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AUTOMORPHIC FORMS FOR SOME EVEN UNIMODULAR

LATTICES

NEIL DUMMIGAN AND DAN FRETWELL

Abstract. We look at genera of even unimodular lattices of rank 12 over the

ring of integers of Q(
√

5) and of rank 8 over the ring of integers of Q(
√

3), us-
ing Kneser neighbours to diagonalise spaces of scalar-valued algebraic modular
forms. We conjecture most of the global Arthur parameters, and prove several
of them using theta series, in the manner of Ikeda and Yamana. We find in-
stances of congruences for non-parallel weight Hilbert modular forms. Turning
to the genus of Hermitian lattices of rank 12 over the Eisenstein integers, even
and unimodular over Z, we prove a conjecture of Hentschel, Krieg and Nebe,
identifying a certain linear combination of theta series as an Hermitian Ikeda
lift, and we prove that another is an Hermitian Miyawaki lift.

1. Introduction

Nebe and Venkov [54] looked at formal linear combinations of the 24 Niemeier
lattices, which represent classes in the genus of even, unimodular, Euclidean lattices
of rank 24. They found a set of 24 eigenvectors for the action of an adjacency oper-
ator for Kneser 2-neighbours, with distinct integer eigenvalues. This is equivalent
to computing a set of Hecke eigenforms in a space of scalar-valued modular forms
for a definite orthogonal group O24. They conjectured the degrees gi in which the
Siegel theta series Θ(gi)(vi) of these eigenvectors are first non-vanishing, and proved
them in 22 out of the 24 cases.

Ikeda [37, ➜7] identified Θ(gi)(vi) in terms of Ikeda lifts and Miyawaki lifts, in
20 out of the 24 cases, exploiting his integral construction of Miyawaki lifts. Ch-
enevier and Lannes [10] expanded upon his work and showed how it can be used
to determine the global Arthur parameters of the automorphic representations πi
of O24(A) generated by the vi in those 20 cases. They also used different methods,
based on Arthur’s multiplicity formula, to recover the global Arthur parameters of
all 24 of the πi, and completed the proof of Nebe and Venkov’s conjecture on the
degrees.

Ikeda and Yamana [39] constructed Ikeda lifts in the case of Hilbert modular
forms over totally real fields. An integral construction of Miyawaki lifts based
on this has been worked out in detail by Atobe [2]. As an application, Ikeda and
Yamana considered the genus of 6 classes of even, unimodular lattices of rank 8 over
the ring of integers of the real quadratic field E = Q(

√
2). They found a set of 6

eigenvectors for the action of an adjacency operator for Kneser
√
2-neighbours, and

determined the first non-vanishing theta series for each one, again using Ikeda and
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2 NEIL DUMMIGAN AND DAN FRETWELL

Miyawaki lifts, and for the latter a kind of triple product of eigenvectors introduced
by Nebe and Venkov. The global Arthur parameters of the associated automorphic
representations of O8(AE) may be deduced from their results.

We extend this work of Ikeda and Yamana to other cases, in particular to the
genus of 15 classes of even, unimodular lattices of rank 12 over the ring of integers
of E = Q(

√
5), first studied by Costello and Hsia [13]. We are able to conjec-

ture the global Arthur parameters for 12 out of the 15 associated automorphic
representations. These are formal direct sums of certain discrete automorphic rep-
resentations of GLm(AE), for various m. The ingredients going into these include
representations of GL2(AE) attached to Hilbert modular forms for SL2(OE), in-
cluding examples of non-parallel weights, and symmetric square lifts to GL3(AE).
The conjectured global Arthur parameters are such that the implied eigenvalues
for the Hecke operators T(

√
5) and T(2) match those we computed using Kneser

neighbours. They also satisfy the requirements of the Langlands parameters at the
infinite places.

In 10 of these 12 cases we prove the conjecture for the global Arthur parameters,
in Proposition 7.1. In one case we can apply directly a theorem of Ikeda and Ya-
mana (Proposition 4.3) to identify the global Arthur parameter and (upon checking
the non-vanishing of a certain L-value) to determine the first non-vanishing theta
series as a specific Ikeda lift. In other cases we follow Ikeda and Yamana, in using
Kuang’s analogue [44] of a well-known theorem of Böcherer, to establish that cer-
tain Hilbert-Siegel modular forms, including Ikeda lifts, are in the images of theta
maps. Our Hecke eigenvalue computations then determine which eigenvectors they
come from. Following Chenevier and Lannes, we use a theorem of Rallis to deduce
the global Arthur parameters from the theta series. Finally, in one case we use
non-vanishing of a triple product of eigenvectors to show that the theta series of a
certain eigenvector is not orthogonal to a certain Miyawaki lift, which is enough to
determine the global Arthur parameter, and we show that in fact the theta series
is the Miyawaki lift.

An interesting aspect of the work of Chenevier and Lannes was the study of
easily-proved congruences of Hecke eigenvalues between computed eigenvectors.
Some could be accounted for, via the global Arthur parameters, by well-known
congruences between genus-1 cusp forms and Eisenstein series, such as Ramanu-
jan’s mod 691 congruence. Another was used to prove a mod 41 congruence of Hecke
eigenvalues involving genus-1 and vector-valued genus-2 forms, the first known in-
stance of Harder’s conjecture. In our case of rank 12 for Q(

√
5), we likewise observe

congruences that can be explained in terms of congruences between Hilbert modular
cusp forms and Eisenstein series, modulo prime divisors occurring in Dedekind zeta
values. We also see two apparent congruences involving genus-2 vector-valued forms
“lifted” from Hilbert modular forms (for us of non-parallel weight) in the manner
of Johnson-Leung and Roberts [41]. The congruences are akin to those between
cusp forms and Klingen-Eisenstein series. The moduli are “dihedral” congruence
primes for certain cusp forms with quadratic character for Γ0(5). This leads us
to a conjecture (7.6) about congruences for non-parallel weight Hilbert modular
forms. H. Hida has informed us that experimental instances of such congruences
were discovered by H. Naganuma more than thirty years ago. We are not aware of
them having been published anywhere before now.
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We consider also the genus of 31 classes of even, unimodular lattices of rank
8 over the ring of integers of E = Q(

√
3), first studied by Hung [33]. We are

able to conjecture the global Arthur parameters in 28 out of the 31 cases, and can
prove 16 of these. A new feature here is that the narrow class number of Q(

√
3)

is 2 (whereas for both Q(
√
5) and Q(

√
2) it is 1). Thus the quadratic character,

and CM forms, associated to the narrow Hilbert class field H = Q(ζ12), make an
appearance. (Since H/E is ramified only at infinite places, an unramified Hecke

character for H produces a level 1 Hilbert modular form for E.) For E = Q(
√
3), as

for any E = Q(
√
D) with squarefree D = −1+4t, the rank only has to be divisible

by 2 (indeed

(

2
√
D√

D 2t

)

is even, unimodular of rank 2, as pointed out in [31])

and we look also at the baby cases of ranks 2, 4 and 6.
Hentschel, Krieg and Nebe [27] studied a genus of 5 classes of Hermitian lattices

of rank 12 over the ring of integers of E = Q(
√
−3), even and unimodular over

Z. The Hecke operator T(2) on the associated space of algebraic modular forms
was diagonalised in [18]. In Proposition 11.1, for each eigenspace we determine the
first non-vanishing (Hermitian) theta series, in particular confirming a conjecture
of Hentschel, Krieg and Nebe that one of them is a degree-4 Hermitian Ikeda lift
(up to scaling). We also identify one as an Hermitian Miyawaki lift, as studied by
Atobe and Kojima [3]. For our purposes, we put together an Hermitian analogue
of Böcherer’s theorem (Proposition 10.3(3)), making use of some work of Lanphier
and Urtis [45], among others. To get from theta series to global Arthur parameters,
the analogue of Rallis’s theorem that we need (Proposition 10.3(1),(2)) is covered
by work of Y. Liu [47].

In ➜2 we introduce some preliminaries on even unimodular lattices (over Z), alge-
braic modular forms, local Langlands parameters, global Arthur parameters, theta
series, Ikeda and Miyawaki lifts. In ➜3 we review briefly the work of Chenevier and
Lannes on the Niemeier lattices. After some preliminaries in ➜4 on even unimodular
lattices over real quadratic fields, in ➜5 we review the work of Ikeda and Yamana
on Q(

√
2). In ➜6 we further warm up with even unimodular lattices of rank 8 for

Q(
√
5), where there are only 2 classes in the genus. ➜7 deals with the more sub-

stantial case of the 15 classes for rank 12 for Q(
√
5). We introduce the Hilbert

modular forms involved, before presenting the Hecke eigenvalues for T(
√
5) and T(2),

conjecturing the global Arthur parameters, and proving what we can about them
and the degrees via theta series. Then we look at the congruences mentioned above.
➜8 is about E = Q(

√
3). In ➜9 we consider to what extent we have covered all the

interesting examples amenable to computation, and have a brief look at one or two
more, with E = Q(

√
7) and Q(

√
11). After preliminaries in ➜10 on Hermitian lat-

tices, even and unimodular over Z, in ➜11 we look at the case E = Q(
√
−3), rank

12.
All the computed neighbour matrices used but not included in the paper, and

their characteristic polynomials, may be found at the second-named author’s web-
page https://www.danfretwell.com/kneser.

We are grateful to G. Chenevier for his suggestion, in response to [18], to adapt
the methods of Ikeda [37, ➜7] to Hermitian lattices. We thank him, O. Täıbi and
an anonymous referee for their comments on an earlier version of this paper. We
thank also H. Hida for informing us of the work of Naganuma, M. Kirschmer, for
advice on using his Magma code for neighbours over number fields, and for making
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some useful additions to it, and S. Yamana for his invaluable help with the proof
of Proposition 7.1, case i = 13.

2. Preliminaries

2.1. Even unimodular lattices and algebraic modular forms. Let L be a
Z-lattice in V ≃ QN , with positive-definite integral quadratic form x 7→ qA(x) :=
1
2 〈x,x〉, where A is a positive-definite symmetric matrix of size N with rational
entries and 〈y,x〉 := tyAx, for all x,y ∈ V . Associated to L is an orthogonal
group-scheme OL, where for any commutative ring R,

OL(R) = {g ∈ GL(L⊗R) | qA ◦ g = qA}.
If Af is the ring of finite adeles of Q then OL(Af ) produces other lattices from
L: given (gp) ∈ OL(Af ), (gp)L := V ∩ ((gp)(L ⊗ Af )). These lattices are every-
where locally isometric to L, and form the genus of L. Let K =

∏

pOL(Zp) ⊂
OL(Af ) be the stabiliser of L. Then there is a natural bijection between CL :=
OL(Q)\OL(Af )/K and the set of classes in the genus of L, which is finite, say
represented by classes [L1], . . . , [Lh], with [L] = [L1].

The set of C-valued functions on CL may be regarded as the space of functions
on OL(A), left-invariant under OL(Q), right-invariant under K and transforming
on the right via the trivial representation of OL(R). Thus they are scalar-valued
algebraic modular forms for OL, forming a space denotedM(C,K). It is acted upon
by the Hecke algebra HK of all locally constant, compactly supported functions
OL(Af ) → C that are left and right K-invariant. It is a semi-simple module for HK

[23, Prop. 6.11], and there is a natural bijection between simple HK-submodules
of M(C,K) and irreducible automorphic representations of OL(A) with a K-fixed
vector and such that π∞ is trivial [22, Proposition 2.5].

We now suppose that L is even integral (〈x,x〉 ∈ 2Z ∀x ∈ L) and unimodular
(L∗ = L, where L∗ := {y ∈ V | 〈y,x〉 ∈ Z ∀x ∈ L}). (By adjusting A, we may
suppose that L = ZN , then A has integer entries, even on the diagonal, and deter-
minant 1.) Then 8 | N [10, Scholium 2.2.2(b)] and every even unimodular lattice
of rank N is equivalent to one in the genus of L [15, Chapter 15, ➜7]. At all primes

p, A is equivalent over Zp to

(

0N/2 IN/2
IN/2 0N/2

)

[10, Scholium 2.2.5]. Hence SOL/Zp is

reductive and SOL(Qp) is a split orthogonal group, with SOL(Zp) a hyperspecial
maximal compact subgroup. To deal with p = 2, we have to define the group scheme
SOL/Z as the kernel of the Dickson determinant on OL. As explained just before
[10, 4.2.11], the p-component of HK is a subring of a Hecke algebra for SOL(Qp)
with respect to SOL(Zp). Convolution by the indicator function of the double coset
Kdiag(p, 1, . . . , 1, p−1, 1, . . . , 1)K gives a Hecke operator denoted Tp, which can be
made explicit using the notion of Kneser p-neighbours [10, 6.2.8]. Given lattices M

andM ′ in V , we say thatM ′ is a p-neighbour ofM if #
(

M
M∩M ′

)

= #
(

M ′

M∩M ′

)

= p.

The number of p-neighbours of M is finite, equal to the number of left cosets of K
into whichKdiag(p, 1, . . . , 1, p−1, 1, . . . , 1)K decomposes, and ifM ′ is a p-neighbour
of M then M and M ′ belong to the same genus. The Hecke operator Tp is rep-
resented, with respect to the basis {e1, . . . , eh} of M(C,K), where ei([Lj ]) = δij ,
by the matrix (bij), where among the Kneser p-neighbours of Li, bij is the number
isometric to Lj . The Hecke algebra is commutative [24, Proposition 2.10], and there
exists a basis ofM(C,K) of simultaneous eigenvectors for HK . Let vi and πi be the
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corresponding eigenvectors and automorphic representations, respectively, in some
order for 1 ≤ i ≤ h.

2.2. Local Langlands parameters. For each local Weil group WR and WQp
of Q

there is associated to πi a Langlands parameter, a homomorphism c∞(πi) or cp(πi)
from that group to the Langlands dual group ON (C) of OL. (As explained in [10,
6.4.7], it lands in SON (C) but is only defined up to conjugation by ON (C).) Now
WC = C× is a subgroup of index 2 in WR, and it is a consequence of the fact that
vi is scalar-valued that (up to conjugation)

c∞(πi) : z 7→

diag
(

(z/z)(N/2)−1, (z/z)(N/2)−2, . . . , (z/z)0, (z/z)1−(N/2), (z/z)2−(N/2), . . . , (z/z)0
)

.

At any finite prime p, since in our situation πi is unramified at p, cp(πi) is de-
termined by Frobp 7→ tp(πi), the Satake parameter at p, in fact this is how we
know it exists without assuming the local Langlands conjecture for ON (Qp). This
determines λi(Tp), by the formula (cf. [24, (3.13)])

(1) λi(Tp) = p(N/2)−1tr(tp(πi)).

2.3. Global Arthur parameters. A complete description of those automorphic
representations, of a split special orthogonal group G∗, occurring discretely in
L2(G∗(Q)\G∗(A)), was given by Arthur [1]. This was extended to a wider class of
special orthogonal groups (including SOL) by Täıbi [63]. (The representations of
OL(A) we are looking at are classified in terms of their restriction to SOL(A), as
explained in [10, 6.4.7], and they also satisfy the regularity condition in the work of
Arthur and Täıbi.) Part of this description is that to such an automorphic repre-
sentation is attached a “global Arthur parameter”, a formal unordered sum of the
form ⊕mk=1Πk[dk], where Πk is a cuspidal automorphic representation of GLnk

(A),
dk ≥ 1 and

∑m
k=1 nkdk = N . For each Πk there are local Langlands parameters

c∞ : WR → GLnk
(C) and cp : WQp → GLnk

(C) (Frobp 7→ tp(Πk)), defined up to
conjugation in the codomain. For us there are four cases:

(1) nk = 1 and Πk is trivial;
(2) nk = 2, c∞(Πk)(z) = diag((z/z)a/2, (z/z)−a/2), and Πk, denoted ∆a, is the

automorphic representation generated by a cusp form f of weight κ, with
a = κ−1. If ap(f) is the Hecke eigenvalue at p then tp(Πk) = diag(α, α−1),

with ap(f) = p(κ−1)/2(α+ α−1);

(3) nk = 3, c∞(Πk)(z) = diag((z/z)a, 1, (z/z)−a), and Πk, denoted Sym2∆a,
is the symmetric square lift of ∆a;

(4) nk = 4, c∞(Πk)(z) = diag((z/z)a/2, (z/z)b/2, (z/z)−b/2, (z/z)−a/2), and
Πk, denoted ∆a,b, is the spinor lift to GL4(A) of the automorphic repre-
sentation of GSp2(A) generated by a Siegel cusp form F of weight (j, κ)
(vector-valued when j > 0), with a = j + 2κ− 3, b = j + 1. Note that j is
even, so a, b are odd.

Letting Z denote the centre of GLnkdk , the representation Πk[dk] of GLnkdk(A)
occurs discretely in L2(Z(A)GLnkdk(Q)\GLnkdk(A)). In all cases, c∞(Πk[dk])(z)

= c∞(Πk)(z)⊗ diag((z/z)(dk−1)/2, (z/z)(dk−3)/2, . . . , (z/z)(3−dk)/2, (z/z)(1−dk)/2)

and

tp(Πk[dk]) = tp(Πk)⊗ diag(p(dk−1)/2, p(dk−3)/2, . . . , p(3−dk)/2, p(1−dk)/2).
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When Πk is the trivial representation of GL1(A), the representation Πk[dk] of
GLdk(A) is written simply [dk]. When direct summing the Πk[dk], we direct sum
the associated local Langlands parameters. To say that ⊕mk=1Πk[dk] is the global
Arthur parameter of πi is to say that each cp(πi) and c∞(πi), composed with the
standard representation from SON (C) to GLN (C), is conjugate in GLN (C) to the
local Langlands parameter associated to ⊕mk=1Πk[dk].

2.4. Theta series. Let L be an even unimodular lattice in QN , as above, and for
each m ≥ 1 define its theta series of degree m by

θ(m)(L,Z) :=
∑

x∈Lm

exp(πitr(〈x,x〉Z)),

where Z ∈ Hm := {Z ∈ Mm(C) : tZ = Z, Im(Z) > 0}, the Siegel upper half
space of degree m. It is known that θ(m)(L) is a Siegel modular form of weight
N/2 for the full modular group Spm(Z) := {g ∈ M2m(Z) : tgJg = J}, where

J =

(

0m −Im
Im 0m

)

. If g =

(

A B
C D

)

∈ Spm(Z) then

θ(m)(L, (AZ +B)(CZ +D)−1) = det(CZ +D)N/2θ(m)(L,Z).

Now one can define linear maps Θ(m) :M(C,K) →MN/2(Spm(Z)) by

Θ(m)





h
∑

j=1

xjej



 :=

h
∑

j=1

xj
|Aut(Lj)|

θ(m)(Lj),

where ei([Lj ]) = δij .

Proposition 2.1. (1) If vi ∈M(C,K) is an eigenvector for HK , then Θ(m)(vi)
(if non-zero) is a Hecke eigenform.

(2) Suppose that Θ(m)(vi) is non-zero, and that (N/2) ≥ m. Let tp(π) =

diag(β1,p, . . . , βN/2,p, β
−1
1,p, . . . , β

−1
N/2,p) be the Satake parameter at p for vi,

and let (diag(α1,p, . . . , αm,p, 1, α
−1
1,p, . . . , α

−1
m,p) ∈ SO(m+1,m)(C) be the Sa-

take parameter at p of the automorphic representation of Spm(A) generated
by Θ(m)(vi). Then, as multisets,

{β±1
1,p, . . . , β

±1
(N/2),p} =

{

{α±1
1,p, . . . , α

±1
m,p} ∪ {p±((N/2)−m−1), . . . , p±1, 1, 1} if (N/2) > m;

{α±1
1,p, . . . , α

±1
m,p} if (N/2) = m.

(3) If 8 | N and (N/2) ≥ m+1, a cuspidal Hecke eigenform F ∈ SN/2(Spm(Z))

is in the image of Θ(m) if and only if L(st, F, (N/2) − m) 6= 0, where
L(st, F, s) =

∏

p

(

(1− p−s)−1
∏m
i=1((1− αi,pp

−s)(1− α−1
i,pp

−s))−1
)

is the
standard L-function.

(1) and (2) follow from a theorem of Rallis [56, Remark 4.4(A)], as explained in
[10, 7.1]. (3) is a theorem of Böcherer [6, Theorem 41].

The degree of vi is defined to be the smallest m such that Θ(m)(vi) 6= 0. Note
that if m ≥ 1, Φ(Θm(vi)) = Θ(m−1)(vi), where Φ is the Siegel operator, so this
first non-zero theta series is cuspidal, except in the case that vi is a multiple of the
all-ones vector, where Θ(m)(vi) is an Eisenstein series for all 1 ≤ m < (N/2), by
Siegel’s Main Theorem, and by convention the degree of vi is 0.
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Following Nebe and Venkov, but with slightly different normalisation as in [39,
➜12.5], we define an inner product and multiplication on M(C,K) by

(ei, ej) :=
1

|Aut(Li)|
δij

and
ei ◦ ej := δijei.

Let gi be the degree of vi, and let Fi := Θ(gi)(vi). The following is equivalent to
[37, Lemma 7.1].

Proposition 2.2.

〈Θ(gi+gj)(vk)|Hgi
×Hgj

, Fi × Fj〉 =
〈Fi, Fi〉〈Fj , Fj〉
(vi, vi)(vj , vj)

(vk, vi ◦ vj).

In particular, (vk, vi ◦ vj) 6= 0 if and only if the left hand side is non-zero.

Corollary 2.3. If (vk, vi ◦ vj) 6= 0 then gk ≤ gi + gj.

See [54, Proposition 2.3] for an alternative approach. If vi =
∑h
t=1 citet then

(vk, vi ◦ vj) =
∑h
t=1

1
|Aut(Lt)| cktcitcjt, so it is easy to compute in any given case.

2.5. Ikeda and Miyawaki lifts.

Proposition 2.4. Let κ, g be even natural numbers. Let f ∈ S2κ−g(SL2(Z)) be a
normalised Hecke eigenform. Let G ∈ Sκ(Spr(Z)) be a Hecke eigenform, for r < g.

(1) There exists a Hecke eigenform F ∈ Sκ(Spg(Z)) with standard L-function

L(st, F, s) = ζ(s)

g
∏

i=1

L(f, s+ κ− i).

(2) The function

Ff,G(Z) :=
∫

Spr(Z)\Hr

F

((

Z 0
0 W

))

G(−W )(det ImW )κ−r−1 dW,

if non-zero, is a Hecke eigenform in Sκ(Spg−r), with standard L-function

L(st,Ff,G, s) = L(st, G, s)

g−2r
∏

i=1

L(f, s+ κ− r − i).

(1) is a theorem of Ikeda [38], and F (whose existence was conjectured by Duke
and Imamoglu) is the Ikeda lift I(g)(f). Its scaling is determined naturally by a
choice of scaling of a half-integral weight form in Kohnen’s plus space corresponding
to f . (2) was also proved by Ikeda [37], and gives his construction of a form whose
existence was conjectured by Miyawaki in the case g = 4, r = 1 [51].

3. Even unimodular 24-dimensional quadratic forms over Q

In the case N = 24, the genus of even unimodular lattices has h = 24 classes,
represented by the Niemeier lattices. Nebe and Venkov diagonalised the operator
T2, and found that it has 24 distinct rational integer eigenvalues, shown in the
table below [54]. We have listed the eigenvalues λi(T2) in descending order, for
1 ≤ i ≤ 24. Let vi and πi be the corresponding eigenvectors and automorphic
representations, respectively. Chenevier and Lannes determined the πi in terms of
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Arthur’s endoscopic classification of automorphic representations of classical groups
[10]. The global Arthur parameters are listed in the final column of the table. Each
one Ai = ⊕mk=1Πk[dk] must pass the two tests that

c∞(Ai)(z) = diag
(

(z/z)11, (z/z)10, . . . , (z/z)0, (z/z)−11, (z/z)−10, . . . , (z/z)0
)

and that 211tr(t2(Ai)) = λi(T2), as computed using neighbours. That would be
enough to justify a conjecture that these global Arthur parameters are correct, but
Chenevier and Lannes gave several proofs that they really are correct, for example
by using Arthur’s multiplicity formula applied to the group SO24.

i λi (T2) degree Global Arthur parameters
1 8390655 0 [23]⊕ [1]
2 4192830 1 Sym2∆11 ⊕ [21]
3 2098332 2 ∆21[2]⊕ [1]⊕ [19]
4 1049832 3 Sym2∆11 ⊕∆19[2]⊕ [17]
5 533160 4 ∆19[4]⊕ [1]⊕ [15]
6 519120 4 ∆21[2]⊕∆17[2]⊕ [1]⊕ [15]
7 268560 5 Sym2∆11 ⊕∆19[2]⊕∆15[2]⊕ [13]
8 244800 5 Sym2∆11 ⊕∆17[4]⊕ [13]
9 145152 6 ∆21[2]⊕∆15[4]⊕ [1]⊕ [11]
10 126000 6 ∆21,13[2]⊕∆17[2]⊕ [1]⊕ [11]
11 99792 6 ∆17[6]⊕ [1]⊕ [11]
12 91152 7 Sym2∆11 ⊕∆15[6]⊕ [9]
13 89640 8 ∆15[8]⊕ [1]⊕ [7]
14 69552 7 Sym2∆11 ⊕∆19[2]⊕∆15[2]⊕∆11[2]⊕ [9]
15 51552 8 ∆21,9[2]⊕∆15[4]⊕ [1]⊕ [7]
16 45792 7 Sym2∆11 ⊕∆17[4]⊕∆11[2]⊕ [9]
17 35640 8 ∆19[4]⊕∆11[4]⊕ [1]⊕ [7]
18 21600 8 ∆21[2]⊕∆17[2]⊕∆11[4]⊕ [1]⊕ [7]
19 17280 9 Sym2∆11 ⊕∆19,7[2]⊕∆15[2]⊕∆11[2]⊕ [5]
20 5040 9 Sym2∆11 ⊕∆19[2]⊕∆11[6]⊕ [5]
21 −7920 10 ∆21,5[2]⊕∆17[2]⊕∆11[4]⊕ [1]⊕ [3]
22 −16128 10 ∆21[2]⊕∆11[8]⊕ [1]⊕ [3]
23 −48528 11 Sym2∆11 ⊕∆11[10]⊕ [1]
24 −98280 12 ∆11[12]

The degrees were proved by Nebe and Venkov [54], with the exception of cases
19 and 21, where the degrees they conjectured were later proved by Chenevier
and Lannes [10]. As pointed out in [10, 1.4], 20 out of the 24 global Arthur
parameters (all those not involving any ∆a,b) may be proved as a direct con-

sequence of work of Ikeda [37, ➜7]. For these cases, he identified Θ(gi)(vi) in
terms of Ikeda lifts and Miyawaki lifts. For example, for 5, letting κ = 12 and
g = 4, Proposition 2.4(1) gives us an Ikeda lift F = I(4)(f) ∈ S12(Sp4(Z)),
where f ∈ S20(SL2(Z)). Proposition 2.1(3) (Böcherer’s Theorem), combined with
L(st, F, s) = ζ(s)

∏g
i=1 L(f, s+κ−i), shows that F = Θ(4)(v) for some v ∈M(C,K),

necessarily an eigenvector v = vi, using Proposition 2.1(1) and the fact that all the
eigenspaces in M(C,K) are 1-dimensional. The values of λi(T2) show that it can
only be i = 5. The formula L(st, F, s) = ζ(s)

∏g
i=1 L(f, s + κ − i) implies Satake
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parameters for the associated automorphic representation of Sp4(A) that make
∆19[4]⊕ [1] its global Arthur parameter. The extra ⊕[15] in the global Arthur pa-
rameter of π5 is accounted for by the extra {p±7, . . . , p±1, 1} in Proposition 2.1(2)
(Rallis’s Theorem), with N = 24,m = 4.

4. Preliminaries on even unimodular lattices over real quadratic

fields

Let E be a real quadratic field, with ring of integers OE . Let L be an OE-lattice
in V ≃ EN , with totally positive-definite quadratic form x 7→ 1

2 〈x,x〉. We may
define an orthogonal group scheme OL over OE , a genus, algebraic modular forms
M(C,K), Hecke operators Tp, vi and πi very much as before. We assume that
L is even (〈x,x〉 ∈ 2OE ∀x ∈ L), and unimodular (L∗ = L, where L∗ := {y ∈
V | 〈y,x〉 ∈ OE ∀x ∈ L}). The following result of Scharlau is worth noting.

Proposition 4.1. [58, Proposition 3.1] If 4 | N , there is a unique genus of free,
even unimodular lattices of determinant 1.

If OE has class number 1, the word “free” is superfluous, and if the narrow class
number is equal to the class number then “determinant 1” is superfluous, since this
is the determinant of a Gram matrix, well-defined modulo squares of units, but
the determinant of a totally positive-definite unimodular lattice is a totally positive
unit, necessarily a square under the given condition.

There will be local Langlands parameters c∞1
(πi), c∞2

(πi) :WR → SON (C), for
the two infinite places ∞1,∞2, and cp(πi) :WEp

→ SON (C) (with Frobp 7→ tp(πi))
for each finite prime p. In the global Arthur parameters, cuspidal automorphic
representations of GLnk

(A) are replaced by cuspidal automorphic representations
of GLnk

(AE), modular forms by Hilbert modular forms. In order for everything
to work as before, we must check in each case we look at that, for every finite
prime p, SOL/Fp is split and SOL/Op is reductive (hence, by [65, 3.8.1], SOL(Op)
is a hyperspecial maximal compact subgroup). This is necessary for the relation
between p-neighbours and the Hecke operators Tp, for the equation (1) for Hecke
eigenvalues, and for the application of Rallis’s theorem to Proposition 2.1.

If the norm of a fundamental unit is −1 (e.g if OE has narrow class number 1,
with every ideal generated by a totally positive element), then the different D is
generated by a totally positive element δ. Let σ1, σ2 be the two real embedddings
of E. We may define the theta series of degree m of L as

θ(m)(L) =
∑

x∈Lm

exp (πitr (σ1 (〈x,x〉/δ)Z1 + σ2 (〈x,x〉/δ)Z2)) ,

where Z = (Z1, Z2) ∈ H2
m.

If the norm of a fundamental unit is 1 then D has a generator δ with σ1(δ) > 0
and σ2(δ) < 0, and we define θ(m)(L) by the same formula, but now with (Z1, Z2) ∈
Hm × H−

m, where H−
m := {Z ∈ Mm(C) : tZ = Z, Im(Z) < 0}. Then in either case

θ(m)(L) ∈ MN/2(Spm(OE)), where the N/2 is parallel weight (N/2, N/2), cf. [33,

➜4],[32, p.371]. Thus, if g =

(

A B
C D

)

∈ Spm(OE) and we denote σ1(A) = A1 etc.,

then

θ(m)(L, (AZ +B)(CZ +D)−1)

= det(C1Z1 +D1)
N/2 det(C2Z2 +D2)

N/2θ(m)(L, (Z1, Z2)),
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where

(AZ+B)(CZ+D)−1 := ((A1Z1+B1)(C1Z1+D1)
−1, (A2Z2+B2)(C2Z2+D2)

−1).

Again one can define linear maps Θ(m) :M(C,K) →MN/2(Spm(OE)) by

Θ(m)





h
∑

j=1

xjej



 :=

h
∑

j=1

xj
|Aut(Lj)|

θ(m)(Lj).

Parts (1) and (2) of Proposition 2.1 are just as before. Note that we are concerned
with automorphic representations of Spm(AE), not GSpm(AE) so we have strong
approximation even when the narrow class number of E is not 1. Thus it makes
sense to talk of an individual function F on H2

m or Hm×H−
m being a Hecke eigenform

(interchangeable with an automorphic form on Spm(AE), as explained in [44, p.926–
7]), but this does not include the Hecke operators usually denoted T (p), which only
exist for GSpm. In place of (3) we have

Proposition 4.2. If N/2 > m+1 (with N such that we have an even unimodular
lattice L, with reference to whose genus the maps Θ(m) are defined) then a Hecke
eigenform F ∈ SN/2(Spm(OE)) is in the image of Θ(m) if L(st, F, (N/2)−m) 6= 0.

This is based on work of Kuang [44]. We do not need his condition 8 | N ,
whose purpose was to construct something like an even unimodular quadratic form,
given that we start with one. His Theorem 2 omits the condition L(st, F, (N/2)−
m) 6= 0, and his Proposition 5.4 appears to claim that the non-vanishing follows
automatically from that of the local factors. But the example where E = Q (he
works in the setting of any totally real field), N = 32, κ = 16,m = g = 14,
f ∈ S18(SL2(Z)) and F = I(14)(f) ∈ S16(Sp14(Z)) shows that this is not so. Here

L(st, F, 2) = ζ(2)
∏14
i=1 L(f, 18− i), which includes the vanishing factor L(f, 9).

The notion of degree, and Proposition 2.2, carry over in the obvious fashion,
as do the statements about Ikeda lifts and Miyawaki lifts. Ikeda lifts for Hilbert
modular forms were constructed by Ikeda and Yamana [39], and the application to
Miyawaki lifts of Hilbert-Siegel modular forms has been worked out in detail by
Atobe [2]. The following is from Corollaries 1.4 and 11.3 in [39].

Proposition 4.3. Given N,L and M(C,K) as above, if E is of narrow class
number H = 1 suppose that f ∈ SN/2(SL2(OE)) is a Hecke eigenform, with as-
sociated cuspidal automorphic representation ∆(N/2)−1 of GL2(AE). More gener-

ally, in place of f consider the appropriate H-tuple of functions on H2 represent-
ing an automorphic form on GL2(AE) that is right-invariant under

∏

GL2(Op)
and has components at the infinite places corresponding to weight N/2, say f ∈
SN/2(GL2(AE),

∏

GL2(Op)).

(1) There exists πi with global Arthur parameter ∆(N/2)−1[N/2].

(2) If L(f,N/4) 6= 0 then Θ(N/2)(vi) = I(N/2)(f), up to scalar multiples,
whereas if L(f,N/4) = 0 then Θ(N/2)(vi) = 0.

5. Even unimodular 8-dimensional quadratic forms over Q(
√
2)

Takada [64] showed that if E = Q(
√
2) (for which H = 1) then the genus of

even unimodular OE-lattices contains a single class if N = 4 (in which case there
will be a single v1 = (1), π1 of global Arthur parameter [1] ⊕ [3]). Hsia and Hung
[32] proved that there are 6 classes if N = 8. These were considered by Ikeda and
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Yamana [39, ➜➜12.4,12.5]. They took the matrix from [32] representing T(
√
2) with

respect to the basis {e1, . . . , eh} for M(C,K), and computed its eigenvalues and
eigenvectors. The eigenvalues are in the table below. The global Arthur parameters
follow, using Proposition 2.1(2), from their determination of all the Θ(gi)(vi). (We
know that OL is split over each Ep and reductive over each Op, since one choice of
L is E8 ⊗Z OE .)

First, since v1 = t(1, . . . , 1), θ(m)(v1) is an Eisenstein series for all m with 1 ≤
m < (N/2) − 1 = 3, by the Siegel-Weil formula. The [1] ⊕ [7] then follows from
Proposition 2.1(2). The space S4(SL2(OE)) is spanned by a single form g, with
associated ∆3. Using Proposition 4.3(1), there exists some πi with global Arthur
parameter ∆3[4], which can only be π2, and if one wants the theta series too then
Proposition 4.3(2) gives Θ(4)(v2) = I(4)(g). (Magma gives L(g, 2) ≈ 0.440328 6= 0.)
The space S6(SL2(OE)) is spanned by Galois conjugate forms f1, f2, with associated

cuspidal automorphic representations of GL2(AE) both denoted ∆
(2)
5 . Both I(2)(f1)

and I(2)(f2) are in the image of Θ(2), by Proposition 4.2. This accounts for π5
and π6. Similarly g is in the image of Θ(1), which accounts for π4, recalling that
the standard L-function of g is (a translate of) its symmetric square L-function.
Finally, Ikeda and Yamana use Proposition 2.2 to show that g3 = 3, and prove that
Θ(3)(v3) = FI(4)(g),g. (Then we may use Proposition 2.4(2) for the global Arthur

parameter.)

i λi

(

T(
√
2)

)

degree Global Arthur parameters

1 135 0 [1]⊕ [7]
2 −30 4 ∆3[4]
3 −8 3 Sym2∆3 ⊕∆3[2]⊕ [1]
4 58 1 Sym2∆3 ⊕ [5]

5 33 + 3
√
73 2 ∆

(2)
5 [2]⊕ [3]

6 33− 3
√
73 2 ”

6. Even unimodular 8-dimensional quadratic forms over Q(
√
5)

Maass [49] showed that if E = Q(
√
5) (again H = 1) then the genus of even

unimodular OE-lattices contains a single class if N = 4 (in which case there will
be a single v1 = (1), π1 of global Arthur parameter [1] ⊕ [3]), and 2 classes if
N = 8. In this latter case, we computed the matrices representing the neighbour

operators T(
√
5) and T(2) to be

(

12456 7200
12096 7560

)

and

(

3650 1875
3150 2175

)

, respectively.

For this, and similar computations referred to in later sections, we used Magma
code written by M. Kirschmer, available at http://www.math.rwth-aachen.de/

~Markus.Kirschmer/. The eigenvalues are in the table below. One eigenvector is
v1 = t(1, 1), with π1 of global Arthur parameter [1]⊕ [7]. Note that the computed

19656 matches 5(8/2)−1tr(diag(53, 52, 5, 1, 5−3, 5−2, 5−1, 1)) = 53 + 57−1
5−1 . The other

eigenvector is t(−25, 42). Using Magma again, the space S6(SL2(OE)) is spanned by
a single form f , on which the eigenvalues of the (Hilbert modular) Hecke operators
T(

√
5) and T(2) are −90 and 20, respectively. Let F = I(2)(f) ∈ S4(Sp2(OE))

(κ = (N/2) = 4, g = m = 2, 2κ − g = 6). Then (N/2) = 4 > 3 = m + 1,
and L(st, F, (N/2)−m) = ζ(2)L(f, 5)L(f, 4) 6= 0, so by Proposition 4.2, F is in the
image of Θ(2), say F = Θ(2)(vi). It follows from Proposition 2.1(2) that πi has global
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Arthur parameter ∆5[2]⊕ [1]⊕ [3], and the computed Hecke eigenvalue shows that
it can only be π2. Indeed, if t(

√
5)(∆5) = diag(α, α−1) (so 55/2(α + α−1) = −90),

then

53((α+α−1)(5−1/2+51/2)+1+(5−1+1+5)) = (−90)(1+5)+52(1+5+52)+53 = 360.

We could reach the same conclusions using eigenvalues of T(2) instead of T(
√
5).

i λi

(

T(
√
5)

)

λi
(

T(2)
)

degree Global Arthur parameters

1 19656 5525 0 [1]⊕ [7]
2 360 500 2 ∆5[2]⊕ [1]⊕ [3]

Note that t(0, 1) = 1
67 (25v1 + v2). Applying the Hecke operator Tp, for any prime

ideal p, to both sides, it follows easily that λ1(Tp) ≡ λ2(Tp) (mod 67). This is

Np3+(1+Np+Np2+. . .+Np6) ≡ ap(f)(1+Np)+(Np2+Np3+Np4)+Np3 (mod 67),

which boils down to (Np+1) times the known Eisenstein congruence ap(f) ≡ 1+Np5

(mod 67), the true origin of the modulus 67 being as a divisor of the algebraic part
of the Dedekind zeta value ζE(6). Using the factorisation ζE(s) = ζ(s)L(s, χ5), and

using Bernoulli polynomials to compute L(1− 6, χ5), one finds ζE(6) =
23·67·π12

34·5·7 .
Similarly in the previous section, we could have proved congruences modulo

11 between λ1(Tp) and all of λ2(Tp), λ3(Tp), λ4(Tp), and modulo divisors of 19
between λ1(Tp) and λ5(Tp), λ6(Tp). These are accounted for similarly by Eisenstein
congruences in weights 4 and 6, with 11 dividing ζQ(

√
2)(4)/π

8 and 192 dividing

ζQ(
√
2)(6)/π

12.

To justify what we have done in this section, and what we shall do in the next,
we need to take care of the following lemmas.

Lemma 6.1. For L even and unimodular of rank 4n over OE, where E = Q(
√
5),

SOL is split at all finite places.

Proof. One of the classes in the genus is represented by the direct sum (let’s call it
L) of n copies of a lattice representing the single class of rank 4 even, unimodular
lattices. We can take this to be a maximal order in the totally definite quaternion
algebra D over E unramified at all finite places (the icosian ring), with bilinear
form (α, β) 7→ αβ + αβ, so quadratic form α 7→ αα. Since D has a basis {1, i, j, k}
over E satisfying the same relations as the usual Hamilton quaternions, over E the
quadratic form on L is equivalent to

∑4n
i=1 x

2
i . We just need to show that at all

finite places p,
∑4n
i=1 x

2
i is equivalent over Ep to

∑2n
i=1 x

2
i −

∑4n
i=2n+1 x

2
i , which in

turn is equivalent to the desired
∑2n
i=1 xix2n+i.

Two forms over a p-adic field are equivalent if and only if they have the same
rank, discriminant (modulo squares) and Hasse-Witt invariant. For

∑4n
i=1 x

2
i and

∑2n
i=1 x

2
i −

∑4n
i=2n+1 x

2
i , the rank and discriminant are obviously equal. For a di-

agonal form
∑N
i=1 aix

2
i , the Hasse-Witt invariant is a product of Hilbert symbols

∏

i<j(ai, aj)p [59, Chapter IV,➜2]. Since z2−(x2+y2) = 0 and z2−(x2−y2) = 0 have

non-trivial solutions (1, 0, 1) and (1, 1, 0) respectively in Ep, (1, 1)p = (1,−1)p = 1.

Hence the Hasse-Witt invariants of
∑4n
i=1 x

2
i and

∑2n
i=1 x

2
i −

∑4n
i=2n+1 x

2
i are 1 and

(−1,−1)
( 2n

2 )
p , respectively, so it suffices to show that (−1,−1)p = 1, i.e. that
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x2 + y2 + z2 = 0 has a non-trivial solution in every Ep. This is easy for p di-
viding odd p, where we have solutions in Qp (by the Chevalley-Warning theorem
and Hensel’s lemma). For p = (2), we can use Hensel’s lemma in the variable x
to lift the mod 8 solution (2 + τ, 1 + τ, 1) (where τ2 = 1 + τ) to a solution in Ep.
Alternatively we can use (−1,−1)∞1

= (−1,−1)∞2
= −1 and the product formula

for the Hilbert symbol. �

Lemma 6.2. For L even and unimodular of rank 4n over OE, where E = Q(
√
5),

and for every finite p, SOL/OE,p is reductive.

Proof. Since L is unimodular, the group scheme SOL is reductive over OE,p for
any finite prime p 6= (2). (The special fibre is the special orthogonal group of
the quadratic form associated to the reduction of the Gram matrix, which is non-
singular. In characteristic 2 we have to be more careful about the distinction
between bilinear forms and quadratic forms.) The question arises whether or not
SOL/OE,(2) is reductive.

As already remarked in the proof of Lemma 6.1, one of the classes in the genus
is represented by the direct sum (let’s call it L) of n copies of the icosian ring
R. Following [66, (11.5.7)], we take {1, i, ζ, iζ} as an OE-basis for R, where ζ :=

(τ + τ−1i+ j)/2, τ = (1+
√
5)/2 is the golden ratio and i, j are the usual Hamilton

quaternions of the same names. With respect to this basis, one easily checks that the

Gram matrix of the bilinear form (α, β) 7→ αβ+αβ is









2 0 τ −τ−1

0 2 τ−1 τ
τ τ−1 2 0

−τ−1 τ 0 2









,

which does have determinant 1. Using (2)-integral elementary row and column
operations to change the OE,(2)-basis of the lattice R ⊗ OE,(2), one reduces the

Gram matrix to an equivalent









2 τ 0 0
τ 2 0 0
0 0 4 + 2τ −1− 3τ
0 0 −1− 3τ 4 + 2τ









, then further to









2 1 0 0
1 2τ−2 0 0
0 0 2(2 + τ) 1
0 0 1 2(2 + τ)/(1 + 3τ)2









.

In the notation of the proof of [55, Proposition 9], both blocks are of the form K ≃
(

2ǫ 1
1 2α

)

. Up to squares, the determinant of the first block is 4− τ2 = −(τ − 3).

Since τ − 3 is not a square in OE,(2) and since the block is “even”, K ≃ H(ρ), in
O’Meara’s notation. Likewise for the second block, since the overall determinant
is 1, so R ≃ H(ρ) ⊕ H(ρ), which is isomorphic to H(0) ⊕ H(0), according to the
proof of [55, Proposition 10]. In other words, with respect to some OE,(2)-basis of

the lattice R⊗OE,(2), the Gram matrix is









0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0









. It follows now from [14,

Proposition C.3.10] that SOL is reductive (in fact semi-simple) over OE,(2). �
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7. Even unimodular 12-dimensional quadratic forms over Q(
√
5)

Costello and Hsia [13] showed that if E = Q(
√
5) then the genus of even unimod-

ular OE-lattices contains 15 classes if N = 12. We have simultaneously diagonalised
the neighbour operators T(2) and T(

√
5), with the eigenvalues recorded in the ta-

ble below. We have also produced guesses for the global Arthur parameters that
recover these computed Hecke eigenvalues (and the correct c∞1

(z), c∞2
(z)), with

the exception of three cases. To illustrate this, consider i = 10. Using Magma, the

space S[10,6](SL2(OE)) (i.e. f
(

az+b
cz+d

)

= (c1z1 + d1)
10(c2z2 + d2)

6f(z), non-parallel

weight) is one-dimensional. The associated automorphic representation ∆(9,5) of
GL2(AE) has

c∞1
(∆(9,5))(z) = diag((z/z)9/2, (z/z)−9/2),

c∞2
(∆(9,5))(z) = diag((z/z)5/2, (z/z)−5/2).

Exchanging embeddings, we have ∆(5,9) with

c∞1
(∆(5,9))(z) = diag((z/z)5/2, (z/z)−5/2),

c∞2(∆(5,9))(z) = diag((z/z)9/2, (z/z)−9/2).

Now if π = ∆(9,5)[2]⊕∆(5,9)[2]⊕ [3]⊕ [1] then

c∞1(π) = diag((z/z)9/2, (z/z)−9/2)⊗ diag((z/z)1/2, (z/z)−1/2)

⊕diag((z/z)5/2, (z/z)−5/2)⊗ diag((z/z)1/2, (z/z)−1/2)⊕ diag((z/z)1, (z/z)−1, 1, 1),

which is conjugate (in GL12(C)) to the correct

diag((z/z)5, . . . , (z/z)1, 1, (z/z)−5, . . . , (z/z)−1, 1).

Similarly c∞2
(π) is correct. Here is a small table of Hecke eigenvalues of the Hilbert

modular forms used in this section.

T(2) T(
√
5)

∆5 20 −90
∆7 140 150

∆
(2)
9 170∓ 30

√
809 570± 60

√
809

∆(9,5),∆(5,9) 320 1950
∆(7,3),∆(3,7) −160 150

Note that in general, ∆(9,5) and ∆(5,9) do not have the same Hecke eigenvalues,

rather they are conjugate in Q(
√
5).

For i = 10 and p = (2), if 49/2(β + β−1) = 320, we check

45tr(β·41/2, β·4−1/2, β−1·41/2, β−1·4−1/2, β·41/2, β·4−1/2, β−1·41/2, β−1·4−1/2, 4, 1, 4−1, 1)

= 2(320)(1 + 4) + 44(1 + 4 + 42) + 45 = 9600,

so ∆(9,5)[2] ⊕ ∆(5,9)[2] ⊕ [1] ⊕ [3] would produce the same λ10(T(2)) as what was
computed using neighbours.
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i λi
(

T(2)
)

λi

(

T(
√
5)

)

gi Global Arthur parameters (conj’l)

1 1399125 12210156 0 [1]⊕ [11]
2 348900 2446380 1 Sym2∆5 ⊕ [9]

3 89250 + 150
√
809 494820− 360

√
809 2 ∆

(2)
9 [2]⊕ [1]⊕ [7]

4 89250− 150
√
809 494820 + 360

√
809 2 ”

5 27300 −351540 6 ∆5[6]
6 24000 107100 3 Sym2∆5 ⊕∆7[2]⊕ [5]
7 21300 90900 3 ?
8 18300 45900 4 ∆7[4]⊕ [1]⊕ [3]
9 10800 27900 4 ?
10 9600 45900 4 ∆(9,5)[2]⊕∆(5,9)[2]⊕ [1]⊕ [3]

11 8850 + 150
√
809 12420− 360

√
809 4 ∆

(2)
9 [2]⊕∆5[2]⊕ [1]⊕ [3]

12 8850− 150
√
809 12420 + 360

√
809 4 ”

13 7200 −62100 5 Sym2∆5 ⊕∆5[4]⊕ [1]
14 −6000 17100 ≤ 5 Sym2∆5 ⊕∆(7,3)[2]⊕∆(3,7)[2]⊕ [1]
15 900 −13500 ≤ 5 ?

Unlike the situation in the previous two sections, it is not possible to prove all the
guesses for global Arthur parameters using theta series. But we can do most of
them, all but i = 10,14.

Proposition 7.1. The guesses for global Arthur parameters are correct in the cases
i = 1,2,3,4,5,6,8,11,12,13. In these cases, also the degrees are as in the table.

Proof. i = 1. This is proved just as in the previous sections.
i = 2. The space S6(SL2(OE)) is spanned by a single form f , met already

in the previous section. Since (N/2) = 6 > 1 + 1 = m + 1, and L(st, f, 5) =
L(Sym2f, 10) 6= 0, Proposition 4.2 tells us that f belongs to the image of Θ(1). The

Satake parameter at (
√
5) for the automorphic representation of Sp1(A) associated

with f is (α2, 1, α−2). If Θ(1)(vi) = f (up to scalar multiples) then t(
√
5)(πi) =

(diag(54, 53, . . . , 1, α2, 5−4, 5−3, . . . , 1, α−2)), by Proposition 2.1(2). Now

5(12/2)−1tr(diag(54, 53, . . . , 1, α2, 5−4, 5−3, . . . , 1, α−2))

= 5
59 − 1

5− 1
+ (55/2(α+ α−1))2 − 55 = 5

59 − 1

5− 1
+ (−90)2 − 55 = 2446380,

so we must have Θ(1)(v2) = f . Proposition 2.1(2) now shows that for every p we
have

tp(π2) = (diag(Np4,Np3, . . . , 1, α2
p,Np

−4,Np−3, . . . , 1, α−2
p )),

where ap(f) = (Np)5/2(αp + α−1
p ). Thus every local Langlands parameter of π2 at

a finite prime matches that attached to the global Arthur parameter Sym2∆5⊕ [9].
At ∞1 and ∞2, c∞j (Sym

2∆5) : z 7→ diag((z/z)5, 1, (z/z)−5) (for j = 1, 2), and

c∞j ([9]) : z 7→ diag((z/z)4, . . . , (z/z)1, 1, (z/z)−4, . . . , (z/z)−1). The concatenation
matches the standard c∞j (πi)(z). Also the other element j generatingWR with C×

(with jzj−1 = z) acts to exchange powers of z/z with opposite exponents, for both
c∞j

(πi) and c∞j
(Sym2∆5),c∞j

([9]). So all the local Langlands parameters match,
and the global Arthur parameter of π2 is as stated. For the other cases we shall
not give such full details of the logic.
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i = 3,4. The space S10(SL2(OE)) is spanned by Galois conjugate forms f1, f2,
with associated cuspidal automorphic representations of GL2(AE) both denoted

∆
(2)
9 . Both I(2)(f1) and I(2)(f2) ∈ S6(Sp2(OE)) are in the image of Θ(2), by

Proposition 4.2, since 6 > 2+1 and L(st, I(2)(fj), 4) = ζ(4)L(fj , 9)L(fj , 8) 6= 0. By
Proposition 2.1(2) (and Proposition 2.4(1)), the corresponding πi have the correct

tp for ∆
(2)
9 [2]⊕ [1]⊕ [7], which also produces the correct c∞1

, c∞2
. Checking Hecke

eigenvalues, i must be 3 and 4.
i = 8. The space S8(SL2(OE)) is spanned by a single form g, with associated

∆7. By Proposition 4.2, I(4)(g) = Θ(4)(vi) for some i, since 6 > 4 + 1 and
L(st, I(4)(g), 2) = ζ(2)L(g, 7)L(g, 6)L(g, 5)L(g, 4) 6= 0. Note that although L(g, 4)
is a central value, the sign in the functional equation is +1, and in fact L(g, 4) 6= 0.
(Magma produced, after about 2 minutes, an approximation to 29 decimal places,
beginning 1.606277885, sufficient to prove non-vanishing.) As before, πi must have
global Arthur parameter ∆7[4]⊕ [1]⊕ [3], and checking against the computed Hecke
eigenvalues, i must be 8.

i = 5. By Proposition 4.3(1), there is some πi with global Arthur parameter

∆5[6], and it can only be i = 5, since −90 56−1
5−1 = −351540. We may also check

that L(f, 3) ≈ 0.854944 6= 0, so Θ(6)(v5) = I(6)(f), by Proposition 4.3(2).
i = 6. We have seen already that Θ(4)(v8) = I(4)(g) (with g ∈ S8(SL2(OE))),

and Θ(1)(v2) = f ∈ S6(SL2(OE)), in particular g8 = 4 and g2 = 1. We find that
(v8, v2 ◦ v6) 6= 0, so by Proposition 2.2 Θ(1+g6)(v8) 6= 0, so 1 + g6 ≥ g8 = 4,
i.e. g6 ≥ 3. But also (v6, v3 ◦ v2) 6= 0, which implies that g6 ≤ g3 + g2 =
2 + 1 = 3. Hence g6 = 3. Knowing this, Proposition 2.2 now tells us that
〈Θ(4)(v8)|H1×H3 ,Θ

(1)(v2)×Θ(3)(v6)〉 6= 0, i.e. 〈I(4)(g)|H1×H3 , f ×Θ(3)(v6)〉 6= 0. By
Proposition 2.4(2) then 〈FI(4)(g),f ,Θ(3)(v6)〉 6= 0, so the Hecke eigenforms FI(4)(g),f
and Θ(3)(v6) must have the same Hecke eigenvalues and standard L-function. Using
L(st,FI(4)(g),f , s) = L(st, f, s)L(g, s + 4)L(g, s + 3), the global Arthur parameter

of the cuspidal automorphic representation of Sp3(OE) associated to Θ(3)(v6) is
Sym2∆5 ⊕∆7[2], then using Proposition 2.1(2) the global Arthur parameter of π6
is Sym2∆5⊕∆7[2]⊕ [5] (where again one checks easily that c∞1

and c∞2
are right).

We may actually say something a bit stronger about the relation between FI(4)(g),f
and Θ(3)(v6), now we know that FI(4)(g),f 6= 0. Since N/2 = 6 > 3 + 1 = m + 1,

and since L(st,FI(4)(g),f , (N/2) − m) = L(st, f, 3)L(g, 7)L(g, 6) 6= 0, Proposition

4.2 tells us that FI(4)(g),f is in the image of Θ(3), and (up to scalar multiple) it can

only be Θ(3)(v6).
i = 11,12. This time use (v5, v3 ◦ v11) 6= 0 and (v11, v6 ◦ v2) 6= 0 to show that

g11 = 4 and Θ(4)(v11) has the same Hecke eigenvalues as FI(6)(f),I(2)f1 . Then since

N/2 = 6 > 4 + 1 = m+ 1 and

L(st,FI(6)(f),I(2)f1 , (N/2)−m) = L(st, I(2)f1, 2)L(f, 5)L(f, 4)

= ζ(2)L(f1, 7)L(f1, 6)L(f, 5)L(f, 4) 6= 0,

Θ(4)(v11) and FI(6)(f),I(2)f1 are actually the same up to scalar multiples. Similarly
for i = 12.

i = 13. We argue as in the previous case, using (v5, v2 ◦ v13) 6= 0 and (v13, v6 ◦
v3) 6= 0 to prove that g13 = 5 and Θ(5)(v13) is in the same Hecke eigenspace
as FI(6)(f),f . This proves the guess for the global Arthur parameter and shows
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that FI(6)(f),f 6= 0. To show that FI(6)(f),f and Θ(5)(v13) are equal up to scalar

multiple, we proceed as follows, thanks to advice from Yamana. Since N/2 =
m + 1 = 6, Proposition 4.2 does not apply. In other words, we are outside the
“convergent range” for the Siegel-Weil formula. However, a theorem of Gan, Qiu
and Takeda, extending Rallis’s inner product formula [21][Theorem 11.3] applies.
In their notation, r = 0, ǫ0 = 1,m = 12, n = 5, d(n) = 6, and the L-value in their
condition (b) is L(st,FI(6)(f),f , (N/2)−m) = L(st, f, 1)L(f, 5)L(f, 4)L(f, 3)L(f, 2),

which is non-zero as required. Regarding the condition (a), the required non-
vanishing of the local zeta integrals at infinite places is pointed out by Z. Liu in
[48][➜4.3], who attributes the computation to Shimura [61]. Hence the theta lift to
O12(AE) of (the automorphic representation associated to) FI(6)(f),f is non-zero.

By a theorem of Moeglin [52], the theta lift of this to Sp5(AE) is back where we
started. It follows that FI(6)(f),f is in the image of Θ(5), and (up to scalar multiple)

it can only be Θ(5)(v13).
�

Proposition 7.2. The rest of the degrees in the table are correct.

Proof. i = 7. (v7, v2 ◦ v3) 6= 0 =⇒ g7 ≤ g2 + g3 = 1 + 2 = 3. But (v13, v7 ◦ v3) 6=
0 =⇒ g7 ≥ g13 − g3 = 5− 2 = 3, hence g7 = 3.

i = 9,10. (v9, v6 ◦ v2) 6= 0 =⇒ g9 ≤ 4, while (v5, v9 ◦ v3) 6= 0 =⇒ g9 ≥ 4,
so g9 = 4. Similarly, non-vanishing of (v10, v6 ◦ v2) and (v5, v10 ◦ v3) implies that
g10 = 4.

i = 14,15. (v14, v8 ◦ v2) 6= 0 =⇒ g14 ≤ 5 and (v15, v9 ◦ v2) 6= 0 implies that
g15 ≤ 5. �

An alternative approach to proving the global Arthur parameters for i = 10,14
(or any of the others), would be to use Arthur’s multiplicity formula for symplectic
groups over E, to prove the existence of Hecke eigenforms in S6(Sp4(OE)) and
S6(Sp5(OE)) whose associated automorphic representations have global Arthur
parameters ∆(9,5)[2] ⊕ ∆(5,9)[2] ⊕ [1] and Sym2∆5 ⊕ ∆(7,3)[2] ⊕ ∆(3,7)[2], respec-
tively, then to proceed as in the proof of Proposition 7.1, to show that each is
in the image of the appropriate theta map. This would be the analogue of the
proof in [10, 9.2.11] for the Niemeier lattices. We do not pursue this here, be-
cause we are as yet unable to prevent this method showing that the parameter
ψ = ∆(7,3) ⊗ ∆(3,7) ⊕ ∆7[2] ⊕ [3] ⊕ [1] also occurs. This is impossible, since the

eigenvalue of T(2) would be (−160)2 + 4(140)(1 + 4) + 44(1 + 4 + 42) + 45 = 34800,
which does not match anything in the table. Here ∆(7,3) ⊗ ∆(3,7) comes from a
representation of SO2,2(AE) arising via tensor-product functoriality, as explained
in [11, 4.14].

7.1. Congruences mod 29 and mod 11. As in the previous section, we may
easily prove the following congruences, for any prime ideal p:

(1) λ1(Tp) ≡ λ2(Tp) ≡ λ5(Tp) ≡ λ13(Tp) (mod 67);
(2) λ3(Tp) ≡ λ11(Tp), λ4(Tp) ≡ λ12(Tp) (mod 67);
(3) λ2(Tp) ≡ λ6(Tp) (mod 19);
(4) λ1(Tp) ≡ λ3(Tp) (mod q) with q | 191 or 2161 (similarly for λ4(Tp));
(5) λ8(Tp) ≡ λ10(Tp) (mod 29);
(6) λ13(Tp) ≡ λ14(Tp) (mod 11).
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The first four are accounted for by congruences between cusp forms and Eisenstein
series. We have already met 67 | (ζE(6)/π12), but also 19 | (ζE(8)/π16) and 191 ·
2161 | (ζE(10)/π20). In fact 192 | (ζE(8)/π16), and the congruence in (3) appears to
be modulo 192. To explain the congruences (5) and (6) we shall need the following.

Proposition 7.3. Let π0 be a cuspidal automorphic representation of GL2(AE)
(E a real quadratic field) with trivial character and π0,∞1

|SL2(R) and π0,∞2
|SL2(R)

isomorphic to the discrete series representations D+
k1

⊕ D−
k1
, D+

k2
⊕ D−

k2
respec-

tively, say k1 > k2 ≥ 2. Let N0 be the level of π0 and let N = N(N0)d
2
E, where

dE is the discriminant. Then there is a Siegel cusp form F of genus 2, weight
Symj(C2)⊗ detκ, with (j, κ) = (k2 − 2, 2 + k1−k2

2 ), and paramodular level N , such
that L(Spin, F, s) = L(π0, s).

Proof. This is a mild generalisation of part of a theorem of Johnson-Leung and
Roberts [41, Main Theorem], which is the case k2 = 2, k1 = 2n+2. It is likewise an
application of a theorem of Roberts [57, Theorem 8.6, Introduction]. The analysis at
finite places (leading to paramodular level) is exactly as in [41]. The only difference
is at archimedean places. To make the generalisation, we simply observe that
the L-packet Π(φ(π0,∞)) (in the notation of [41, ➜3]) contains the discrete series
representation of GSp2(R) denoted πλ[c] in [53, p. 207], with c = 0 and Harish-
Chandra parameter λ = (λ1, λ2) = (k1+k2−2

2 , k1−k22 ). The Blattner parameter is

(Λ1,Λ2) = (λ1, λ2)+(1, 2) = (k1+k22 , 2+ k1−k2
2 ). This is (j+κ, κ), where the lowest

K∞-type is Symj(C2)⊗ detκ, so we recover (j, κ) = (k2 − 2, 2 + k1−k2
2 ). �

Note that the case k1 = k2 (which requires a limit of discrete series representation
with λ2 = 0) appears in the proof of [19, Theorem 3.1].

7.1.1. λ8(Tp) ≡ λ10(Tp) (mod 29). Recall that the putative Arthur parameters
for i = 8 and i = 10 are ∆7[4]⊕[1]⊕[3] and ∆(9,5)[2]⊕∆(5,9)[2]⊕[1]⊕[3], respectively.

Before explaining the congruence in question, first we consider a related congru-
ence. We apply the above proposition with E = Q(

√
5), π0 = ∆(9,5), N = (1), so

we get F of weight (j, κ) = (4, 4) and paramodular level 52. Note that L(Spin, F, s)
has rational coefficients in its Dirichlet series. For primes p 6= 5, let λF (p) be the
Hecke eigenvalue for T (p) (associated to diag(1, 1, p, p)) on F . Let g1, g2 be the
conjugate pair of eigenforms spanning S8(Γ0(5), χ5), where

g1 = q + 2
√
−29q2 + 6

√
−29q3 + 12q4 + (75− 50

√
−29)q5 + . . . .

The first thing we notice of course is that the coefficient field Q(
√
−29) is ramified

at 29, the prime in question. Let q = (
√
−29). There appears to be a congruence,

for all primes p 6= 5:

λF (p) ≡ ag1(p)(1 + p2) (mod q).

For primes p 6= 5, since Tp and 〈p〉Tp are adjoints for the Petersson inner product,

ap(g1) is real (hence rational) or purely imaginary (hence a multiple of
√
−29)

according as χ5(p) = 1 or −1 respectively. When χ5(p) = −1, λF (p) = 0 and
ag1(p) is a multiple of q, so the congruence holds for these p. Here is a table of
what happens for the first few split primes. Note that λF (p) = ah(p) + ah(p) =
trE/Q(ah(p)), where h spans S[10,6](SL2(OE)), and p | (p) in E.
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p λF (p) ag1(p) λF (p)− ag1(p)(1 + p2)
11 2184 −6828 29 · 28800
19 −133640 6860 29 · (−90240)
29 2170140 25590 29 · (−668160)
31 −630656 82112 29 · (−2768640)

Observe that 29 ∤ ag1(29), so g1 is “ordinary” at q. Let us now consider a non-
experimental reason to believe the congruence. The right hand side of the congru-
ence is ap(g1)(1 + pκ−2), which would be the eigenvalue of T (p) on a vector-valued

Klingen-Eisenstein series of weight Symj(C2) ⊗ detκ (with (j, κ) = (4, 4), j + κ =
k = 8) attached to g1. The scalar-valued Klingen-Eisenstein series of paramodular
level is dealt with in [60], and the vector-valued case could be done similarly. In
particular, the analysis at finite places would be the same, and we would be looking
at something of paramodular level 52, just like F . So our congruence looks like one
between a cusp form and a Klingen-Eisenstein series. This is not quite so, because
the convergence condition κ > n+r+1 = 2+1+1 = 4 does not hold. Nonetheless,
it would be an “Eisenstein” congruence, between a cuspidal automorphic represen-
tation of GSp2(A) and an automorphic representation of GSp2(A) induced from the
Klingen parabolic subgroup. Conjecture 4.2 of [5] is a very general conjecture on
the existence of Eisenstein congruences. The case of GSp2 and its Klingen parabolic
subgroup is worked out in ➜6, where the analogue of g1 has trivial character, but
it is easy to see that the condition under which the conjecture would predict our
congruence is that q > 2(j + κ) (i.e. 29 > 16) and

ordq

(

L{5}(ad
0(g1), 3)

Ω

)

> 0,

where the adjoint L-function L(ad0(g1), s) is also L(Sym2g1, s + k − 1, χ5), with
k = 8, and the subscript {5} denotes omission of the Euler factor (1− 5−s)−1 at 5.
Here Ω is a Deligne period normalised as in [5, ➜4], and 3 = 1+s with s = κ−2 = 2
(which satisfies the condition s > 1 from [5]). Note that Conjecture 4.2 of [5] only
predicts a cuspidal automorphic representation, of the appropriate infinitesimal
character and unramified away from 5, and does not specify the paramodular level
52 (for F ).

The relation between the Deligne period and the Petersson norm is (up to divisors
of 5(k!))

Ω = π13(g1, g1)η
−1
g1 ,

where ηg1 is a certain congruence ideal. This employs ideas of Hida, as in [17, ➜3].
By [17, Proposition 2.2], ordq(ηg1) = 1. For us, ordq(ηg1) > 0 would suffice, and
this may appear to follow from the obvious congruence of q-expansions g1 ≡ g2
(mod q), but note that the definition of ηg1 is in terms of congruences between
cohomology classes rather than q-expansions. Anyway, it follows that the condition

ordq

(

L{5}(ad
0(g1),3)

Ω

)

> 0 is equivalent to the integrality at q of
L{5}(ad

0(g1),3)

π13(g1,g1)
. A

theorem of Katsurada [42, Corollary 4.3], which depends on χD being an even char-
acter, provides a way of computing this number precisely. Note that Katsurada’s
L(g1, s, χD) is our L{5}(ad

0(g1), s), with the Euler factor (1− 5−s)−1 at 5 already
missing. Also his Petersson norm is ours divided by the volume of a fundamental
domain for Γ0(5), which is (π/3)5(1 + (1/5)) = 2π.
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In Katsurada’s case (c-1), substituting m = 1 gives us a linear equation for

the unknowns
c L{5}(ad

0(g1),3)

π13(g1,g1)
and

c L{5}(ad
0(g2),3)

π13(g2,g2)
, with coefficients the same simple

multiple of a1(g1) = a1(g2) = 1. Here c is a complex number of absolute value
1 such that g1|W5 = cg2, where W5 is an Atkin-Lehner operator. First observe
that L{5}(ad

0(g1), 3) = L{5}(ad
0(g2), 3), since g2 and g1 are related by twist. Also

(g1, g1) = (g2, g2) since the Fourier coefficients of g2 are obtained from those of
g1 by complex conjugation (or using the relation between (g, g) and L(ad0(g), 1)
[30, Theorem 5.1]). Thus we actually have a linear equation in the single unknown
L{5}(ad

0(g1),3)

π13(g1,g1)
. We must check that it is non-trivial, i.e. that c 6= −c. We have

c = w∞w5, with w∞ = (−1)k/2. By local-global compatibility [9], w5 may be deter-
mined from a 2-dimensional representation of the Weil group W5, which according
to a theorem of Langlands and Carayol [29, Theorem 4.2.7 (3)(a)] is diagonal, so w5

may be written as a product of local constants for two characters, whose product
is a power of the cyclotomic character, and using Tate’s local functional equation
we find this product has to be ±1, in particular c = c, so the linear equation for
L{5}(ad

0(g1),3)

π13(g1,g1)
is non-trivial. The “right-hand-side” of the linear equation, which

comes from Fourier coefficients of an Eisenstein series of genus 2, is very compli-
cated, and would be tedious to compute exactly, but it is not too difficult to see at
least that the solution to the equation will be integral at q, as required.

Now the congruence between ∆7[4]⊕[1]⊕[3] and ∆(9,5)[2]⊕∆(5,9)[2]⊕[1]⊕[3] can
be accounted for by the apparent congruence we have just been discussing. This
is because ∆7 is the base-change to E of the cuspidal automorphic representation
of GL2(A) attached to g1 (or equally to g2, which is the newform associated to
the twist by χ5 of g1), and because the Satake parameters of F are “induced”
from those of ∆(9,5) (or equally of ∆(5,9)), as in Proposition 7.3. For example,
at a factor p of a split prime p, the congruence between ∆7[4] ⊕ [1] ⊕ [3] and
∆(9,5)[2]⊕∆(5,9)[2]⊕ [1]⊕ [3] would give

ag1(p)(1 + p+ p2 + p3) + p5 + (p4 + p5 + p6)

≡ ah(p)(1 + p) + ah(p)(1 + p) + p5 + (p4 + p5 + p6) (mod q).

This is

ag1(p)(1 + p2)(1 + p) ≡ λF (p)(1 + p) (mod q),

which is just (1 + p) times the Klingen-Eisenstein congruence.

Remark 7.4. The 2-dimensional mod q representation of Gal(Q/Q) attached to
g1 is “dihedral”, in particular its restriction to Gal(Q/E) is reducible, cf. [17,
Proposition 1.2(2)]. The congruence would imply that the 2-dimensional mod q

representation of Gal(Q/E) attached to ∆(9,5) is likewise reducible. In fact, it
appears to be the case that if α is a totally positive generator of any prime ideal p
in OE (even p = (

√
5)), with algebraic conjugate α, and q′ = (29,

√
5− 11), then

ah(p) ≡ α7 + α9α2 ≡ α7 + α7Np2 (mod q′).

This is independent of the choice of α, since if ǫ+ is a totally positive unit of OE

then (ǫ+)7 ≡ 1 (mod q′), which is what leads to the dihedral congruence, cf. [17,
Proposition 1.2(4)]. Without proving the global Arthur parameter for i = 10, we
have not actually proved this congruence for ah(p). It should be compared (for split
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p) with the congruence

ag1(p) ≡ α7 + α7 (mod q′).

We can see how ag1(p)(1 + p2) gets to be the same as ah(p) + ah(p) (mod q′), how
one-dimensional composition factors get rearranged.

Remark 7.5. The same argument as above shows that also ordq

(

L{5}(ad
0(g1),5)

Ω

)

>

0 and ordq

(

L{5}(ad
0(g1),7)

Ω

)

> 0, so we would expect to observe also congruences of

Klingen-Eisenstein type for g1 with (j, κ) = (2, 6) and (0, 8), i.e. (j+2κ−3, j+1) =
(11, 3) and (13, 1), and indeed we do. We find that dim(S[12,4](SL2(OE))) = 1, and

for the associated F of weight (j, κ) = (2, 6) and paramodular level 52,

p λF (p) ag1(p) λF (p)− ag1(p)(1 + p4)
11 −795576 −6828 29 · 3420000
19 21628600 6860 29 · (−30082080)
29 −36938100 25590 29 · (−625389120)
31 92822464 82112 29 · (−2611704000)

Moreover, if now h denotes a generator of S[12,4](SL2(OE)), then it appears that

ah(p) ≡ α7 + α11α4 ≡ α7 + α7Np4 (mod q′).

Similarly, dim(S[14,2](SL2(OE))) = 1, and for the associated F of weight (j, κ) =

(0, 8) and paramodular level 52 we find

p λF (p) ag1(p) λF (p)− ag1(p)(1 + p6)
11 8606664 −6828 29 · 417408000
19 333407800 6860 29 · (−11117287680)
29 −7660887300 25590 29 · (−15754334169600)
31 −200383616 82112 29 · (−2512927680000)

and if now h denotes a generator of S[14,2](SL2(OE)), then it appears that

ah(p) ≡ α7 + α13α6 ≡ α7 + α7Np6 (mod q′).

7.1.2. λ13(Tp) ≡ λ14(Tp) (mod 11). Recall that the putative Arthur parameters

for i = 13 and i = 14 are Sym2∆5⊕∆5[4]⊕ [1] and Sym2∆5⊕∆(7,3)[2]⊕∆(3,7)[2]⊕
[1], respectively. We apply Proposition 7.3 with E = Q(

√
5), π0 = ∆(7,3), N = (1),

so we get F of weight (j, κ) = (2, 4) and paramodular level 52. For primes p 6= 5,
let λF (p) be the Hecke eigenvalue for T (p) on F . Let f1, f2 be the conjugate pair
of eigenforms spanning S6(Γ0(5), χ5), where

f1 = q − 2
√
−11q2 + 6

√
−11q3 − 12q4 + (−45− 10

√
−11)q5 + . . . .

Noting the appearance of
√
−11, we may now proceed very much as in the other

case. In particular, ∆5 is the base-change to E of the cuspidal automorphic repre-
sentation of GL2(A) attached to f1 (or equally to f2). Further, if now h denotes a

generator of dim(S[8,4](SL2(OE)) and q′ = (11,
√
5− 4), then it appears that

ah(p) ≡ α5 + α7α2 ≡ α5 + α5Np2 (mod q′).

As in all the above cases, the coefficient field of h is E, and ah(p) is the algebraic
conjugate of ah(p).
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Since dim(S[10,2](SL2(OE))) = 0, we cannot find a congruence for (j, κ) = (0, 6)
in the same manner. We may explain this as follows. Suppose there is a congruence
λF (p) ≡ af1(p)(1+p

κ−2) (mod q), where F is a genus-2 cuspidal Hecke eigenform of
weight (j, κ) and level trivial away from 5, with irreducible 4-dimensional q-adic Ga-

lois representation ρF,q. We expect ordq

(

L{5}(ad
0(f1),κ−1)

Ω

)

> 0 by the Bloch-Kato

conjecture, because an adaptation of a well-known construction of Ribet produces a
non-trivial extension of ρf1,q (2-dimensional mod q Galois representation attached
to f1) by ρf1,q(2−κ) (Tate twist) inside the residual representation ρF,q, and a non-

zero class in H1(Q, ad0ρf1,q(2− κ)). This satisfies the Bloch-Kato local conditions
away from p = 5, so contributes to the numerator of the conjectural formula for
L{5}(ad

0(f1),κ−1)

Ω . Now if the congruence arises in the special way described above,
via a congruence for a non-parallel weight Hilbert modular form, because that form
has level 1 it is not difficult to show (using inflation-restriction) that the class also

satisfies the local condition at 5, so we should in fact see ordq

(

L(ad0(f1),κ−1)
Ω

)

> 0,

for the complete L-value with no missing Euler factor. However, what is special
about this example is that 55 ≡ 1 (mod 11), so that ordq((1−5−5)−1) = −2, hence
when the Euler factor is put back in,

ordq

(

L(ad0(f1), κ− 1)

Ω

)

< ordq

(

L{5}(ad
0(f1), κ− 1)

Ω

)

,

making it seem unlikely that ordq

(

L(ad0(f1),κ−1)
Ω

)

> 0. Thus, though we may still

expect the Klingen-Eisenstein congruence to happen, we shouldn’t expect it to arise
from a Johnson-Leung-Roberts lift of a non-parallel weight Hilbert modular form
satisfying the type of congruence encountered in the other examples.

7.1.3. Examples with E = Q(
√
2). To reinforce what we have found, we consider

two more examples. If E = Q(
√
2) then D = 8. The space S4(Γ0(8), χ8) is spanned

by a conjugate pair of eigenforms, one of which is

q+(−1−
√
−7)q2+2

√
−7q3+(−6+2

√
−7)q4−4

√
−7q5+(14−2

√
−7)q6−8q7+. . . ,

for which q = (
√
−7) is a dihedral congruence prime. Letting (j, κ) = (0, 4), so

[j+2κ−2, j+2] = [6, 2], we might expect a congruence involving a Hecke eigenform
in S[6,2](SL2(OE)), but dim(S[6,2](SL2(OE))) = 0. As in the previous paragraph,

we can explain this failure by ordq((1− 2−(κ−1))−1) < 0, since 23 ≡ 1 (mod 7).
On the other hand, the space S14(Γ0(8), χ8) is spanned by a conjugate pair of

eigenforms, one of which is q + (−56 − 8
√
−79)q2 + 258

√
−79q3 + . . . , for which

q = (
√
−79) is a dihedral congruence prime. Letting (j, κ) = (2, 14), so [j + 2κ −

2, j + 2] = [26, 2], we find that S[26,2](SL2(OE)) is spanned by a pair of Hecke

eigenforms, with coefficient field E(
√
11713), conjugate over E. Letting h be one

of them, and q′ = (
√
2− 9,

√
11713− 10), a divisor of 79, it does appear that for α

any totally positive generator of a prime ideal p, with Gal(E/Q)-conjugate α,

ah(p) ≡ α13 + α25α12 ≡ α13 + α13Np12 (mod q′).

Note that 213 6≡ 1 (mod 79).
All of this seems to support the following conjecture. (We have to introduce

the character ψ because we no longer assume that E has narrow class number
1.) Let g ∈ Sk(Γ0(D), χD) be a normalised Hecke eigenform, where D > 0 is the
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discriminant of a real quadratic field E = Q(
√
D), with associated character χD.

Let gc be the normalised Hecke eigenform obtained from g by complex-conjugating
the Fourier coefficients. Suppose that g ≡ gc (mod q), where q | q, with q > 2k and
q ∤ D, is a prime divisor of the coefficient field Kg, ramified in Kg/K

+
g , where K

+
g

is the totally real subfield of the CM field Kg. Suppose also that g is ordinary at

q and that the residual representation ρg,q of Gal(Q/Q) is absolutely irreducible.

Necessarily ρg,q is induced from a character of Gal(Q/E) associated by class field

theory with ψ : A×
E/E

× → F×
q , a finite-order character of conductor Q +∞1 such

that ψ(a) ≡ a1−k (mod Q) for a ∈ O×
Q, where (q) = QQ in OE . It is also induced

from ψ, the Gal(E/Q) conjugate, of conductor Q + ∞2. (See [8, Theorems 2.1,
2.11] and their proofs for more on this.)

Conjecture 7.6. If k = j + κ with j ≥ 0 even and κ ≥ 4, and if for all
primes p | D, pκ−1 6≡ 1 (mod q), then there exists a cuspidal eigenform h ∈
S[j+2κ−2,j+2](GL2(AE),

∏

GL2(Op)) and a prime divisor q′ | q in Kh such that
for any prime p ∤ q of OE,

ah(p) ≡ ψ(p) + ψ(p)Npκ−2 (mod q′).

For comparison, note that when κ = 2 we have the base change (of g)

h ∈ S[k,k](GL2(AE),
∏

GL2(Op)),

satisfying

ah(p) ≡ ψ(p) + ψ(p) (mod q′).

8. Even unimodular quadratic forms over Q(
√
3)

According to Hung [33], if E = Q(
√
3) then there is a unique genus of even

unimodular OE-lattices for each even N ≥ 2. He showed that it contains 1 class
when N = 2, 2 classes when N = 4, 6 classes when N = 6 and 31 classes when
N = 8. We have simultaneously diagonalised certain neighbour operators Tp and
recorded the eigenvalues later in this section. We have also produced guesses for
the global Arthur parameters that recover these computed Hecke eigenvalues (and
the correct c∞1(z), c∞2(z)), with the exception of three cases when N = 8. Things
are different now, because although the class number is 1, the narrow class number
is 2. The ray class field of conductor ∞1 + ∞2 is H = Q(

√
3, i) = Q(ζ12). Let

χ : GL1(AE) → C× be the ray class character of conductor ∞1 + ∞2. It takes
the value 1 on inert primes and totally positive split primes, −1 on the rest. It is
now possible to have non-zero forms of odd weights. The central character of the
associated automorphic representation of GL2(AE) is then χ.

Let ∆3 be the automorphic representation of GL2(AE) attached to one of the
Galois conjugate pair of Hecke eigenforms spanning S[4,4](GL2(AE),

∏

GL2(Op)).
Its Galois conjugate is χ⊗∆3.

Let ∆
(4)
5 be any of the four Galois conjugate Hecke eigenforms spanning

S[6,6](GL2(AE),
∏

GL2(Op)) (so this symbol means four different things on different
lines of the table).

There are three non-identity elements of Gal(H/Q), i.e.

τ :
√
3 7→ −

√
3, i 7→ i, σ :

√
3 7→

√
3, i 7→ −i, στ :

√
3 7→ −

√
3, i 7→ −i.
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The space S[7,7](GL2(AE),
∏

GL2(Op)) is 3-dimensional. One of the spanning
Hecke eigenforms is CM, associated to a Hecke character of H with ∞-type z 7→
z6στ(z)6. Let ∆6 be the associated cuspidal automorphic representation of GL2(AE).
We have

c∞1
(∆6)(z) = c∞2

(∆6)(z) = diag((z/z)6/2, (z/z)−6/2),

(coming from the z6 and στ(z)6 factors respectively). Alternatively, ∆6 is the base-
change to E of the cuspidal automorphic representation of GL2(A) attached to the
CM newform q − 27q3 + 64q4 − 286q7 + . . . spanning S7(Γ0(3), χ−3).

The space S[5,5](GL2(AE),
∏

GL2(Op)) is 1-dimensional, spanned by a CM form,

associated to a Hecke character of H with ∞-type z 7→ z4τ(z)4. Let ∆4 be the
associated cuspidal automorphic representation of GL2(AE). We have

c∞1
(∆4)(z) = c∞2

(∆4)(z) = diag((z/z)4/2, (z/z)−4/2),

(coming from the z4 and τ(z)4 factors respectively). Alternatively, ∆4 is the base-
change to E of the cuspidal automorphic representation of GL2(A) attached to the
CM newform q − 4q2 + 16q4 − 14q5 − . . . spanning S5(Γ0(4), χ−4).

The space S[6,2](GL2(AE),
∏

GL2(Op)) is 1-dimensional, spanned by a CM form,

associated to a Hecke character of H with ∞-type z 7→ z5τ(z)2στ(z)3. Let ∆(5,1)

be the associated cuspidal automorphic representation of GL2(AE). We have

c∞1
(∆4)(z) = diag((z/z)5/2, (z/z)−5/2), c∞2

(∆4)(z) = diag((z/z)1/2, (z/z)−1/2),

from z5

(zz)5/2
= (z/z)5/2 and z2z3

(zz)5/2
= (z/z)−1/2, respectively.

Some Hecke eigenvalues:

T(1+
√
3) T(

√
3) T(4+

√
3) T(5)

∆3 2
√
3 −4

√
3 −10 170

∆6 0 0 506 2 · 56 = 31250
∆4 0 0 −238 (2 + i)8 + (2− i)8 = −1054

∆(5,1) 0 0 350− 432
√
3 53((2 + i)4 + (2− i)4) = −1750

∆(1,5) 0 0 350 + 432
√
3 −1750

The zeros result from χ(1 +
√
3) = χ(

√
3) = −1 and the CM nature of the forms.

For some of the other entries, z = 3
2 + i+

√
3
2 i is an element of H generating a prime

ideal of norm 13, dividing (4 +
√
3). One finds that

(zστ(z))6 =

(

5 + 3
√
3i

2

)6

= 253−1260
√
3i, (zστ(z))6+σ(zστ(z))6 = 2×253 = 506,

(zτ(z))4 = (2+3i)4 = −119−120i, (zτ(z))4+σ(zτ(z))4 = 2×(−119) = −238, and

z5τ(z)2στ(z)3 = 175− 420i− 90
√
3i− 216

√
3, 2× (175− 216

√
3) = 350− 432

√
3.

N = 2

i λi

(

T(1+
√
3)

)

λi

(

T(
√
3)

)

λi
(

T(5)
)

Global Arthur parameters (conj’l)

1 0 0 2 [1]⊕ χ

N = 4

i λi

(

T(1+
√
3)

)

λi

(

T(
√
3)

)

λi
(

T(5)
)

Global Arthur parameters (conj’l)

1 9 16 676 [1]⊕ [3]
2 −9 −16 676 χ⊗ (”)
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Here, 9 = 2 + (1 + 2 + 22) = (1 + 2)2, 16 = (1 + 3)2 and 676 = (1 + 25)2.

N = 6

i λi

(

T(1+
√
3)

)

λi

(

T(
√
3)

)

λi
(

T(5)
)

Global Arthur parameters (conj’l)

1 27 112 407526 [5]⊕ χ
2 −27 −112 407526 χ⊗ (”)
3 18 48 15846 ∆4 ⊕ [3]⊕ [1]
3 −18 −48 15846 χ⊗ (”)

5 6
√
3 16

√
3 5670 ∆3[2]⊕ [1]⊕ χ

6 −6
√
3 −16

√
3 5670 χ⊗ (”)

Note that 27 = (1 + 2 + . . .+ 24)− 22, 112 = (1 + 3 + . . .+ 34)− 32 but 407526 =
(1 + 25 + · · ·+ 254) + 252.

N = 8

i λi

(

T(1+
√
3)

)

λi

(

T(
√
3)

)

λi

(

T(4+
√
3)

)

Global Arthur parameters (conj’l)

1 135 1120 5231240 [1]⊕ [7]
2 −135 −1120 5231240 χ⊗ (”)
3 54 336 404936 ∆6 ⊕ χ⊕ [5]
4 −54 −336 404936 χ⊗ (”)
5 66 384 400136 Sym2∆3 ⊕ [5]
6 −66 −384 400136 χ⊗ (”)

7 a (degree 4) b (degree 4) 33320 + 672
√
73 ∆

(4)
5 [2]⊕ [1]⊕ [3]

8 −a −b 33320 + 672
√
73 χ⊗ (”)

9 conj. of a conj. of b 33320 + 672
√
73 ∆

(4)
5 [2]⊕ [1]⊕ [3]

10 conj. of −a conj. of −b 33320 + 672
√
73 χ⊗ (”)

11 conj. of a conj. of b 33320− 672
√
73 ∆

(4)
5 [2]⊕ [1]⊕ [3]

12 conj. of −a conj. of −b 33320− 672
√
73 χ⊗ (”)

13 conj. of a conj. of b 33320− 672
√
73 ∆

(4)
5 [2]⊕ [1]⊕ [3]

14 conj. of −a conj. of −b 33320− 672
√
73 χ⊗ (”)

15 36 144 30536 ∆6 ⊕∆4 ⊕ [1]⊕ [3]
16 −36 −144 30536 χ⊗ (”)
17 24 96 25736 χ⊗ Sym2∆3 ⊕∆4 ⊕ [3]
18 −24 −96 25736 χ⊗ (”)
19 0 0 9800 ∆(5,1)[2]⊕∆(1,5)[2]
20 0 0 6344 ?
21 0 0 5384 ?

22 12
√
3 −48

√
3 3080 ∆6 ⊕∆3[2]⊕ [1]⊕ χ

23 −12
√
3 48

√
3 3080 χ⊗ (”)

24 0 0 1160 ?

25 12(
√
3 + 1) 48(1−

√
3) −1720 Sym2∆3 ⊕∆3[2]⊕ [1]

26 −12(
√
3 + 1) −48(1−

√
3) −1720 χ⊗ (”)

27 12(
√
3− 1) −48(1 +

√
3) −1720 χ⊗ Sym2∆3 ⊕∆3[2]⊕ χ

28 −12(
√
3− 1) 48(1 +

√
3) −1720 χ⊗ (”)

29 30
√
3 −160

√
3 −23800 ∆3[4]

30 −30
√
3 160

√
3 −23800 χ⊗ (”)

31 0 0 −39160 ∆4[3]⊕ [1]⊕ χ
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The numbers a and b appearing in the last table are roots of the polynomials
x4 − 132x2 + 1728 and x4 − 960x2 + 62208 respectively. For an Arthur parameter
A, the meaning of χ⊗A is that each constituent Πk[dk] gets replaced by (χ◦det)⊗
Πk[dk], where the det is of GLnkdk(AE). Thus each Satake parameter tp(πi) gets
replaced by χ(p)tp(πi), so λi(Tp) by χ(p)λi(Tp). We can explain some of what is
observed in the table.

Proposition 8.1. (1) Given an eigenvector vi, there is an eigenvector vj such
that λj(Tp) = χ(p)λi(Tp) for all p. In other words, if Ai and Aj are the
associated global Arthur parameters then Aj = χ⊗Ai.

(2) Ai = χ ⊗ Ai precisely for i = 19, 20, 21, 24, 31. In particular, for these i,
λi(Tp) = 0 whenever χ(p) = −1.

Proof. (1) The 31 classes are divided into spinor genera of sizes 18 and 13.
When χ(p) = −1, p-neighbours must be in different spinor genera, as may
be deduced from [4, (1.1)], see also [33, ➜5]. We may resolve vi into compo-
nents ai and bi supported on the classes in one spinor genus or the other.
We must have Tp(ai) = λi(Tp)bi and Tp(bi) = λi(Tp)ai. Letting vj = ai−bi
then Tp(vj) = −λi(Tp)vj . On the other hand, for χ(p) = 1, p-neighbours
are in the same spinor genus, so Tp(ai) = λi(Tp)ai, Tp(bi) = λi(Tp)bi and
Tp(vj) = λi(Tp)vj . Thus vj is an eigenvector with the required property.

(2) We see from the table that the eigenvalues of T(4+
√
3) are not repeated

precisely for the values of i listed, so we must have Ai = χ ⊗ Ai for these
values of i. For all other values of i, λi(T(1+

√
3)) 6= 0, so we cannot have

Ai = χ⊗Ai.
�

Remark 8.2. When χ(p) = −1, Tp maps an 18-dimensional subspace of M(C,K)
to a 13-dimensional subspace, with a kernel necessarily of dimension at least 5.
So 5 was the expected number of i such that Ai = χ ⊗ Ai. We are unable to
identify conjectural Arthur parameters for three of them. The other two involve
CM forms coming from unramified Hecke characters of H, but we have exhausted
all the possibilities for those already. Possibly the unidentified parameters involve
automorphic induction from GLm(AH) withm > 1. There are 2-dimensional spaces
of cusp forms of non-parallel odd weights [7, 5] and [7, 3], but they do not appear
to be useful.

Remark 8.3. Looking in particular at the table for N = 8, we can use the
methods of previous sections to prove the guesses for global Arthur parameters
in the cases i = 1,5,7,9,11,13,25,29. Note that, although the χ-twists of these,
namely i = 2,6,8,10,12,14,26,30 (for which thereby we also establish the global
Arthur parameters), may appear to contradict Proposition 2.1(2), this is only
if we assume that χ-twisting preserves degrees. We can see in the simple case
N = 6, i = 1,2 that that assumption is false, since using v1 = t(1, 1, 1, 1, 1, 1) and
v2 = t(−1, 1,−1,−1, 1, 1) and the automorphism group orders 82944, 27648, 46080,
46080, 103680, 103680, one easily checks that Θ(1)(v1) is not a cusp form, while
Θ(1)(v2) is, because

− 1

82944
+

1

27648
− 1

46080
− 1

46080
+

1

103680
+

1

103680
= 0.
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Remark 8.4. We have not yet bothered to worry about whether SOL/Ep is split
and SOL/Op is reductive for every finite prime p. For N = 8, both follow from the
choice L = E8 ⊗Z Op. For N = 4 it is easy to prove at least that each SOL/Ep

is split, as in the proof of Lemma 6.1. But for N = 2 or 6 (or any odd multiple

of 2), choosing L to be a direct sum of lattices with Gram matrix

(

2
√
3√

3 2

)

,

the discriminant is 1, whereas the discriminant is −1 for the direct sum of an odd
number of hyperbolic planes (to which L ⊗ Ep would have to be equivalent for
SOL/Ep to be split), so in these cases SOL/Ep is not split when −1 is not a square
in Fp. As further confirmation that something is not quite right, we can observe in
the tables that when N = 2 and N = 6 the conjectural Satake parameter tp(πi),
for χ(p) = −1, is not in the image of SON (C), having determinant −1. We may
appear to have the same problem for some of the entries in the table for N = 8,
but closer inspection shows that this is not the case. For example, looking at i = 3,
for p such that χ(p) = −1, the determinant of tp(∆6) is also −1. To see this, note

that since χ(p) = −1, p is inert in Q(ζ12)/Q(
√
3). If p | p, a rational prime, then

p splits in Q(
√
3), but not in Q(

√
−3) (and −1 is not a square in Fp), because the

compositum of these two fields is Q(ζ12). Hence χ−3(p) = −1, but this is the same
as det(tp(∆6)), because ∆6 is the base change of the automorphic representation
associated to a Hecke eigenform in S7(Γ0(3), χ−3). Alternatively, we could just
use the fact that ∆6, coming from odd weight, must have central character χ.
Incidentally, this means it occurs not in L2(Z(AE)GL2(E)\GL2(AE)) (recall ➜2.3),
rather in L2(GL2(E)\GL2(AE), χ).

Remark 8.5. There are various congruences of Hecke eigenvalues that can be
explained by 23 | (ζE(4)/π8) and 41 | (ζE(6)/π12).

9. Other fields

According to [31], for E = Q(
√
2) or Q(

√
5) the rank of an even unimodular

lattice must be divisible by 4. In [31, (1.2)] a mass formula is applied to show that

for E = Q(
√
2) and rank 16 the number of classes would be at least 2×1018, and for

E = Q(
√
5) and rank 16 it would be at least 2×106. For E = Q(

√
2) and rank 12 it

would also appear to be very large. Thus for these fields the examples amenable to
computation have now been dealt with. Similarly one can show that all plausible
examples for E = Q(

√
3) have been considered (the rank must be divisible by 2

and the mass of the rank 10 genus is large).
Naturally one asks how many other real quadratic fields and ranks are within

reach. Necessarily we require a small number of classes in the corresponding genus
and a mass formula can again be used to decide whether this is the case. If plausible
we can then enumerate the classes by writing down one such lattice, taking iterated
neighbours and testing for isometry (terminating once the mass is attained). As

explained in the introduction, for E = Q(
√
D) with D ≡ 3 (mod 4), we may write

down a rank 2 free, even unimodular lattice of determinant 1. Otherwise the recipes
of [58] can be used to write down a rank 4 even unimodular lattice. Higher ranks
can be reached by repeated orthogonal direct sums. Strictly speaking, in the table
below, for N ≡ 2 (mod 4) not all the 0 entries are for certain.

Using Magma we computed, for each real quadratic field E of discriminant under
50 and each rank N ≤ 12, the number of classes in a genus of even unimodular
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lattices of determinant 1 (where possible). See the table below. The symbol T
indicates that the mass of the genus is greater than 1, so the number of classes is
likely to be “too large”. Note that the column for rank 4 agrees with [58, Theorem
3.4].

Discriminant\ Rank 2 4 6 8 10 12
5∗ 0 1 0 2 0 15
8∗ 0 1 0 6 0 T
12 1 2 6 31 T T
13∗ 0 1 0 12 0 T
17∗ 0 1 0 40 0 T
21 0 3 0 T 0 T
24 0 4 0 T 0 T
28 1 4 25 T T T
29∗ 0 3 0 T 0 T
33 0 4 0 T 0 T
37∗ 0 3 0 T 0 T
40∗ 0 6 0 T 0 T
41∗ 0 3 0 T 0 T
44 1 7 T T T T

The fields are all of class number 1, except for Q(
√
10), for which the class

number is 2 (and for which we only considered the genus of a free even unimodular
lattice of determinant 1). Those marked with an asterisk have narrow class number
equal to the class number.

The mass formula [31, Lemma I.1] shows that for a fixed rank, the number of
classes grows at least polynomially with the discriminant of the field. Given this, it
is extremely likely that the only examples of rank 6 or higher that are computable
are the ones in the table. For ranks 2 and 4 there are probably many more examples,
but the variety of possible Arthur parameters is limited in these cases. For all cases
in the table we have computed neighbour matrices and the data can be found at
the second-named author’s webpage https://www.danfretwell.com/kneser.

In the case E = Q(
√
11) and N = 4, where the number of classes is 7, the

following 7 Arthur parameters appear to be correct. For various primes we tab-
ulate the Hecke eigenvalues that these Arthur parameters would produce. These
Hecke eigenvalues match the roots of the characteristic polynomials we computed.
Although 5 and 7 split in OE , the Hecke eigenalues are the same for both factors,
so we give only the norms of the prime ideals. The bottom two rows of the table
give the Hecke eigenvalues of the weight 2 and 3 forms we have used. As in the
previous section, χ : E×\A×

E → C× is a character of conductor ∞1 +∞2.
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AP (conj’l)\N(p) 2 5 7 9
[1]⊕ [3] 9 36 64 100
χ⊗ (”) −9 36 −64 100

∆1[2] 3
√
2 −6 −16

√
2 30

χ⊗ (”) −3
√
2 −6 16

√
2 30

Sym2∆1 ⊕ [1] 2 1 8 9
χ⊗ (”) −2 1 −8 9

∆2 ⊕ [1]⊕ χ 0 9 0 25

∆1

√
2 −1 −2

√
2 3

∆2 0 −1 0 7

The first 6 of these automorphic representations of O(4)(AE) arise from tensor
products, e.g. Sym2∆1 is ∆1 ⊗∆1, as they ought to if they extend to GO(4)(AE),
cf. [7]. But the last does not. This is possible because the GO(4)-genus can contain
a lattice whose discriminant is a totally positive but non-square unit, excluded from
the O(4)-genus.

In the case E = Q(
√
7), N = 6, where the number of classes is 25, the following

15 Arthur parameters likewise appear to be correct. The bottom 6 rows of the table
give the Hecke eigenvalues of the weight 2, 3, 4, 4, 5 and 5 forms we have used. For
one of the weight 4 forms, the coefficient field is of degree 4, and we have listed just

one of 4 Galois conjugates. Note that χ⊗∆
(4)
3 is a Galois conjugate of ∆

(4)
3 .

AP (conj’l)\N(p) 2 3
χ⊕ [5] 35 112
χ⊗ (”) 35 −112

∆3[2]⊕ [1]⊕ χ 23 0
∆4 ⊕ [3]⊕ [1] 19 48

χ⊗ (”) 19 −48
∆a

4 ⊕ [3]⊕ [1] 10 48
χ⊗ (”) 10 −48

∆
(4)
3 [2]⊕ [1]⊕ χ 2 + 6

√
2 8

√

10 + 3
√
2

∆4 ⊕∆2 ⊕ [1]⊕ χ 3 0
∆a

4 ⊕∆2 ⊕ [1]⊕ χ −6 0
∆4 ⊕∆1[2] −5 0
∆a

4 ⊕∆1[2] −12 0
∆1 −1 0
∆2 −3 0
∆3 5 0

∆
(4)
3 −2 + 2

√
2 2

√

10 + 3
√
2

∆4 1 0
∆a

4 −8 0

We did not look closely at the rank 8 examples with E = Q(
√
13) and E =

Q(
√
17). Data for these cases can be found at the webpage mentioned above.

10. Preliminaries on Hermitian lattices, even and unimodular over Z

Let E be an imaginary quadratic field, with ring of integers OE , discriminant
−D. For simplicity we shall suppose that the class number of OE is 1. Let L be
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an OE-lattice in V ≃ EN , with standard positive-definite OE-integral Hermitian
form x 7→ 〈x,x〉 = txx. We may define a unitary group scheme UN over Z, with
R points UN (R) = {g ∈ MN (R ⊗Z OE)| tgg = I}. We assume that L is even and
unimodular as a rank-2N Z-lattice with the form trE/Q(〈, 〉). We may define the
(Hermitian) genus of L, algebraic modular forms (in) M(C,K), Hecke operators
Tp, eigenvectors vi and automorphic representations πi of UN (A), very much as
before.

The theta series of degree m of L is

θ(m)(L,Z) =
∑

x∈Lm

exp (πitr (〈x,x〉Z)) ,

where Z ∈ Hm := {Z ∈ Mn(C)| i(tZ − Z) > 0}. Then θ(m)(L) ∈ MN (Um,m(Z)),
by a theorem of Cohen and Resnikoff [12],[28, Theorem 2.1]. Here Um,m(Z) :=

{g ∈ M2m(OE) :
tgJg = J}, where J =

(

0m −Im
Im 0m

)

. Thus, if g =

(

A B
C D

)

∈
Um,m(Z) then

θ(m)(L, (AZ +B)(CZ +D)−1) = det(CZ +D)Nθ(m)(L,Z).

Again one can define linear maps Θ(m) :M(C,K) →MN (Um,m(Z)) by

Θ(m)





H
∑

j=1

yjej



 :=

H
∑

j=1

yj
|Aut(Lj)|

θ(m)(Lj).

There is another way to construct the theta series θ(m)(L,Z). Choosing a
non-trivial additive character ψ : A/Q → C× (and trivial multiplicative charac-
ter χ : A×

E/E
× → C×), consider the Weil representation ω = ωψ,χ of the group

U(m,m)(A) × UN (A) on the Schwartz space S(V (A)m). (See [35, ➜1].) Given
Φ ∈ S(V (A)m), we get a theta-kernel defined on (g, h) ∈ U(m,m)(A)× UN (A),

Θ(g, h; Φ) :=
∑

x∈Vm(Q)

ω(g, h)Φ(x).

If we choose Φ∞(x) := exp(trE/Q(tr(〈xi, xj〉))) and for finite p, Φp(x) := ✶(L⊗Zp)m(x),
then

Θ(g, h; Φ)j(g, iI)N = θ(m)(hL,Z),

where Z = g(iI), hL is a lattice in the genus of L and j(g, iI) is a standard
automorphy factor, which is just (detY )−1/2 when for Z = X + iY we take g =
(

C X tC−1

0 tC−1

)

, where Y = C tC.

If dh is a measure on UN (Q)\UN (A) for which UN (Q)\UN (A) has volume 1,
then the theta integral

I(g,Φ) :=

∫

UN (Q)\UN (A)

Θ(g, h; Φ) dh =
1

µ

H
∑

i=1

1

#Aut(Li)
θ(m)(Li, Z),

up to a factor j(g, iI)N , where {Li| 1 ≤ i ≤ H} is a set of lattices representing the

classes in the genus of L, and µ =
∑H
i=1

1
#Aut(Li)

. More generally, if y is a function
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on UN (Q)\UN (A)/K, taking value yi on the class of hi, where hiL = Li, then

j(g, iI)N
∫

UN (Q)\UN (A)

Θ(g, h; Φ) y(h) dh =
1

µ

H
∑

i=1

yi
#Aut(Li)

θ(m)(Li, Z),

which is the same as µ−1 Θ(m)
(

∑H
j=1 yjej

)

.

Consider the Eisenstein series E(m)(g, fΦ) :=
∑

γ∈P (Q)\Um,m(Q) fΦ(γg) (for g ∈
Um,m(A)), where fΦ(g) := ω(g, 1)Φ(0). (In the notation of [35] we have set s = s0.

In our notation, s0 = N−m
2 .) It converges for N > 2m, but can be defined for

N > m by a process of meromorphic continuation [34, Lemma 8.2]. The following
is part of a theorem of Ichino [35, Theorem 1.1].

Theorem 10.1. If N > m then E(m)(g, fΦ) = I(g,Φ).

This is the Siegel-Weil formula, proved by Weil in the case N > 2m that the
Eisenstein series converges.

There will be local Langlands parameters c∞(πi) : WR → GLN (C)⋊Gal(E/Q)
and cp(πi) : WQp

→ GLN (C) ⋊ Gal(E/Q), which we always restrict to WC and
Wp, for each finite prime p of OE , and project to GLN (C) (with Frobp 7→ tp(πi)).
Necessarily

c∞(πi)(z) = diag((z/z)(N−1)/2, . . . , (z/z)−(N−1)/2)

(up to conjugation in GLN (C)). In the global Arthur parameters, instead of cus-
pidal automorphic representations of GLnk

(A), we see now cuspidal automorphic
representations of GLnk

(AE). For us, to say that πi has global Arthur parameter
Ai will now mean that tp(πi) is conjugate in GLN (C) to tp(Ai) for all p ∤ 2D, and
that c∞(πi) and c∞(Ai), restricted to C×, are conjugate in GLN (C). With the
exclusion of p | 2D, this is a little weaker than what it might have meant.

Lemma 10.2. If E 6= Q(i) then U(1, 1)(Z) ≃ O×
E × SL2(Z).

Proof. Suppose that g =

(

a b
c d

)

∈ U(1, 1)(Z). Then ad − bc = 1, ac = ac

and bd = bd. The first equation implies that a, c (and likewise a, c) are coprime,
then the second implies that a, a are associates, say a = ua, with u ∈ O×

E . The
second equation implies also that c = uc. Similarly using the third equation (and
conjugating the first to see that it must be the same unit involved), we find that
also b = ub and d = ud. Since E 6= Q(i), either u or −u is a square. In the latter

case, say u = −v2, then a/v = −a/v, which implies that a/v is an integer multiple

of
√
−D (or

√

−D/2), where −D is the discriminant of E/Q. Likewise for all the
other entries, but then the determinant of g fails to be a unit, so we must be in the
case u = v2, so a/v = a/v is in Z, and likewise for all the other entries. �

Proposition 10.3. (1) If vi ∈M(C,K) is an eigenvector for HK , then Θ(m)(vi)
(if non-zero) is a Hecke eigenform, at least away from p | 2D.

(2) Suppose that Θ(m)(vi) is non-zero, and that N ≥ 2m. Let

tp(πi) = diag(β1,p, . . . , βN,p)

be the Satake parameter at p for vi (with p ∤ 2D), and diag(α1,p, . . . , α2m,p) ∈
GL2m(C) the Satake parameter at p of the automorphic representation of
Um,m(A) generated by Θ(m)(vi). Then, as multisets,

{β1,p, . . . , βN,p} =
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{

{α1,p, . . . , α2m,p} ∪ {Np(N−2m−1)/2, . . . ,Np−(N−2m−1)/2} if N > 2m;

{α1,p, . . . , α2m,p} if N = 2m.

(3) If 4 | N and N > 2m then a cuspidal Hecke eigenform F ∈ SN (Um,m(Z))

is in the image of Θ(m) if L(st, F, (N +1− 2m)/2) 6= 0, where L(st, F, s) =
∏

p

∏2m
i=1(1− αi,pNp

−s)−1 is the standard L-function.

Proof. Since L is self-dual as an Hermitian lattice locally at all p ∤ D, and since
HermitianOE⊗ZZp-lattices are determined up to isometry by their invariant factors
[40, Prop. 3.2],[62, Thm. 7.1], the stabiliser in UN (Qp) of OE ⊗Z Zp is isomorphic
to the standard UN/2,N/2(Zp). It follows that (1) and (2) are covered by work of
Y. Liu [47, Appendix], which also requires p 6= 2. See also [34, Prop. 2.1].

Now we turn to (3). The doubling method of Piatetski-Shapiro and Rallis was
developed in the case of unitary groups by Li [46] and by Harris, Kudla and Sweet
[25]. Consider the Eisenstein series E(2m)(g,Φ) as above. We may embed Um,m ×
Um,m into U2m,2m as in [26], thus write E(2m)(g1, g2,Φ) for (g1, g2) ∈ Um,m(A) ×
Um,m(A). To F we may associate a function φF on Um,m(A) in a standard way.
By [26, (3.1.2.8)] (“Basic identity of Piatetski-Shapiro and Rallis”), with s = s0 =
N−2m

2 and χ trivial (noting that 2m has been substituted form compared to above),
we find that

∫

Um,m(Q)\Um,m(A)

∫

Um,m(Q)\Um,m(A)

E(2m)(g1, g2,Φ)φF (g1)φF (g2) dg1 dg2

is equal to

LD(st, F, (N+1−2m)/2)Z∞(s0, F,Φ)
∏

p|D
Zp(s0, F,Φ)

(

m−1
∏

r=0

L(N −m− r, χr−D)

)−1

,

where −D is the discriminant of OE , the subscript D means we omit Euler fac-
tors at primes p | D, Z∞(s0, F,Φ) and the Zp(s0, F,Φ) are certain local zeta
integrals and χ−D is the quadratic character associated to E/Q. We have cor-
rected the power of χ−D, as in the footnote on [20, p.42]. We need to know that
Z∞(s0, F,Φ)

∏

p|D Zp(s0, F,Φ) 6= 0. For p | D an argument of Lanphier and Urtis

[45, ➜4, case v ∤ n] shows that Zp(s0, F,Φ) 6= 0. To justify this, note that even
though Um,m is ramified at such p, the maximal compact subgroup Um,m(Zp) is
special (if not hyperspecial), as noted in [3, ➜2.1], so spherical vectors are still
unique up to scaling [50, ➜2.3]. We may also call on [45, ➜4] for the non-vanishing
of Z∞(s0, F,Φ). We may now proceed as in the proof of [45, Theorem 3]. This
is close to Böcherer’s idea of using the Siegel-Weil formula to substitute for the
Eisenstein series in a pull-back formula/doubling integral [6], and our condition
N > 2m is in order to apply Theorem 10.1, with 2m substituted for m because of
the doubling. �

Proposition 10.4. Suppose that OE has class number 1, and let w be the number
of units in OE. Let κ, g be even natural numbers, and suppose that w | (κ/2).

(1) Let f ∈ Sκ−g+1(Γ0(D), χ−D) be a Hecke eigenform, where E = Q(
√
−D)

has discriminant −D and χ−D is the associated quadratic character. As-
sume that f is not a CM form coming from a Hecke character of K. Then
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there exists a Hecke eigenform F ∈ Sκ(Ug,g(Z)) with standard L-function

L(st, F, s) =

g
∏

i=1

L(f, s+
κ+ 1

2
− i)L(f, s+

κ+ 1

2
− i, χ−D).

(2) Let G ∈ Sκ(Ur,r(Z)) be a Hecke eigenform, for r < g. For F as above, the
function

Ff,G(Z) :=
∫

Ur,r(Z)\Hr

F

((

Z 0
0 W

))

G(W )(det ImW )κ−2r dW,

if non-zero, is a Hecke eigenform in Sκ(Ug−r,g−r), with standard L-function
(if κ ≥ 2(g − r))

L(st,Ff,G, s) = L(st, G, s)

g−2r
∏

i=1

L(f, s+
κ− 2r + 1

2
−i)L(f, s+ κ− 2r + 1

2
−i, χ−D).

(1) was proved by Ikeda, and follows from Theorem 5.2, Corollary 15.21 and
Theorem 18.1 in [36]. (2) is a theorem of Atobe and Kojima [3, Theorem 1.1].
For simplicity we have imposed unnecessary conditions that are satisfied in our
application.

11. 12-dimensional Hermitian forms over Q(
√
−3), even unimodular

over Z

When E = Q(
√
−3) and L is an OE-lattice in EN , even and unimodular

as a Z-lattice, 8 | 2N =⇒ 4 | N . There is a single genus of such lattices
[27, Remark 1]. When N = 4 or 8 there is a single class in the genus [27,
Corollary 1], and the global Arthur parameter will be [N ]. For N = 12, the
genus contains 5 classes, studied by Hentschel, Krieg and Nebe [27]. The ma-
trix representing T(2), with respect to the basis ordered as in [27, Theorem 2],

is













65520 3888000 1640250 0 0
1458 516285 3956283 1119744 0
15 96480 2467899 2998272 31104
0 13365 1467477 3935781 177147
0 0 405405 4717440 470925













. This was computed by S.

Schönnenbeck, and given in [18, ➜3.3]

i λi
(

T(2)
)

gi Global Arthur parameters
1 5593770 0 [12]
2 1395945 1 ∆11 ⊕ [10]
4 357525 2 3∆10[2]⊕ [8]
8 85365 3 ∆11 ⊕ 3∆8[2]⊕ [6]
9 23805 4 3∆8[4]⊕ [4]

Some of the notation is further explained during the proof of the proposition be-
low. In [18] we looked at a genus of 20 classes of rank 12 Hermitian OE-lattices,
unimodular as Hermitian (rather than Euclidean) lattices, and conjectured global
Arthur parameters for all the eigenvectors arising. The entries in the above table
match 5 of those in [18], and we have preserved the numbering used there, hence
the gaps.
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The eigenvectors are

v1 =













1
1
1
1
1













, v2 =













−6000
−1854
−472
219
910













, v4 =













648000
49572
−2144
−297
20020













, v8 =













−8294400
−46656
10240
−7425
80080













v9 =













6220800
−69984
7680
−4455
40040













.

Using the sizes of automorphism groups from [27, Theorem 2], we find then that
Θ(m)(v9) is a scalar multiple of

θ(m)(L1)− 30 θ(m)(L2) + 135 θ(m)(L3)− 160 θ(m)(L4) + 54 θ(m)(L5),

in agreement with the linear combination in [27, Theorem 3(a)]. Note that the
other linear combinations there do not correspond to eigenvectors, since they only
represent quotients in a filtration.

Proposition 11.1. The global Arthur parameters and degrees are as in the table.

Proof. i = 1. Similar to earlier examples, we can get this from “Siegel’s Main
Theorem” (a.k.a. Siegel-Weil formula), as stated in [27, Corollary 3].

i = 2. Let ∆ =
∑∞
n=1 τ(n)q

n = q − 24q2 + 252q3 . . . be the normalised cusp

form spanning S12(SL2(Z)). Using Lemma 10.2 and #O×
E | 12, the function

∆ on H1 = H1 belongs to S12(U(1, 1)(Z)). Since 12 > 2 and L(st,∆, 11/2) =
L(∆, 11)L(∆, χ−3, 11) 6= 0, Proposition 10.3(3) implies that ∆ = Θ(1)(vi) for some
i. By Proposition 10.3(2), πi has global Arthur parameter ∆11 ⊕ [10] (where ∆11

is now the base change to GL2(AE) of that appearing in ➜3). Hence λi(T(2)) =

((−24)2 − 2 · 211) + 4 410−1
4−1 + 212−1

2+1 = 1395945, as in [18, Proposition 4.1], so i = 2.

i = 4. The space S11(Γ0(3), χ−3) is 2-dimensional, spanned by a Hecke eigenform
g = q + 12

√
−5q2

+(−27+ 108
√
−5)q3 +304q4 − 1272

√
−5q5 + (−6480− 324

√
−5)q6 +17324q7 + . . .

and its (Galois or complex) conjugate. The associated cuspidal automorphic rep-
resentations of GL2(A) are quadratic twists by χ−3 of one another, so share the
same base change to GL2(AE), which we denote 3∆10. We apply Proposition
10.4(1), with κ = 12, g = 2 (so κ− g + 1 = 11) to produce an Hermitian Ikeda lift
F = I(2)(g). Since L(st, F, 9/2) = L(g, 10)L(g, 9)L(g, 10, χ−3)L(g, 9, χ−3) 6= 0,
Proposition 10.3(3) shows that F = Θ(2)(vi) for some i, and it follows from
Proposition 10.3(2) and L(st, F, s) = L(g, s + 11/2)L(g, s + 11/2, χ−3)L(g, s +
9/2)L(g, s + 9/2, χ−3) that πi has global Arthur parameter 3∆10[2] ⊕ [8]. Then

λi(T(2)) = ((12
√
−5)2 + 2 · 210)(1 + 4) + 42 48−1

4−1 + 212−1
2+1 = 357525, so i = 4.

i = 9. The space S9(Γ0(3), χ−3) is 2-dimensional, spanned by a Hecke eigenform
f = q + 6

√
−14q2 + . . . and its (Galois or complex) conjugate. We proceed as for

i = 4, now with κ = 12, g = 4, so κ− g+ 1 = 9, showing in the process that g9 = 4
and Θ(4)(v9) = I(4)(f), which was conjectured in [27, Remark 3(b)]. (The other
degrees were proved in [27, Theorem 3] by computing coefficients of theta series.)

i = 8. Since (v9, v8 ◦ v2) 6= 0 and we already know that g9 = 4 and g2 = 1,
Corollary 2.3 implies that g8 ≥ 3. Then (v8, v4 ◦ v2) 6= 0 gives g8 ≤ 3, so g8 = 3.
Now (v9, v8 ◦v2) 6= 0 tells us, via Proposition 2.2, that 〈Ff,∆,Θ(3)(v8)〉 6= 0, so that

Θ(3)(v8) and Ff,∆ lie in the same Hecke eigenspace, and have the same standard
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L-function. Then using L(st,Ff,∆, s) =

L(∆, s+
11

2
)L(∆, s+

11

2
, χ−3)L(f, s+

9

2
)L(f, s+

9

2
, χ−3)L(f, s+

7

2
)L(f, s+

7

2
, χ−3)

and Proposition 10.3(2), we deduce that π8 has global Arthur parameter ∆11 ⊕
3∆8[2]⊕ [6]. Incidentally, of course the value of λ8(T(2)) implied by this agrees with
that computed using neighbours. We can go further, now we know that Ff,∆ 6= 0.
Since N = 12 and m = 3, N > 2m, so Proposition 10.3 applies, and

L(st,Ff,∆, (N + 1− 2m)/2)

= L(∆, 9)L(∆, 9, χ−3)L(f, 8)L(f, 8, χ−3)L(f, 7)L(f, 7, χ−3) 6= 0,

so Ff,∆ is in the image of Θ(3), necessarily a scalar multiple of Θ(3)(v8). �

Remark 11.2. It follows from the above that, up to scalar multiples,

(1) either Hecke eigenform g ∈ S11(Γ0(3), χ−3) has degree 2 Hermitian Ikeda
lift

I(2)(g) = θ(2)(L1) + 840 θ(2)(L2)− 1206 θ(2)(L3)− 1024 θ(2)(L4) + 2592 θ(2)(L5);

(2) either Hecke eigenform f ∈ S9(Γ0(3), χ−3) and ∆ ∈ S12(SL2(Z)) have
degree 3 Hermitian Miyawaki lift

Ff,∆ = θ(3)(L1) + 15 θ(3)(L2)− 135 θ(3)(L3) + 200 θ(3)(L4)− 81 θ(3)(L5);

(3) f as above has degree 4 Hermitian Ikeda lift

I(4)(f) = θ(4)(L1)− 30 θ(4)(L2) + 135 θ(4)(L3)− 160 θ(4)(L4) + 54 θ(4)(L5).

For any fixed m with 0 ≤ m ≤ 4, the θ(m)(vi) such that gi ≤ m are linearly
independent. For the unique i with gi = m, θ(m)(vi) is a cusp form, while those
θ(m)(vi) with gi < m are killed by different powers of the Siegel operator.
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Ann. Sci.École Norm. Sup. (4) 19 (1986), 409–468.
[10] G. Chenevier, J. Lannes, Automorphic forms and even unimodular lattices, Ergebnisse der

Mathematik und ihre Grenzgebiete 69, Springer, Cham, 2019.
[11] G. Chenevier, D. Renard, Level one algebraic cusp forms of classical groups of small rank,

Mem. Amer. Math. Soc. 1121, vol. 237, 128 pp., 2015.



36 NEIL DUMMIGAN AND DAN FRETWELL

[12] D. M. Cohen, H. L. Resnikoff, Hermitian quadratic forms and Hermitian modular forms,
Pacific J. Math. 76 (1978), 329–337.

[13] P. J. Costello, J. S. Hsia, Even Unimodular 12-Dimensional Quadratic Forms over Q(
√

5),
Adv. Math. 64 (1987), 241–278.

[14] B. Conrad, Reductive Group Schemes, notes, http://math.stanford.edu/~conrad/

papers/luminysga3smf.pdf.
[15] J. H. Conway, N. J. A. Sloane, Sphere Packings, Lattices and Groups, Second Edition,

Grundlehren der mathematischen Wissenschaften 290, Springer-Verlag, New York, 1993.
[16] P. Deligne, Valeurs de Fonctions L et Périodes d’Intégrales, AMS Proc. Symp. Pure Math.,
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