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Abstract

Alternating current (AC) voltammetric tech-
niques are experimentally powerful as they en-
able Faradaic current to be isolated from non-
Faradaic contributions. To find the best global
fit between experimental voltammetric data
and simulations based on reaction models re-
quires searching a substantial parameter space
at high resolution. In this paper we estimate
parameters from purely sinusoidal voltamme-
try (PSV) experiments, investigating the redox
reactions of a surface-confined ferrocene deriva-
tive. The advantage of PSV is that a com-
plete experiment can be simulated relatively
rapidly, compared to other AC voltammetric
techniques. In one example involving thermo-
dynamic dispersion, a PSV parameter infer-
ence effort requiring 7,500,000 simulations was
completed in 7 hours whereas the same pro-
cess for our previously used technique, ramped
Fourier transform AC voltammetry (ramped
FTACV) would have taken four days. Us-
ing both synthetic and experimental data with

a surface confined diazonium substituted fer-
rocene derivative, it is shown that the PSV
technique can be used to recover the key chemi-
cal and physical parameters. By applying tech-
niques from Bayesian inference and Markov
chain Monte-Carlo methods, the confidence,
distribution and degree of correlation of the re-
covered parameters was visualised and quanti-
fied.

Introduction

Electron transfer reactions, where the oxidation
of one species is accompanied by the reduction
of another, are essential to life.1 These so-called
redox reactions also underpin battery technol-
ogy, fuel cell chemistry, synthetic electrochem-
istry and many other modern technologies.2,3

Voltammetry, a key technique in the study of
redox chemistry, requires the measurement and
interpretation of current-potential-time (Ĩ-Ẽ-t̃)
data. Quantitative analysis usually involves
inferring chemical reaction parameters using

1



Figure 1: Comparison of the output of (top) ramped and (bottom) purely sinusoidal voltammograms
simulated using identical model parameters (see table S1). (A and E) Time dependence of the
applied waveform. (B and F) Total current response to inputs in A and E, respectively. (C and
G) Absolute power spectra derived by Fourier transformation of B and D, respectively. (D and
H) Resolved 1-6th harmonics created by band selection on the harmonics in C and G followed by
inverse Fourier transform.

models that are proposed to mimic the electro-
chemical response.4 Typically, the mathematics
used to simulate the voltammetric experiment
consist of a system of non-linear partial dif-
ferential equations for solution-phase electro-
chemistry,5 where the analyte is dissolved in
the electrolyte, or non-linear ordinary differ-
ential equations for “film” electrochemistry,6

where the redox-active analyte is confined to
the surface of the working electrode. Embedded
within these models are the chemical reaction
parameters that describe the Faradaic current
that arises from electron transfer process(es),
such as the rate constants of all reactions tak-
ing place, the corresponding equilibrium po-
tentials and transfer coefficients.7 Models must
also contain parameters describing the impact
of uncompensated resistance as well as non-
Faradaic background current that arises from
electrode-solution capacitive charging.7

Commonly, these mathematical models can-
not be solved analytically, and hence compu-
tationally supported simulation approaches are
necessary.5 The question then arises as to how
we best use the simulations to estimate, from

experimental data, the parameters governing
the electrochemical system being investigated.
This exercise is known as the inverse prob-
lem, where a large number of simulations are
made with different combinations of parame-
ters, with the purpose of finding the minimum
distance between simulation and experiment.
This can be a computationally intensive ex-
ercise where the computing time consumed
will be voltammetric technique dependent; the
computing time for the actual optimisation al-
gorithm is largely independent of technique. In
the most complex problem we have addressed
by data optimization, over 20 parameters were
inferred from a single alternating current (AC)
voltammetric data set.8 However, a significant
limitation with the data optimization approach
cited is that only point estimates of the pa-
rameter values are generated, whereas detailed
understanding also requires knowledge of the
accuracy of each inferred parameter value, al-
though it should be noted that the Bayesian
framework we use in this current study is one
method amongst many of obtaining this knowl-
edge,9 and a more complete review of these
methods can be found in our previous work.10
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Even though more effort to address the inverse
problem by employing data optimization would
be invaluable, it is also apparent that even more
sophisticated and powerful parameter inference
methods should probably be introduced.11 For
example, recently,10,12 we examined the use of
Bayesian inference as a tool for addressing the
inverse problem, an approach which is very
commonly used in other fields of science.13,14

We demonstrated how a Bayesian approach en-
ables the use of computational methods such as
Markov Chain Monte Carlo (MCMC) to pro-
vide an estimate of both the optimal parameter
values and the likely spread of those parameters
about the optimum. We illustrated the power of
this approach by demonstrating that the tech-
nique of AC voltammetry15 is more sensitive
to differences in chemical reaction parameters
compared to the simpler but more widely used
DC technique. In the version of AC voltam-
metry used in the referenced work, the applied
waveform was the sum of a linear ramp, as in a
DC voltammetric experiment, and a sine wave
having a frequency f (see figure 1). Fourier
transforming the total current response allows
the signal to be resolved into a series of har-
monics detected at f, 2f, 3f, . . . , nf , as well as
the aperiodic DC component (not shown). This
version of AC voltammetry is known as Fourier
Transformed AC Voltammetry or FTACV. Ac-
cess to the mechanistically sensitive higher or-
der AC harmonics provides Faradaic responses
devoid of background charging current.15–17 To
distinguish this technique from other forms of
voltammetry based on sinusoidal waveforms,
herein AC voltammetry with an underlying DC
ramped potential is referred to as the “ramped”
FTACV method.

The electrode process considered in our ini-
tial Bayesian inference study10 was the quasi-
reversible one-electron reduction of [Fe(CN)6]

3−

to [Fe(CN)6]
4− in aqueous KCl electrolyte me-

dia. In this example, because of the 1 mM
concentration of [Fe(CN)6]

3− employed, the
total DC plus AC current output is almost
purely Faradaic in nature and relatively in-
sensitive to the impact of experimental noise,

double layer capacitance and uncompensated
resistance. This facilitates very good parame-
ter identifiability for the five system parame-
ters of interest, allowing the inverse problem to
be solved straightforwardly and robustly with
Bayesian inference. These parameters were the
reversible potential, kinetic rate constant, lin-
ear double-layer capacitance, uncompensated
resistance and symmetry factor (E0, k0, Cdl, Ru

and α respectively). However, there is also
widespread interest in voltammetric investiga-
tions of surface confined redox-active biological
macromolecules such as electron-transfer pro-
teins and oxidoreductase enzymes.6,18,19 For
these systems, typically, the electrode kinetics
are fast, thermodynamic and kinetic disper-
sion is present and surface coverages are low.
The high computational costs associated with
ramped FTACV simulations make it difficult to
apply the Bayesian inference approach to pa-
rameterize the higher order harmonic data sets
on a reasonable timescale (≤1 day). This high
computational cost is exacerbated because rel-
atively high frequencies (>100 Hz) are required
to interrogate fast electrode kinetics which re-
quires very fine discretization to solve the un-
derlying differential equations with sufficient
accuracy. When thermodynamic and kinetic
dispersion also must be modelled,20 the time
taken for a single fitting run can be well over 24
hours.6 Nevertheless, given sufficient comput-
ing power and time, it is of course still possible
to infer parameters by ramped FTACV meth-
ods.6,21

In this paper, specifically aimed at lowering
computational requirements in AC voltammet-
ric data analysis of complex problems, the un-
derlying DC ramp present in previous work
has been removed. Thus, the potential input
is solely based on a large amplitude sine-wave
used in what we term as ramp-free “purely si-
nusoidal voltammetry” or PSV (see figure 1).
The PSV method has many appealing prop-
erties; the simulation speed is independent of
frequency, allowing for interrogation of fast ki-
netics, the current response is non-linear as in
ramped-FTACV, but an entire experiment can
be simulated in significantly less time, and the
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potential input is entirely continuous. Simu-
lation of 30 oscillations of a PSV experiment
as in this study took 0.01s on a laptop (8GB
RAM and an Intel i5-8350U CPU @ 1.70GHz),
which represents a 10-15 fold reduction relative
to that required for ramped FTACV.

The original form of the PSV method on which
the present work is based was invented a long
time ago. As noted by Bard and Zoski, in the
1940s fast linear potential sweeps were applied
at the dropping mercury electrode, known as
oscillographic polarography, as reviewed in.22

Other researchers have investigated PSV from
a theoretical standpoint for a reversible pro-
cess,23 and as a means of discrimination against
background current relative to the linear sweep
DC method.24 The PSV method has also been
used for the sensing of small molecules such
as nucleotides and neurotransmitters.25,26 In a
modelling context, large amplitude PSV has
been used to infer electrochemical parame-
ters from a voltammetric experiment27 using
background subtraction. Thus, in terms of
mechanistic studies, the PSV technique has
been predominantly only of theoretical inter-
est with respect to reversible processes, rather
than subjected to widespread studies of elec-
trode kinetics, as with the ramped FTACV
method. PSV is also related to electrochemi-
cal impedance spectroscopy (EIS) which uses
multiple small-amplitude phase-randomised si-
nusoids. In the future we plan to extend our
modelling approach to consider parameter esti-
mation in EIS. This will paralell previous work
that explored the link between ramped-FTACV
and EIS.15,28

To demonstrate the significant improvement
in time taken to infer parameters from PSV
experimental data when solving the inverse
problem in a Bayesian framework, we have es-
timated parameters describing the one-electron
oxidation of a diazonium substituted ferrocene
derivative surface confined to a glassy carbon
(GC) electrode (details provided in Experimen-
tal Section) which is shown to be complicated
by non-linear capacitance and thermodynamic
dispersion. This model system therefore pro-

vides a sufficiently challenging problem to illus-
trate the computation efficiency advantage in
the PSV approach.

Mathematical Model

The quasi-reversible one-electron oxidation pro-
cess of interest in this study is modelled as in
our previous work,6,21 where the total experi-
mental current is the solution to a differential
algebraic equation, although it should be noted
that to solve it numerically we rearrange it into
an ordinary differential equation. A description
of the mathematical approach can be found in
the SI. The key Faradaic reaction parameters
are E0, k0 and α, representing the reversible
potential, rate constant and symmetry factor
respectively, as defined by the Butler-Volmer
equation. In order to solve for the total cur-
rent numerically, we discretize the time interval
[0, T ] into Nt time steps and replace the time
derivatives by finite difference approximations.
The validity of the numerical approach for the
purely sinusoidal case was tested by comparing
the solution to an analytical approximation for
a reversible surface-confined process responding
to a large-amplitude sinusoidal potential input,
as provided in the SI in figure S15.23

Dispersion

The mathematical model we cite above as-
sumes that the voltammetry of all electroactive
molecules can be modelled using the same ther-
modynamic and electrode kinetic parameters.
However, this may not be a valid assumption,20

especially when the molecules are grafted to an
inhomogeneous roughly abraded glassy carbon
surface,20 as in our experiments. In this situa-
tion, variability in the orientation of molecules
on the surface, or in the underlying surface
chemistry may result in a distribution of the
parameters.20 We therefore include a measure
of dispersion in the calculation of I, where the
selected parameters are modelled as a distribu-
tion instead of as a point estimate. Discussion
of how this is achieved mathematically is pro-
vided in the SI, and in figure S1. According to
experimental observations,20,29 when dispersion
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is known to be present for the parameters E0

and k0, the distributions are normal and lognor-
mal respectively. There is no information on the
distribution of the α parameter, but as it is also
related to the energetics of the reaction (specif-
ically the energy of the transition state), the ef-
fect of introducing a distribution in this param-
eter in a similar fashion to that of the thermo-
dynamic parameter E0 also is explored. Each
dispersed parameter requires N simulations to
approximate the distribution, and consequently
the time taken to simulate the forward problem
for n dispersed parameters is Nn, which was a
key motivation for reducing simulation time for
parameter estimation for voltammetric experi-
ments.

Methods

Electrochemistry experiments

Figure 2: Cartoon representing the diazonium
functionalization procedure used to generate a
ferrocene-coated glassy carbon electrode sur-
face.

A 3.0 mm diameter stationary glassy carbon
disk working electrode (eDAQ) was used in all
voltammetric experiments. As summarized in
figure 2 and detailed in the SI, in situ diazo-
nium cation generation and electrografting was
carried out using 2-(4-aminobenzyl)isoindoline-
1,3-dione to generate an electrografted mul-
tilayer on the glassy carbon surface. Fol-
lowing a published procedure,30,31 hydrazine

(NH2NH2) deprotection was used to reveal
the benzylamine functionalities grafted onto
the glassy carbon surface. Finally, incuba-
tion of the amine-modified electrode in a
solution of 3-(ferrocenyl)propanoic acid N-
hydroxyphthalimide ester generates a glassy
carbon electrde surface covered with immobi-
lized ferrocene moieties, as previously shown in
the literature (SI and figure 2).30 Voltammetric
experiments probing the surface-ferrocene elec-
tron transfer chemistry were then conducted
as detailed in the SI. Potentials in figures are
reported as V or mV vs the reference, which is
also detailed in the SI.

Synthetic data

In order to assess the ability of our Bayesian
inference methodology to recover accurate pa-
rameter values for a surface confined process,
we initially inferred parameters from synthetic
data with Gaussian noise added at each time
point. As with our Bayesian inference analysis
with solution soluble Ox and Red species,10 we
assume that the added noise has zero mean and
a standard deviation that is 0.5-2% of the max-
imum current value, in line with the observed
noise level from experimental work. We denote
the current with added noise as isim(τj), with

Isim(tj) = I(tj) + ξj (1)

where I(tj) is the simulated solution to the for-
ward problem and ξj is the normally distributed
added noise. This noisy data is then used to es-
timate or infer the values of the governing pa-
rameters that were used to generate the noise-
free current trace i.e. to infer the values of
(E0, k0, Cdl, Ru, σ), where σ is the inferred stan-
dard deviation of the noise. This inference is
achieved by setting up the inverse problem as
a least squares minimization problem which is
optimized to obtain initial point estimates of
the parameters using the CMAES algorithm,
with estimates of the posterior distributions of
those parameters subsequently being obtained
by use of a Markov Chain Monte Carlo algo-
rithm. This approach is outlined below, and is
described in detail in previous work.21,32 The
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results of these processes were used to quantify
and compare the ability of the purely sinusoidal
and ramped FTACV methods to determine the
true parameter values.

Minimization

In order to infer point values for the param-
eters defined above we use the covariance ma-
trix adaptation evolution strategy (CMAES) al-
gorithm33 to minimize an objective function,
Lt by making steps within a bounded param-
eter space, where the bounds are chemically
informed. The algorithm is a derivative-free
method to minimize the distance between the
data, Idata and the noisy simulated time-series
Isim(τ), where Nt is the number of points, i.e.
we minimize

Lt =

√

√

√

√

Nt
∑

j=1

(Idata(τj)− Isim(τj))2. (2)

Bayesian inference

Once we obtain point estimates for the param-
eters using the CMAES algorithm, we used
Markov-chain Monte-Carlo (MCMC) methods
to more fully investigate the solutions we have
obtained.10 The objective function in equation
2 also can be thought of as finding the max-
imum likelihood estimate, and so we modify
it appropriately for use as a likelihood func-
tion. We use the adaptive covariance MCMC
method, using the PINTS GitHub repository34

(which, for convenience, we refer to hereafter
as MCMC), which attempts to explore the pa-
rameter space in a direction that increases the
likelihood. This takes the form of repeatedly
sampling from parameter space for a set num-
ber of iterations (“samples”) using 3 indepen-
dent processes (“chains”). The validity of an
inferred distribution is implied by convergence
(i.e. multiple chains exploring the same area of
parameter space after an initial period). Once
the algorithm has reached the pre-defined quan-
tity of samples, we discard a set number of
earlier samples that explored lower-likelihood
areas of parameter space as “burn-in”.35 The
remaining samples of each chain are combined

to form the sampling distribution for each pa-
rameter — from these distributions we can re-
port the mean, standard deviation and degree
of correlation between the various parameters.
A more complete description of the algorithm
is provided in the GitHub repository associated
with this paper.

Results and Discussion

Modelling the parameter impact

on PSV

In order to show the visual impact of the ef-
fect of the key model parameters, the PSV
(current-potential) plots shown in figure 3 were
generated, which represent the 2-30th potential
oscillation of the sinusoidal input, discarding
the first transient oscillation. In each panel, a
designated parameter is varied while the others
are held constant at values provided in table
S2 that were chosen to clearly indicate the ef-
fect of each parameter. The symbols µ and σ

represent the mean and standard deviation of
a normally-dispersed parameter. Actual exper-
imental data for the oxidation of the surface
confined ferrocene derivative (which can be
found in figure 5) have a lower ratio of Faradaic
to capacitance current.

The mean value for the reversible potential,
E0µ, alters the potential at which the Faradaic
process is observed and increasing the stan-
dard deviation of the reversible potential, E0σ,
results in peak broadening. The effect of the
electrode kinetic term k0 depends on which
kinetic regime (reversible, irreversible or quasi-
reversible) the process is in, but in the quasi-
reversible regime, the value k0 significantly
affects the Faradaic current peak width and
height. The Faradaic response is relatively in-
sensitive to large changes in the value of the
uncompensated resistance Ru but it should
be noted that the Ohmic IRu drop term can be
significant, and exert similar changes in voltam-
mograms to the k0, meaning that care is needed
to distinguish the impact of each parameter.
Capacitance background current is observed as
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Figure 3: Sensitivity of the simulated PSV response to 9 model parameters. These are, from left
to right, the reversible potential mean, E0µ, and standard deviation E0σ, the rate constant k0, the
uncompensated resistance Ru, capacitance parameters, Cdl, CdlE1 and their associated phase, and
the mean and standard deviation of the symmetry factor αµ and ασ. The parameter of interest is
designated in each panel while the other model parameters are held constant at values reported in
table S2.

an ellipse with a current magnitude determined
by the value of the Cdl parameter — this ellipse
can entirely obscure the Faradaic process. In-
clusion of higher order capacitance terms such
as CdlE1 modifies the shape of the ellipse. With
the inclusion of an explicit capacitance phase,
the possibility of using phase selective detection
to resolve the non Faradaic and Faradaic cur-
rent components is introduced. Finally, while
variation in the αµ parameter modifies the ra-
tio between the peak heights of the oxidation
and reduction components slightly, the impact
on current magnitude is not very sensitive to
changes in ασ with the values of k0 consid-
ered. The minimal influence of α also applies
to the PSV harmonics within the k0 range ex-
amined, as shown in figure S18. Changing αµ

results in greater changes in the even than odd
harmonics in the Fourier spectrum (such as
in figure 1(C)). The magnitudes of even har-
monics also are much smaller than for the odd
harmonics, and therefore contribute less to the
overall “shape” of the time series. The effect on
the real and imaginary portions of the Fourier
spectrum of the other parameters varied sys-
tematically in figure 3 is displayed in figures
S16 and S17.

Inferring parameters from data

containing synthetic noise

To demonstrate that the CMAES algorithm is
able to successfully infer parameter distribu-
tions from PSV data, a simulated data set,
to which noise had been added in order to
mimic experimental data, was analysed. Figure
4 shows the results of the parameter inference
data generated using both the PSV and ramped
FTACV methods, with 0.5% noise added. This
translates to a root mean squared error value
relative to the original simulation of 4.5 µA.
The error observed in experimental data vs the
fitted simulation, as inferred by the CMAES
algorithm in a later section, was 0.72-1.00 µA,
which validates our choice of noise value. The
histograms are generated from three chains run
independently for 10000 samples, and had 5000
samples discarded as burn-in as described above
in the methods section. The ratio of the stan-
dard deviations of the inferred parameter dis-
tributions for the two techniques for varying
amounts of added noise can be found in ta-
ble S3. The results clearly indicate that it
is possible to recover the correct answer from
noisy synthetically generated data using both
methods, although PSV provides less precise
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Figure 4: Comparison of inferred parameter
distributions (indicated by the symbol) for the
purely sinusoidal and ramped experiments, per-
formed on synthetic noisy data derived from
a simulated experiment with independent and
identically distributed random variables (I.I.D).
The simulated data was generated using Nor-
mally distributed noise values added to simu-
lated data, where the distribution had 0 mean
and a standard deviation that was 0.5% of the
maximum current amplitude, and α was set
at 0.5. Histograms were created by running
the adaptive Metropolis-Hastings algorithm for
10000 samples, where the initial point was the
correct parameter value (shown by the black
dotted line). An uninformative prior was used,
with upper lower bounds of ±50% of the true
value. Three independent Markov chains were
run, the first 5000 samples discarded as burn-
in, and the rest of the samples used to plot the
histogram shown.

estimates (as observed by the increased width
of distribution) than ramped FTACV. This is
quantified in table S3; for the 0.5% noise case,
the standard deviations of the parameter dis-
tributions inferred from synthetic PSV data is
2-5 times larger than for synthetic ramped data.
However, the trade off is the significant decrease
in computing time required in the PSV simula-
tions which requires about tenfold fewer points
than the ramped FTACV ones; the computa-
tion time is approximately reduced by a fac-

tor of 12. The time taken for a 100000 sample
MCMC run with two dispersed parameters, re-
quiring 7,500,000 solutions to the forward prob-
lem took 7 hours; the equivalent run for ramped
FTACV would have taken approximately 84
hours, or 3 and a half days.

Inferring parameters from experi-

mental data

A glassy carbon electrode modified with the fer-
rocene diazonium derivative was subjected to
ten PSV experiments followed by ten separate
ramped FTACV ones. The PSV experiments
used a sinusoidal waveform with a frequency
8.94 Hz and an amplitude 300 mV over a poten-
tial range of -40 to +560 mV vs Ref for a time
period of 26.8 s, equivalent to 240 sine-wave
oscillations. For all PSV inference attempts,
we compared simulations to the total current
response. For ramped FTACV, we compared
simulations to a portion of the Fourier trans-
form of the total current, corresponding to
harmonics 2-6. When comparing experimen-
tal and simulated PSV currents using equation
2, the initial transient current (corresponding
to the first oscillation of the potential input)
was discarded, and for PSV data-simulation
comparisons, the current was truncated to the
times before the 30th oscillation. These manip-
ulations represent a compromise between reduc-
ing the number of points for simulation speed,
and to ensure that the results of parameter in-
ference attempts were consistent — we found
that truncating the data to under 20 oscilla-
tions resulted in a loss of convergence between
Markov chains when analysing the data using
MCMC. By comparison, the AC component of
the ramped experiment requires approximately
475 oscillations for complete simulation.

An example result from the parameter infer-
ence analysis process is shown in figure 5 for
the tenth non- ramped PSV experiment, se-
lected from the ten total repeats, performed
consecutively. Because of the close similarity of
the simulated and experimental currents, the
experimental (orange) line has been made par-
tially transparent, and as such regions of very
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Table 1: Inferred CMAES parameters for PSV experiments 1-10 and the first ramped experiment.
† The phase and the capacitance phase were both held at 0 during the fitting process. *The error
reported for the ramped experiment is the mean error across the fitted harmonics (i.e. 2-6), and
so is not directly comparable to the error for the PSV experiments, which is the error for the total
timeseries.

Parameter Symbol PSV 1 PSV 2 PSV 3 PSV 4 PSV 5 PSV 6 PSV 7 PSV 8 PSV 9 PSV 10 Ramped 1

Midpoint potential
mean

E0µ (V vs. Ref) 0.247 0.244 0.244 0.244 0.242 0.241 0.241 0.241 0.24 0.241 0.229

Midpoint potential
standard deviation

E0σ (V) 0.028 0.047 0.045 0.046 0.047 0.048 0.048 0.048 0.048 0.048 0.046

Rate constant k0(s
−1) 104.61 144.066 142.214 142.928 140.303 139.955 141.737 136.411 133.439 136.212 123.33

Uncompensated
resistance

Ru (Ω) 732.021 517.171 539.316 540.249 516.33 495.788 491.333 493.475 488.66 499.132 873.541

Linear double-layer
capacitance

Cdl (F) 7.689E-5 7.681E-5 7.636E-5 7.609E-5 7.609E-5 7.613E-5 7.602E-5 7.582E-5 7.571E-5 7.537E-5 3.341E-5

1st order Cdl CdlE1 3.207E-3 3.294E-3 3.137E-3 2.976E-3 2.738E-3 2.541E-3 2.475E-3 2.391E-3 2.221E-3 2.277E-3 0.058
2nd order Cdl CdlE2 -3.993E-4 -4.402E-4 -4.265E-4 -4.205E-4 -4.219E-4 -4.226E-4 -4.228E-4 -4.195E-4 -4.153E-4 -4.106E-4 -2.122E-3
Surface coverage Γ(molcm−2) 7.637E-11 7.335E-11 7.330E-11 7.308E-11 7.288E-11 7.271E-11 7.241E-11 7.220E-11 7.205E-11 7.166E-11 7.178E-11
Potential frequency ω (Hz) 8.941 8.941 8.941 8.941 8.941 8.941 8.94 8.941 8.941 8.941 8.885
Cdl phase Cdl phase (rads) 4.392 4.335 4.342 4.342 4.335 4.329 4.328 4.328 4.326 4.328 0.00†

Phase Phase (rads) 5.082 4.956 4.969 4.968 4.958 4.95 4.947 4.95 4.949 4.951 0.0 †

Symmetry factor
mean

αµ 0.588 0.614 0.61 0.609 0.604 0.603 0.603 0.599 0.596 0.599 0.438

Symmetry factor
standard deviation

ασ 0.163 0.188 0.188 0.189 0.19 0.192 0.192 0.191 0.191 0.191 0.155

Error RMSE (µA) 0.997 0.822 0.837 0.828 0.782 0.753 0.745 0.742 0.722 0.747 0.337*

good agreement are brown. Parameters were
obtained by running the CMAES algorithm
10 times for each data set, with chemically
informed upper and lower bounds for each pa-
rameter, which are reported in the SI in table
S4, and noting the best scoring parameter vec-
tors. The initial parameter values for each run
of the CMAES algorithm were obtained by ran-
domly sampling from within the boundaries for
each value. We believe that these values, pre-
sented in table 1 represent the global minimum
(at least as defined by the parameter bound-
aries), as the 10 sets of random initializations
will have explored a large portion of parameter
space. On average, the solution vectors pre-
sented in table 1 were returned by the CMAES
algorithm 4-6 times. Standard deviations, as
determined by MCMC, can be found in table
S7 in the SI. From figure 5 the simulation is
seen to provide a good fit to the data in both
the time and frequency domains, except in the
even harmonics, especially the fourth harmonic,
where the simulation overestimates the magni-
tude relative to the data. We believe that this
is because the even harmonics contribute very
little to the total signal (note the magnitude
of the peaks in the Fourier spectrum, and the
size of the current response in the harmonic
plots), and are therefore difficult to fit when
using the objective function in equation 2. It

should be noted that the inaccuracies in the fit
(such as overstating the magnitude of the 4th
harmonic) are consistent across all ten fitting
runs, as shown in the SI in figures S19-S23. We
have not combined these results and reported
the average, as is common in electrochemical
literature, as the parameter variation between
experiments in table 1 is larger than the cal-
culated standard deviations (table S7). Pool-
ing the results would obscure the experimental
trends in inferred parameter values observed,
which we discuss below.

For the purposes of fitting the data, normally-
distributed dispersion was ultimately incorpo-
rated for two parameters, E0 and α. E0 was
selected as the width encountered in the har-
monics of the ramped data was much better
described by incorporating a distribution of
E0 values. α was also selected for normally-
distributed dispersion because we observed
that fitting α as a point value resulted in
the CMAES repeatedly returning the upper
bound for α as the inferred value, regardless of
where this boundary was set. This is proba-
bly attributable to the fact that k0 values are
observed to approach the reversible limit and
accordingly the time series is insensitive to α.
The alternative approach would be to fix the
value of α at 0.5 which has the effect of in-
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Figure 5: A comparison of simulated (blue,
solid line) and experimental (orange, transpar-
ent) PSV results for oxidation of the surface
confined ferrocene derivative (experiment 10) as
shown in figure 1F-H., using a sinusoidal poten-
tial input with a frequency of 8.94 Hz and an
amplitude of 300mV.(A) Current-voltage plot,
with residual, (B) real and imaginary compo-
nents of the Fourier spectrum and (C) current
harmonics 1-7, plotted against voltage. The pa-
rameters used in the simulation are provided in
table 1

.

creasing the inferred kinetic value to around
270s−1, but the value of the other parameters
remain close to those reported in table 1. In-
cluding dispersion in the kinetic parameter did
not improve the inferred fit, a phenomenon
which we discuss below. In addition, the pres-
ence of dispersion in the Faradaic parameters
suggests that dispersion may also be important
in the simulation of current arising from double
layer capacitance, although for reasons of com-
putational feasibility, we did not explore this
possibility.

Incorporation of a capacitance phase as a pa-
rameter distinct from the Faradaic phase, is
essential to achieve good agreement between
simulation and experiment. A difference be-
tween the two phases of about 35◦ is con-
sistently observed with the ferrocene process.
Modelling of the unmodified glassy carbon elec-
trode as described in figure S25 confirms that
explicitly including the capacitive phase angle
is essential to obtaining a good fit. An ideal
capacitor is phase-shifted by 90◦ relative to an
input sinusoid (has the form of a cosine wave).
The Faradaic current arising from a reversible
process is predicted to be phase shifted by
about 45◦ relative to the input sinusoid. How-
ever, these phase angles will be affected both
by the facts that the Faradaic process is not
completely reversible, and the capacitance is
non-ideal. Figure S25 also demonstrates that
purely capacative current has negligible current
response above the second harmonic (∼3 orders
of magnitude smaller than in figure 5), as with
ramped FTACV.

In the parameter inference exercise based on
fitting the total AC current, a global best fit of
13 parameters was achieved, as listed in table
1. On the basis of results summarised in the
table 1, experiment 1 appears to be an outlier
with significantly higher error estimates than
found with the other experiments. This implies
that a structural, orientation or other change of
the surface confined ferrocene accompanies the
initial oxidation-reduction cycling of potential
that occurs in experiment 1. In experiments 2
to 10 the surface coverage decreases marginally
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with each experiment, which can be attributed
to a loss of a small quantity of ferrocene from
the electrode surface accompanies each exper-
iment. “Film-loss” is a common feature of
surface confined voltammetry,1,18 and the value
of the surface concentration is corroborated to
within picomolar values by analysis of DCV
current in figure S27 and table S6. There are
other trends in the inferred parameters, par-
ticularly in values for Ru and k0, with results
that differ by approximately ∼4 standard de-
viations (as calculated using MCMC, shown
in table S7). This is presumably in response
to changes in the composition of the film, and
takes this form because of correlations between
the parameters discussed (observed in figure 7).
Significantly, the predicted distribution for α

plotted in figure S24 is extremely broad, rela-
tive to the commonly “expected” α value in the
range 0.4-0.6. This represents the low impact α
has on PSV data when the electrode kinetics lie
near to the reversible limit. The relatively wide
spread of uncompensated resistance values also
reflects the insensitivity of data to this param-
eter in highly conducting aqueous electrolyte
media

It is a useful control exercise to use the param-
eters presented in table 1, based on analysis of
PSV data, to predict the outcome of an equiva-
lent ramped FTACV experiment. With ramped
FTACV, the effect of capacitance can be min-
imised by focusing on the second and higher
order harmonics which are essentially devoid
of this non-Faradaic contribution.15 Figure 6
provides a comparison of the second to sixth
harmonics derived from a ramped FTACV ex-
periment with the simulation output generated
using the parameters inferred by the CMAES
algorithm to describe PSV experiment 10. PSV
Experiment 10 was chosen for this exercise as it
was performed immediately prior to undertak-
ing the ramped FTACV experiment. The fit to
the ramped FTACV data is generally excellent.
However, simulated and experimental plots di-
verge slightly. In the experimental data, the
potential of the centre-point of the harmonic6

(Ecp) is slightly dependent on the harmonic
number, whilst the simulated Ecp is uniform

across harmonics. It is possible to more closely
replicate the experimental effect within the sim-
ulated ramped FTACV harmonics by using a
distribution of E0 values that is asymmetric,
(not a “true” normal distribution). However,
this experimental artefact could also be a con-
sequence of non-idealities within the surface-
confined moiety, particularly with regards to
the assumption of a Langmuir isotherm, and
monolayer coverage. This form of disagree-
ment is detected in the ramped experiment be-
cause the data returned by the purely Faradaic
higher order harmonics are in a format that is
conducive to detecting non-ideality by visual
inspection. Departures in modelling surface
confined DC cyclic voltammetry based on a
Butler-Volmer model of electron transfer and a
Langmuir isotherm are frequently encountered
in metalloenzyme studies.36,37 However, these
subtle nuances do not significantly challenge
the fidelity of the parameters recovered from
the PSV experiment.

The fact that the Faradaic parameters inferred
by CMAES analysis of the PSV experiments
also provide a good fit to ramped FTACV
data indicates that the parameters inferred
for the surface-linked ferrocene are all likely to
be physically and chemically realistic. There
is also acceptably good agreement between the
parameters inferred by fitting to the 2-6th har-
monics of the ramped experiment and those
inferred from the PSV experiment 10 as shown
in figure 6 and the fitted parameter estimates
are included in table 1. The time taken to esti-
mate parameters for ramped FTACV data was
significantly greater, such that the process had
to be run overnight. It should also be noted
that, for the ramped FTACV fits, as the effect
of capacitance is confined to the lower harmon-
ics and these harmonics are not included in the
objective function, the estimates of the param-
eters Cdl , CdlE1 and CdlE2 are unlikely to be
realistic.

Analysis of the ramped FTACV data, in ad-
dition to supporting the fidelity of the compu-
tationally much less intensive PSV approach
also reveal why the electrode kinetic parameter
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Figure 6: Comparison of harmonics 2-6 for ramped FTACV experimental data (orange) with the
output of simulations (blue). The DC ramp was applied over the potential range of -0.18 to +0.62
V vs Ref at a scan rate of 29.8 mV s−1. The superimposed sine wave had an amplitude of 150 mV
and frequency 8.94 Hz. The simulation parameters used for the left hand side plots were as for
experiment 10 in table 1, except for ω and phase, which were set at 8.885Hz and 0 rads respectively,
as obtained by fitting these parameters for ramped FTACV data. The parameter values used to
simulate the harmonics on the right hand side are provided in table S5. and were inferred by
CMAES fitting of the 4-6th harmonics of the experimental data (shown in orange).

only needed to be fitted as a point value and not
with dispersion. With the FTACV approach,
the broadness of the higher order harmonics in
the experimental ramped data is well-mimicked
when the modelling included thermodynamic
dispersion in E0 value. An example of a fit
which incorporated kinetic rather than thermo-
dynamic dispersion is shown in figure S26 in
the SI. Interestingly, metalloprotein and metal-
loenzyme film voltammetry analysis has often
required kinetic dispersion.36,37 The redox cen-
tres in metalloproteins and enzymes are buried
within very large structure and are attached to
the electrode surface with different orientations
and hence distances from the electrode surface.
In comparison, there should be less variation
in the diazonium tethered ferrocenes with re-
spect to orientation and distance from the GC
surface. Furthermore, the k0 value at ∼ 145s−1

approaches the reversible limit at the frequency
of the experiments undertaken so that minor
differences do not effect the response as sig-
nificantly as would occur for slower rates of
electron transfer (as shown by the difference

between the 100s−1 and 150s−1 traces in the
upper right of figure 3).

A measure of the confidence in parameter
values for the PSV experiments, as inferred by
the CMAES algorithm, was obtained by use of
MCMC, the results of which are summarised
in table S7. Initially an attempt was made to
fit every parameter in table 1, but this did not
achieve convergence of multiple MCMC chains.
It was ultimately determined that the source
of this problem was the αµ parameter. The
problem was therefore solved by removing it
from the fitting process and fixing the value of
αµ to that inferred by the CMAES algorithm.
This issue and the effect it has on the recov-
ered distributions is discussed in the SI, with
reference to figures S28 and S29. Histograms of
the converged chains are provided in figure 7,
where all three chains exhibit similar levels of
pairwise correlation between individual param-
eters. Uncorrelated chains appear as a circle,
and correlated chains appear as an ellipse; the
narrower the ellipse the stronger the correla-
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Figure 7: 2D scatter plot derived chains for individual parameters used to infer parameter distri-
butions from PSV experiment 10, which is plotted in figure 5. The diagonal represents the 1D
histograms for each parameter. The MCMC used to generated these chains was run for 100000
samples, with the first 50000 discarded as burn-in. The trace plots for each parameter are provided
in figures S30-S39 in the SI.

tion. Correlation in this case indicates that
the two parameters are compensating for each
other. There is a strong positive correlation
(i.e. an ellipse angled to the right) between the
two phases, which are both also correlated with
the resistance. The correlation of the phases is
understood in terms of the need to maintain a
constant distance between them. In addition,
the fact that the uncompensated resistance is
negatively correlated with the standard devia-
tion of E0 may be a consequence that both ex-
ert broadening effects on the PSV, as shown in
figure 3. With regards to the correlation of re-
sistance and phase, in electrical impedance, the
phase of the impedance is defined by the rela-
tive sizes of the (real) resistive and (imaginary)
reactance components, and so we suggest that
the observed correlation is a result of this rela-
tionship. This would also explain the negative

correlation between phase and thermodynamic
standard deviation, through second-order cor-
relations.

The MCMC results also establish the confi-
dence in the mode as the inferred distributions
in table S7 are almost exactly the same as those
inferred by the CMAES fitting process in table
1.

Conclusions

Computational efficiency is an important issue
in parameterizing surface confined voltamme-
try, particularly when thermodynamic and ki-
netic dispersion are present in the model used to
simulate data. This study reveals that the com-
puting time required to use the powerful data
analysis tool of Bayesian inference to quan-
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tify the 13 parameters associated with mod-
elling of the PSV of a surface-linked diazonium
based ferrocene derivative is substantially less
than the more widely used, but computation-
ally intensive dual time domain ramped form
of FTACV. Although there is less confidence
about the parameters inferred from PSV data
(as shown by the width of the distributions in-
ferred by MCMC in figure 4) than for ramped-
FTACV data, parameters that accurately de-
scribe the PSV experiment are still accessible.
The fidelity of the PSV derived parameters was
demonstrated by showing that their use in sim-
ulations of the ramped FTACV experiment pro-
vided a very good fit to the data obtained with
the same ferrocene modified electrode. Because
of the dramatic reduction in computing time
conferred by using PSV, the impact of multiple
dispersed parameters can be addressed with a
desktop computer on the timescale of an hour.
In contrast it is computationally impractical to
solve the inverse problem with the ramped ex-
periment without access to a machine with con-
siderably more computing power. The dramatic
reduction in computing time, which is the core
benefit of PSV relative to ramped FTACV, has
therefore facilitated a much more thorough ex-
ploration of the surface confined process. How-
ever, inspection of the ramped data set, which
is visually much more informative can still be
used to assist in decisions about which form of
parameter dispersion to include in the model.

Supporting Information Avail-

able

Additional mathematical details, including a
description of the model and further details
about dispersion. Detailed experimental meth-
ods including synthetic methods. Supplemental
simulation details and results from the fitting
process.
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