SM, Feyisa GL, Wang J, Jenerette GD. Variation in the urban vegetation,
 surface temperature, air temperature nexus. Science of The Total Environment 2017; 579: 495505.
- Speak A, Montagnani L, Wellstein C, Zerbe S. The influence of tree traits on urban ground surface shade
 cooling. Landscape and Urban Planning 2020; 197: 103748.
- Srivanit M, Hokao K. Evaluating the cooling effects of greening for improving the outdoor thermal
 environment at an institutional campus in the summer. Building and Environment 2013; 66:
 158-172.
- Stratópoulos LMF, Duthweiler S, Häberle K-H, Pauleit S. Effect of native habitat on the cooling ability of
 six nursery-grown tree species and cultivars for future roadside plantings. Urban Forestry &
 Urban Greening 2018; 30: 37-45.
- Strong WL. Biased richness and evenness relationships within Shannon–Wiener index values. Ecological
 Indicators 2016; 67: 703-713.
- Sun R, Chen A, Chen L, Lü Y. Cooling effects of wetlands in an urban region: The case of Beijing. Ecological
 Indicators 2012; 20: 57-64.
- Tang Z, Ren Z-b, Zhang H-f, He X-y. Cooling effects of urban forest community structure. Chinese Journal
 of Applied Ecology 2017; 28: 2823-2830.
- 764 United Nations. 2014 revision of the World Urbanization Prospects. 2020, 2014.
- Vaz Monteiro M, Doick KJ, Handley P, Peace A. The impact of greenspace size on the extent of local
 nocturnal air temperature cooling in London. Urban Forestry & Urban Greening 2016; 16: 160 169.

- Verdú-Vázquez A, Fernández-Pablos E, Lozano-Diez RV, López-Zaldívar Ó. Development of a
 methodology for the characterization of urban and periurban green spaces in the context of
 supra-municipal sustainability strategies. Land Use Policy 2017; 69: 75-84.
- Wang M, Chang H-C, Merrick JR, Amati M. Assessment of solar radiation reduction from urban forests
 on buildings along highway corridors in Sydney. Urban Forestry & Urban Greening 2016; 15:
 225-235.
- Wang X-j, Cheng H-m, Xi J, Yang G-y, Zhao Y-w. Relationship between Park Composition, Vegetation
 Characteristics and Cool Island Effect. Sustainability 2018; 10: 587.
- Wolch JR, Byrne J, Newell JP. Urban green space, public health, and environmental justice: The challenge
 of making cities 'just green enough'. Landscape and Urban Planning 2014; 125: 234-244.
- Yang A-S, Juan Y-H, Wen C-Y, Chang C-J. Numerical simulation of cooling effect of vegetation
 enhancement in a subtropical urban park. Applied Energy 2017; 192: 178-200.
- Yang G, Yu Z, Jørgensen G, Vejre H. How can urban blue-green space be planned for climate adaption in
 high-latitude cities? A seasonal perspective. Sustainable Cities and Society 2020a; 53: 101932.
- Yang X, Peng LLH, Jiang Z, Chen Y, Yao L, He Y, et al. Impact of urban heat island on energy demand in
 buildings: Local climate zones in Nanjing. Applied Energy 2020b; 260: 114279.
- Yılmaz S, Özgüner H, Mumcu S. An aesthetic approach to planting design in urban parks and greenspaces.
 Landscape Research 2018; 43: 965-983.
- Yu H, Zhu S, Liu Z. Influence of Urbanization on the Temperature Changes in Nanjing. Ecology and
 Environmental Sciences 2014; 23: 1425-1431.
- Yu Z, Chen T, Yang G, Sun R, Xie W, Vejre H. Quantifying seasonal and diurnal contributions of urban
 landscapes to heat energy dynamics. Applied Energy 2020; 264: 114724.
- Yu Z, Guo X, Jørgensen G, Vejre H. How can urban green spaces be planned for climate adaptation in
 subtropical cities? Ecological Indicators 2017; 82: 152-162.
- Zhang X, Zhong T, Feng X, Wang K. Estimation of the relationship between vegetation patches and urban
 land surface temperature with remote sensing. International Journal of Remote Sensing 2009;
 30: 2105-2118.
- Zhang Z, Lv Y, Pan H. Cooling and humidifying effect of plant communities in subtropical urban parks.
 Urban Forestry & Urban Greening 2013; 12: 323-329.
- Zheng J-y, Yi Y-h, Li b-y. A new scheme for climate regionalization in China. Acta Geographica Sinica 2010;
 65: 3-13 (in Chinese).
- Zhou W, Qian Y, Li X, Li W, Han L. Relationships between land cover and the surface urban heat island:
 seasonal variability and effects of spatial and thematic resolution of land cover data on
 predicting land surface temperatures. Landscape Ecology 2014; 29: 153-167.
- Ziter CD, Pedersen EJ, Kucharik CJ, Turner MG. Scale-dependent interactions between tree canopy cover
 and impervious surfaces reduce daytime urban heat during summer. Proceedings of the
 National Academy of Sciences 2019; 116: 7575.