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Abstract

Purpose. The inverse problem of determining the time-dependent convection coefficient
and the free boundary, along with the temperature in the two-dimensional convection-
diffusion equation with initial and boundary conditions supplemented by non-local integral
observations is, for the first time, numerically solved. From literature we already know
that this inverse problem has a unique solution. However, the problem is still ill-posed by
being unstable to noise in the input data.
Design/methodology. For the numerical discretisation, we apply the alternating di-
rection explicit finite-difference method along with the Tikhonov regularization to find a
stable and accurate numerical solution. The resulting nonlinear minimization problem is
solved computationally using the MATLAB routine lsqnonlin. Both exact and numeri-
cally simulated noisy input data are inverted.
Findings. The numerical results demonstrate that accurate and stable solutions are ob-
tained.
Originality. The inverse problem presented in this paper was already showed to be lo-
cally uniquely solvable, but no numerical solution has been realised so far; hence, the
main originality of this work is to attempt this task.

Keywords: Inverse problem; Free boundary; Two-dimensional heat equation; Tikhonov
regularization; Nonlinear optimization.

1 Introduction

Free boundary problems for parabolic partial differential equations have significant appli-
cations in various fields of engineering, physics, chemistry, see [1,3,7–10,12,14] to mention
only a few. In particular, the Stefan problem is a moving free boundary problem that
concerns the distribution of heat in a phase-change transforming medium. The authors
of [3] considered two fairly different free boundary problems of nonlinear diffusion. Chen
and Feldman [7] recast the formulation of various shock diffraction/reflection problems as
a free boundary problem. Recently, the authors numerically solved several inverse ther-
mal problems concerning the determination time-dependent coefficients along with free
boundaries, [8, 9, 12].

There is also an analysis of a one-dimensional inverse problem of reconstructing the
timewise heat source with a moving boundary [16]. The authors in [6] estimated free
boundary coming from two scenarios, aggregation processes and nonlocal diffusion. Snitko
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[19], theoretically, and Huntul [11], numerically, investigated the inverse problem of de-
termining the time-dependent reaction coefficient in a two-dimensional parabolic problem
with a free boundary.

The challenge associated with free boundary problems arises from the fact that the
solution domain is unknown, and only a few studies focus on the time-dependent free
boundary in higher dimensions, e.g. [13,18,20,21]. These papers are theoretical and very
important because they present sufficient conditions for the unique solvability of the un-
known coefficients. On the other hand, the numerical realization is also very important
for practical purposes of application.

This work examines the inverse problem of recovering the time-dependent convection
coefficient and free boundaries from nonlocal integral observations as over-specified condi-
tions. Such inverse mathematical modelling is relevant to multiple-phase flow applications
in which there exists transient convection that cannot be measured directly or accurately
due to inaccessibility or hostile environment. The inverse problem presented in this paper
has already been showed to be locally uniquely solvable by Snitko [22], but no numerical
solution has been realised so far; hence, the main goal of this work is to attempt this task.

The arrangement of this paper is systematized as follows. Section 2 describes the for-
mulations of the inverse problem. The solution of the direct problem using the alternating
direction explicit (ADE) method is presented in Section 3. The ADE direct solver is cou-
pled with the Tikhonov regularization method in Section 4. In Section 5, computational
results and discussions are presented. Finally, Section 6 highlights the conclusions.

2 Formulation of the inverse problem

Consider the inverse problem of determining time-dependent convection coefficients b1(t)
and b2(t), and the free boundaries l(t) > 0 and h(t) > 0, in the two-dimensional
convection-diffusion equation

ut = ∇2u+ b1(t)ux1
+ b2(t)ux2

+ f(x1, x2, t), (x1, x2, t) ∈ ΩT , (1)

where f(x1, x2, t) is a known heat source, u = u(x1, x2, t) is the unknown temperature in
the moving domain ΩT := {(x1, x2, t)| 0 < x1 < l(t), 0 < x2 < h(t), 0 < t < T < ∞},
subject to the initial condition

u(x1, x2, 0) = ϕ(x1, x2), (x1, x2) ∈ [0, l0]× [0, h0], (2)

where l0 ≡ l(0) and h0 ≡ h(0) are given positive numbers, the Dirichlet boundary condi-
tions

u(0, x2, t) = κ1(x2, t), u(l(t), x2, t) = κ2(x2, t), x2 ∈ [0, h(t)], t ∈ [0, T ], (3)

u(x1, 0, t) = κ3(x1, t), u(x1, h(t), t) = κ4(x1, t), x1 ∈ [0, l(t)], t ∈ [0, T ], (4)

and the nonlocal integral observations

l′(t) +

∫ h(t)

0

ux1
(l(t), x2, t)dx2 = κ5(t), t ∈ [0, T ], (5)

h′(t) +

∫ l(t)

0

ux2
(x1, h(t), t)dx1 = κ6(t), t ∈ [0, T ], (6)
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∫ l(t)

0

∫ h(t)

0

u(x1, x2, t)dx2dx1 = κ7(t), t ∈ [0, T ], (7)

∫ l(t)

0

∫ h(t)

0

x2u(x1, x2, t)dx2dx1 = κ8(t), t ∈ [0, T ], (8)

where ϕ and κi for i = 1, 8 are given functions satisfying compatibility conditions. The
functions κ5(t) and κ6(t) in (5) and (6) represent Stefan integral boundary conditions.
The function κ7(t) in (7) corresponds to the specification of mass/energy, [4,5], whilst the
function κ8(t) in (8) represents the first-order moment specification, [17]. In the above
inverse formulation we are concerned with the stable invertibility of the map (b1, b2, l, h) 7→
(k5, k6, k7, k8) in suitable spaces of admissible functions. Problems of the above type (1)-
(8) arise in the mathematical modelling of free boundaries in melting or ablation, and in
the oil and gas production during drilling and operation of wells, [23].

Using that for arbitrary continuously differentiable functions q(ζ, t) and χ(t) we have

d

dt

(

∫ χ(t)

0

q(ζ, t)dζ

)

=

∫ χ(t)

0

qt(ζ, t)dζ + χ′(t)q(χ(t), t),

we get from (7) by differentiation that:

κ′

7(t) =

∫ l(t)

0

∫ h(t)

0

ut(x1, x2, t)dx2dx1 + l′(t)

∫ h(t)

0

u(l(t), x2, t)dx2

+h′(t)

∫ l(t)

0

u(x1, h(t), t)dx1 =

∫ l(t)

0

∫ h(t)

0

ut(x1, x2, t)dx2dx1 + l′(t)

∫ h(t)

0

κ2(x2, t)dx2

+h′(t)

∫ l(t)

0

κ4(x1, t)dx1 = l′(t)

∫ h(t)

0

κ2(x2, t)dx2 + h′(t)

∫ l(t)

0

κ4(x1, t)dx1

+

∫ l(t)

0

∫ h(t)

0

[

∇2u(x1, x2, t) + f(x1, x2, t)
]

dx1dx2

+b1(t)

∫ h(t)

0

(

κ2(x2, t)− κ1(x2, t)
)

dx2 + b2(t)

∫ l(t)

0

(

κ4(x1, t)− κ3(x1, t)
)

dx1. (9)

Similarly, differentiating (8) we obtain

κ′

8(t) = l′(t)

∫ h(t)

0

x2κ2(x2, t)dx2 + h′(t)h(t)

∫ l(t)

0

κ4(x1, t)dx1

+

∫ l(t)

0

∫ h(t)

0

x2

[

∇2u(x1, x2, t) + f(x1, x2, t)
]

dx1dx2

+b1(t)

∫ h(t)

0

x2

(

κ2(x2, t)− κ1(x2, t)
)

dx2 + b2(t)

[

h(t)

∫ l(t)

0

κ4(x1, t)dx1 − κ7(t)

]

. (10)

Applying equations (5), (6), (9) and (10) at t = 0 and using the compatibility between
the initial data (2) and the Dirichlet boundary conditions (3) and (4) we obtain:

l′(0) = κ5(0)−

∫ h0

0

ϕx1
(l0, x2)dx2, h′(0) = κ6(0)−

∫ l0

0

ϕx2
(x1, h0)dx1, (11)
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κ′

7(0) = l′(0)

∫ h0

0

κ2(x2, 0)dx2 + h′(0)

∫ l0

0

κ4(x1, 0)dx1

+

∫ l0

0

∫ h0

0

[

∇2ϕ(x1, x2) + f(x1, x2, 0)
]

dx1dx2

+b1(0)

∫ h0

0

[κ2(x2, 0)− κ1(x2, 0)] dx2 + b2(0)

∫ l0

0

[κ4(x1, 0)− κ3(x1, 0)] dx1, (12)

κ′

8(0) = l′(0)

∫ h0

0

x2κ2(x2, 0)dx2 + h′(0)h0

∫ l0

0

κ4(x1, 0)dx1

+

∫ l0

0

∫ h0

0

x2

[

∇2ϕ(x1, x2) + f(x1, x2, 0)
]

dx1dx2

+b1(0)

∫ h0

0

x2 [κ2(x2, 0)− κ1(x2, 0)] dx2 + b2(0)

[

h0

∫ h0

0

κ4(x1, 0)dx1 − κ7(0)

]

. (13)

Then, the values of l′(0), h′(0), b1(0) and b2(0) are available from the system of equations
(11)–(13).

Introducing the new variables y1 = x1

l(t)
and y2 = x2

h(t)
, see [22], we recast the problem

given by equations (1)–(8) into the problem given below for the unknowns l(t), h(t), b1(t),
b2(t) and v(y1, y2, t) := u(y1l(t), y2h(t), t), namely,

vt =
1

l2(t)
vy1y1 +

1

h2(t)
vy2y2 +

(

b1(t) + y1l
′

(t)

l(t)

)

vy1 +

(

b2(t) + y2h
′

(t)

h(t)

)

vy2

+f(y1l(t), y2h(t), t), (y1, y2, t) ∈ QT , (14)

where QT := {(y1, y2, t)| 0 < y1 < 1, 0 < y2 < 1, 0 < t < T} is fixed domain and

v(y1, y2, 0) = ϕ(y1l0, y2h0), (y1, y2) ∈ [0, 1]× [0, 1], (15)

v(0, y2, t) = κ1(y2h(t), t), v(1, y2, t) = κ2(y2h(t), t), y2 ∈ [0, 1], t ∈ [0, T ], (16)

v(y1, 0, t) = κ3(y1l(t), t), v(y1, 1, t) = κ4(y1l(t), t), y1 ∈ [0, 1], t ∈ [0, T ], (17)

l′(t) +
h(t)

l(t)

∫ 1

0

vy1(1, y2, t)dy2 = κ5(t), t ∈ [0, T ], (18)

h′(t) +
l(t)

h(t)

∫ 1

0

vy2(y1, 1, t)dy1 = κ6(t), t ∈ [0, T ], (19)

l(t)h(t)

∫ 1

0

∫ 1

0

v(y1, y2, t)dy2dy1 = κ7(t), t ∈ [0, T ], (20)

l(t)h2(t)

∫ 1

0

∫ 1

0

y2v(y1, y2, t)dy2dy1 = κ8(t), t ∈ [0, T ]. (21)

The local existence and uniqueness of the solution of problem (14)–(21) were established
in [22] and read as follows.

Theorem 1. Suppose that the following conditions are satisfied:
(A1) ϕ ∈ C2([0,∞)2), κi ∈ C2,1([0,∞) × [0, T ]) for i = 1, 4, κi ∈ C[0, T ] for i = 5, 6,
κi ∈ C1[0, T ] for i = 7, 8, 0 ≤ f ∈ C1,0([0,∞)2 × [0, T ]);
(A2) 0 < ϕ0 ≤ ϕ(x1, x2) ≤ ϕ1 < ∞ for (x1, x2) ∈ [0,∞)2, ϕx1

(x1, x2) > 0, ϕx2
(x1, x2) >
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0 for (x1, x2) ∈ [0, l0] × [0, h0], ϕx1
(x1, x2) − ϕx1

(x1, h0 − x2) > 0, ϕx2
(x1, h0 − x2) −

ϕx2
(x1, x2) > 0 for (x1, x2) ∈ [0, l0]× [0, h0/2), κi(t) > 0 for t ∈ [0, T ] and i = 7, 8;

(A3) compatibility conditions of the zeroth and first order.
Then, it is possible to indicate a time T0 ∈ (0, T ], determined by the input data, such
that there exists a solution (l(t), h(t), b1(t), b2(t), v(y1, y2, t)) ∈ (C1[0, T0])

2 × (C[0, T0])
2 ×

C2,1(QT0
) with l(t) > 0, h(t) > 0 for t ∈ [0, T0], to problem (14)–(21).

Theorem 2. Suppose that in addition to (A2) the following condition is satisfied:
(A4) f ∈ C1,0([0,∞)2 × [0, T ]), ϕ ∈ C2([0,∞)2), κi ∈ C3,1([0,∞)× [0, T ]) for i = 1, 4.
Then, it is possible to indicate a time T1 ∈ (0, T ], determined by the input data, such that
problem (14)–(21) has at most one solution (l(t), h(t), b1(t), b2(t), v(y1, y2, t)) ∈ (C1[0, T1])

2×
(C[0, T1])

2 × C2,1(QT1
) with l(t) > 0, h(t) > 0 for t ∈ [0, T1].

Although Theorems 1 and 2 guarantee the local existence and uniqueness of the solu-
tion, the inverse problem is still ill-posed because small rando errors into the input data
cause large errors in the output solution, As it will be described in Section 4, special
methods of optimization based on the nonlinear Tikhononv’s regularization method need
to be employed in order to restore stability of the solution. But before we do that, the
next section describes the forward solver for the well-posed linear direct problem which
needs to be employed iteratively to obtain the solution of the ill-posed non-linear inverse
problem.

3 Forward solver for the time-dependent convection-

diffusion equation

Now, consider the direct (forward) problem (14)–(17). When l(t), h(t), b1(t), b2(t),
f(x1, x2, t), κi(t) for i = 1, 4, and ϕ(x1, x2) are given in the direct problem v(y1, y2, t) is to
be found along with the quantities of interest κi(t) for i = 5, 8. Denote v(y1, y2, tn) = vni,j,
l(tn) = ln, h(tn) = hn, b1(tn) = b1n , b2(tn) = b2n and f(y1l(tn), y2h(tn), tn) = fn

i,j, where

y1i = i∆y1, y2j = j∆y2, tn = n∆t, ∆y1 = 1/M1, ∆y2 = 1/M2, ∆t = T/N for i = 0,M1,
j = 0,M2, n = 0, N .

The ADE method, [2, 10], which is unconditionally stable, is described for solving
numerically the direct problem (14)–(17). Let ṽni,j and ũn

i,j satisfy

ṽn+1
i,j = Anṽ

n
i,j +Bn(ṽ

n
i+1,j + ṽn+1

i−1,j) + Cn(ṽ
n
i,j+1 + ṽn+1

i,j−1) +Dn(ṽ
n
i+1,j − ṽn+1

i−1,j)

+En(ṽ
n
i,j+1 − ṽn+1

i,j−1) +G∗

i,j, i = 1,M1 − 1, j = 1,M2 − 1, n = 0, N − 1, (22)

ũn+1
i,j = Anũ

n
i,j +Bn(ũ

n+1
i+1,j + ũn

i−1,j) + Cn(ũ
n+1
i,j+1 + ũn

i,j−1) +Dn(ũ
n+1
i+1,j − ũn

i−1,j)

+En(ũ
n+1
i,j+1 − ũn

i,j−1) +G∗

i,j, i = M1 − 1, 1, j = M2 − 1, 1, n = 0, N − 1, (23)

where

An =
1− λn

1 + λn

, Bn =
∆t

l2n(∆y1)2(1 + λn)
, Cn =

∆t

h2
n(∆y2)2(1 + λn)

,

Dn =
∆t

2∆y1

(

b1n + y1il
′

n

ln(1 + λn)

)

, En =
∆t

2∆y2

(

b2n + y2jh
′

n

hn(1 + λn)

)

,

G∗

i,j =
∆t

2(1 + λn
i,j)

(

fn+1
i,j + fn

i,j

)

, λn =
∆t

l2n(∆y1)2
+

∆t

h2
n(∆y2)2

. (24)
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Furthermore, let the ṽni,j and ũn
i,j also satisfy the initial and boundary conditions (15)–(17),

namely,

ṽ0i,j = ũ0
i,j = ϕi,j, i = 0,M1, j = 0,M2, (25)

ṽn0,j = ũn
0,j = κ1(y2jhn, tn), ṽnM1,j

= ũn
M1,j

= κ2(y2jhn, tn), j = 0,M2, n = 1, N, (26)

ṽni,0 = ũn
i,0 = κ3(y1iln, tn), ṽni,M2

= ũn
i,M2

= κ4(y1iln, tn), i = 0,M1, n = 1, N. (27)

Once ṽn+1
i,j and ũn+1

i,j have been obtained, the solution of the direct problem (14)–(17) is
computed by

vn+1
i,j =

ṽn+1
i,j + ũn+1

i,j

2
. (28)

The trapezoidal rule is used to approximate all the integrals in (18)–(21), as follows:

l′(tn) +
h(tn)

l(tn)

∫ 1

0

vy1(1, y2, tn)dy2 = l′n +
hn

ln

[

1

2M2

(

vy1(1, 0, tn) + vy1(1, 1, tn)

+2

M2−1
∑

j=1

vy1(1, y2j, tn)
)

]

, n = 1, N, (29)

where

vy1(1, 0, tn) =
4v(y1M1−1

, y2, tn)− v(y1M1−2
, y2, tn)− 3v(y1M1

, y2, tn)

−2(∆y1)
, n = 1, N,

vy1(1, 1, tn) =
4v(y1M1−1

, y2M2−1
, tn)− v(y1M1−2

, y2M2−2
, tn)− 3v(y1M1

, y2M2
, tn)

−2(∆y1)
,

n = 1, N,

vy1(1, y2j, tn) =
4v(y1M1−1

, y2j, tn)− v(y1M1−2
, y2j, tn)− 3v(y1M1

, y2j, tn)

−2(∆y1)
,

j = 1,M2 − 1 n = 1, N,

h′(tn) +
l(tn)

h(tn)

∫ 1

0

vy2(y1, 1, tn)dy1 = h′

n +
ln
hn

[

1

2M1

(

vy2(0, 1, tn) + vy2(1, 1, tn)

+2

M1−1
∑

i=1

vy2(y1i, 1, tn)
)

]

, n = 1, N, (30)

where

vy2(0, 1, tn) =
4v(y1, y2M2−1

, tn)− v(y1, y2M2−2
, tn)− 3v(y1, y2M2

, tn)

−2(∆y2)
, n = 1, N,

6



vy2(1, 1, tn) =
4v(y1M1−1

, y2M2−1
, tn)− v(y1M1−2

, y2M2−2
, tn)− 3v(y1M1

, y2M2
, tn)

−2(∆y2)
,

n = 1, N,

vy2(y1i, 1, tn) =
4v(y1i, y2M2−1

, tn)− v(y1i, y2M2−2
, tn)− 3v(y1i, y2M2

, tn)

−2(∆y2)
,

i = 1,M1 − 1, n = 1, N,

l(tn)h(tn)

∫ 1

0

∫ 1

0

v(y1, y2, tn)dy2dy1 =
lnhn

4M1M2

[

v(0, 0, tn) + v(1, 0, tn)

+v(0, 1, tn) + v(1, 1, tn) + 2

M1−1
∑

i=1

v(y1i, 0, tn) + 2

M1−1
∑

i=1

v(y1i, 1, tn)

+2

M2−1
∑

j=1

v(0, y2j, tn) + 2

M2−1
∑

j=1

v(1, y2j, tn) + 4

M2−1
∑

j=1

M1−1
∑

i=1

v(y1i, y2j, tn)

]

, n = 1, N,

l(tn)h
2(tn)

∫ 1

0

∫ 1

0

y2v(y1, y2, tn)dy2dy1 =
lnh

2
n

4M1M2

[

y2(0)v(0, 0, tn) + y2(0)v(1, 0, tn)

+y2(1)v(0, 1, tn) + y2(1)v(1, 1, tn) + 2

M1−1
∑

i=1

y2(0)v(y1i, 0, tn) + 2

M1−1
∑

i=1

y2(1)v(y1i, 1, tn)

+2

M2−1
∑

j=1

y2jv(0, y2j, tn) + 2

M2−1
∑

j=1

y2jv(1, y2j, tn) + 4

M2−1
∑

j=1

M1−1
∑

i=1

y2jv(y1i, y2j, tn)

]

,

n = 1, N.

4 Solution of the inverse problem

We want to find stable and accurate reconstructions of l(t), h(t), b1(t), b2(t) and v(y1, y2, t)
satisfying the nonlinear and ill-posed inverse problem (14)–(21). This is achieved by
minimizing the regularized objective function

F (l, h, b1, b2) =

∥

∥

∥

∥

l′(t) +
h(t)

l(t)

∫ 1

0

vy1(1, y2, t)dy2 − κ5(t)

∥

∥

∥

∥

2

+

∥

∥

∥

∥

h′(t) +
l(t)

h(t)

∫ 1

0

vy2(y1, 1, t)dy1 − κ6(t)

∥

∥

∥

∥

2

+

∥

∥

∥

∥

l(t)h(t)

∫ 1

0

∫ 1

0

v(y1, y2, t)dy2dy1 − κ7(t)

∥

∥

∥

∥

2

+

∥

∥

∥

∥

l(t)h2(t)

∫ 1

0

∫ 1

0

y2v(y1, y2, t)dy2dy1 − κ8(t)

∥

∥

∥

∥

2

+ λ1||l(t)||
2+λ2||h(t)||

2+λ3||b1(t)||
2+λ4||b2(t)||

2, (31)
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where v solves (14)–(17) for given (l, h, b1, b2), and λi ≥ 0 for i = 1, 4 are regularization
parameters to be prescribed, and the norm is the L2(0, T )-norm. As it will turn out
from the insight gained from the numerical investigation in Section 4, the free boundary
(l(t), h(t)) is obtained to be stable with respect to noise in the input data (18)–(21);
hence we can safely take λ1 = λ2 = 0 in (31). In the expressions (29), (30) and (31), we
approximate the derivatives of l(t) and h(t) as

l′n := l′(tn) ≈
l(tn)− l(tn−1)

∆t
=

ln − ln−1

∆t
, n = 1, N, (32)

h′

n := h′(tn) ≈
h(tn)− h(tn−1)

∆t
=

hn − hn−1

∆t
, n = 1, N. (33)

In discrete form, equation (31) becomes

F (l,h,b1,b2) =
N
∑

n=1

[

ln − ln−1

∆t
+

hn

ln

∫ 1

0

vy1(1, y2, tn)dy2 − κ5(tn)

]2

+
N
∑

n=1

[

hn − hn−1

∆t
+

ln
hn

∫ 1

0

vy2(y1, 1, tn)dy1 − κ6(tn)

]2

+
N
∑

n=1

[

lnhn

∫ 1

0

∫ 1

0

v(y1, y2, tn)dy2dy1 − κ7(tn)

]2

+
N
∑

n=1

[

lnh
2
n

∫ 1

0

∫ 1

0

y2v(y1, y2, tn)dy2dy1 − κ8(tn)

]2

+ λ1

N
∑

n=1

l2n + λ2

N
∑

n=1

h2
n + λ3

N
∑

n=1

b21n + λ4

N
∑

n=1

b22n . (34)

The minimization of the objective function (34) is carried out using the MATLAB sub-
routine lsqnonlin. Alternative numerical methods that can be used to efficiently solve
optimization problems include the well-known adjoint technique, see e.g. [24] which deals
with similar inverse problems for time-dependent partial differential equations.

The inverse problem (14)–(21) is solved with exact as well as noisy data (18)–(21).
The noisy data are numerically simulated as

κnoise
i (tn) = κi(tn) + ǫn, i = 5, 8, n = 1, N, (35)

where ǫn are random variables with zero mean and standard deviation

σi = p× max
t∈[0,T ]

|κi(t)|, i = 5, 8, (36)

where p denotes the percentage of noise. We utilize the MATLAB function normrnd to
generate ǫ = (ǫn)n=1,N as ǫ = normrnd(0, σ,N). In the case of noisy data (35), we replace

in (34) κi(tn) by κnoise
i (tn) for i = 5, 8.
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5 Numerical results and discussion

The following root mean square (RMS) errors are defined as

RMS(l) =

[

T

N

N
∑

n=1

(

lnumerical(tn)− lexact(tn)
)2
]1/2

, (37)

RMS(h) =

[

T

N

N
∑

n=1

(

hnumerical(tn)− hexact(tn)
)2
]1/2

, (38)

and similar expressions exist for b1(t) and b2(t). We take T = 1, for simplicity. Further-
more, we take the lower and upper bounds for l(t) > 0 and h(t) > 0 to be 10−6 and 103,
respectively, and the lower and upper bounds for the quantities b1(t) and b2(t), to be −103

and 103, respectively. These bounds allow for a wide search range of the unknowns.
Let us investigate the inverse problem (1)–(8) with the input data:

ϕ(x1, x2) =
3

2
+ tanh(x1)−

cos
(

πx2

2
+ π

8

)

1 + x1

, κ1(x2, t) = t+
3

2
− cos

(πx2

2
+

π

8

)

,

κ2(x2, t) = t+
3

2
+ tanh(1 + t)−

cos
(

πx2

2
+ π

8

)

2 + t
, κ3(x1, t) = t+

3

2
+ tanh(x1)

−
cos
(

π
8

)

1 + x1

, κ4(x1, t) = t+
3

2
+ tanh(x1)−

cos
(

π(1+t)
2

+ π
8

)

1 + x1

, f(x1, x2, t) = 1

+
2 tanh(x1) + 2− cos(2πt)

cosh2(x1)
+

cos
(

πx2

2
+ π

8

)

1 + x1

[

2

(1 + x1)2
−

π2

4
+

2− cos(2πt)

1 + x1

]

+
π

2
sin
(πx2

2
+

π

8

)

(

2− cos(2πt)

1 + x1

)

,

κ5(t) = 1 +
1 + t

cosh2(1 + t)
+

2

π(2 + t)2

[

cos

(

πt

2
+

π

8

)

− sin
(π

8

)

]

,

κ6(t) = 1 +
π

2
cos

(

πt

2
+

π

8

)

ln(2 + t),

κ7(t) =
2

π

[

sin
(π

8

)

− cos

(

πt

2
+

π

8

)]

ln(2 + t) + (1 + t) ln(cosh(1 + t)) +

(

3

2
+ t

)

(1 + t)2,

κ8(t) =
2

π2

[

2 cos
(π

8

)

− π(1 + t) cos

(

πt

2
+

π

8

)

+ 2 sin

(

πt

2
+

π

8

)]

ln(2 + t)

+
(1 + t)2 ln(cosh(1 + t))

2
+

(2t3 + 7t2 + 8t+ 3)(1 + t)

4
.

We observe that the conditions (A1)-(A4) of Theorems 1 and 2 are fulfilled and thus, the
existence and uniqueness of the solution are ensured. It can be easily verified that the
exact solution of (1)–(8) is

u(x1, x2, t) = t+
3

2
+ tanh(x1)−

cos
(

πx2

2
+ π

8

)

1 + x1

, (x1, x2, t) ∈ ΩT , (39)
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and

l(t) = 1 + t, h(t) = 1 + t, b1(t) = −2 + cos(2πt), b2(t) = −2 + cos(2πt), t ∈ [0, 1]. (40)

Also,

v(y1, y2, t) = u(y1l(t), y2h(t), t) = t+
3

2
+ tanh(y1(1 + t))−

cos
(

πy2(1+t)
2

+ π
8

)

1 + y1(1 + t)
,

(y1, y2, t) ∈ QT . (41)

First, we investigate the accuracy of the direct problem (1)–(4) with the input data
(39) when l(t), h(t), b1(t), b2(t) are known and given by (40). Table 1 reveals that the
exact and numerical solutions for the quantities (18)–(21), obtained with the the finite-
difference grids M1 = M2 = 10 and N ∈ {20, 40, 80} are in good agreement the accuracy
increasing, as the mesh size decreases.

Table 1: The numerical and analytical (exact) solutions for κi(t) for i = 5, 8, obtained
with M1 = M2 = 10 and various N ∈ {20, 40, 80}.

t 0.1 0.2 0.3 ... 0.8 0.9 1 N

κ5(t)

1.4494
1.4412
1.4585
1.4630

1.3553
1.3952
1.4068
1.4157

1.2488
1.3312
1.3530
1.3668

...

...

...

...

1.1916
1.1480
1.1485
1.1490

1.1718
1.1182
1.1171
1.1160

1.1306
1.0867
1.0869
1.0872

20
40
80
exact

κ6(t)

1.9951
1.9948
1.9940
1.9937

1.8954
1.9380
1.9496
1.9418

1.7414
1.8300
1.8423
1.8497

...

...

...

...

0.9140
0.8708
0.8701
0.8731

0.6593
0.6051
0.6062
0.6096

0.3681
0.3234
0.3329
0.3396

20
40
80
exact

κ7(t)

2.2737
2.2758
2.2765
2.2772

2.9683
2.9697
2.9700
2.9708

3.7839
3.7821
3.7819
3.7826

...

...

...

...

9.7888
9.7928
9.7942
9.7951

11.4096
11.4133
11.4147
11.4167

13.1782
13.1808
13.1821
13.1853

20
40
80
exact

κ8(t)

1.3666
1.3677
1.3670
1.3664

1.9433
1.9430
1.9427
1.9410

2.6786
2.6755
2.6748
2.6715

...

...

...

...

9.4391
9.4380
9.4371
9.4377

11.5672
11.5675
11.5678
11.5680

14.0063
14.0069
14.0072
14.0080

20
40
80
exact

In the inverse problem (14)–(21), we take the initial guesses for the vectors l,h,b1

and b2, as follows:

l0(tn) = l0 = 1, h0(tn) = h0 = 1, b01(tn) = b1(0) = −1, b02(tn) = b2(0) = −1,

n = 1, N, (42)

by noting that the values of b1(0) and b2(0) are a priori obtainable from the system of
equations (11)–(13). We take a mesh size with M1 = M2 = 10 and N = 40, which
was found sufficiently dense to ensure that any finer mesh (such as M1 = M2 = 20 and
N = 80) did not influence the stability and accuracy of the numerical solution.
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For exact data, i.e. p = 0, although not illustrated, it is reported that the unregularized
objective function (34) with λi = 0 for i = 1, 4, is monotonically decreasing convergent to
attain a very low stationary threshold. Furthermore, the rate of convergence increases with
decreasing the time step. A good agreement between the analytical (40) and numerical
solutions for the time-dependent functions l(t), h(t), b1(t) and b2(t) was observed with
RMS(l) =1.9E-3, RMS(h) =3.7E-3, RMS(b1) =0.1819 and RMS(b2) =0.1522.

Next, the stability of the numerical solution is investigated when the data (35) is
perturbed by a small amount p = 0.01% of noise. The objective function (34), without
and with regularization is plotted in Figure 1, where rapid decreases to values of O(10−22)
and O(10−2) are noticed in 42 and 15 iterations, respectively. The RMS values for l(t),
h(t), b1(t) and b2(t) are presented in Figure 2. From this figure, it can be observed that
RMS(l) and RMS(h) values are much lower than the RMS(bi) for i = 1, 2, indicating that
the free boundaries l(t) and h(t) are retrieved more accurately than the coefficients b1 and
b2. Moreover, from Figure 2 it can be observed that in the case of no regularization, i.e.
λi = 0, for i = 1, 4, the RMS values settle to stationary levels after 10 to 20 iterations.
The numerical results for l(t), h(t), b1(t) and b2(t) are depicted in Figure 3. Stable
and accurate results are obtained for l(t) and h(t) by observing Figures 3(a) and 3(b),
indicating that the inverse problem is stable in l(t) and h(t) and regularization is not
necessary. However, if we do not impose regularization, unstable (highly oscillatory)
behaviour for the coefficients b1(t) and b2(t), with RMS(b1)=1.2885 and RMS(b2)=1.1369,
is obtained. Based on these observations, we choose λ1 = λ2 = 0, i.e. we do not penalise l
and h in (34). In order to stabilise the terms b1(t) and b2(t), we have applied regularization
with λ3 = λ4 ∈ {10−4, 10−3}, obtaining RMS(b1) ∈ {0.5644, 0.5724} and RMS(b2) ∈
{0.3702, 0.3729}, respectively. Clearly, the effect of λ3 = λ4 > 0 in drastically reducing
the oscillatory unstable behaviour of b1(t) and b2(t) are noticed. Overall, Figures 3(c),
3(d) and Table 2 shows that the numerical results achieved with λ3 = λ4 = 10−4 are
stable and accurate. Finally, it is reported that the numerical solutions for v(y1, y2, t)
were found stable and accurate and, for brevity, they are not presented.
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Figure 1: The objective function (34) versus the number of iterations: (a) without regulariza-

tion, and (b) with regularization, for p = 0.01% noise.
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Table 2: The RMS at the stopping iteration numbers Iter for p ∈ {0, 0.01%} noise, without
and with regularization.

p λ1 λ2 λ3 λ4 RMS(l) RMS(h) RMS(b1) RMS(b2) Iter
0 0 0 0 0 0.0019 0.0037 0.1819 0.1522 37

0.01%

0
0
0
0
0
0

0
0
0
0
0
0

0
10−5

10−4

10−3

10−2

10−1

0
10−5

10−4

10−3

10−2

10−1

0.0021
0.0047
0.0040
0.0055
0.0133
0.0567

0.0039
0.0098
0.0046
0.0089
0.0214
0.0870

1.2885
0.9188
0.5644
0.5724
0.7433
0.9875

1.1369
0.7562
0.3702
0.3729
0.3863
0.4542

32
16
16
16
13
17
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Figure 2: The RMS values: (a) RMS(l), (b) RMS(h), (c) RMS(b1) and (d) RMS(b2) versus the

number of iterations, for p = 0.01% noise, without and with regularization.
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Figure 3: The exact (40) and numerical solutions for: (a) l(t), (b) h(t), (c) b1(t) and (d) b2(t),

for p = 0.01% noise, without and with regularization.

6 Conclusions

In this study, an inverse free boundary problem concerning the determination of the time-
dependent convection term b(t) = (b1(t), b2(t)) and the free moving boundaries l(t) and
h(t) along with the temperature u(x1, x2, t) in the two-dimensional heat equation from
over-specification conditions has been solved for the first time numerically. The study
may be particularly useful not only to free boundary value problems in heat transfer and
porous media, but also in problems related to clinical diagnose of cancer, [15]. The direct
solver based on the ADE was employed. The inverse problem approach based on a non-
linear least-squares minimization problem using the MATLAB optimization subroutine
was developed. The Tikhonov regularization has been employed in order to obtain stable
and accurate solutions since the inverse problem is ill-posed in the convection coefficient
with respect to noise in the nonlocal integral observations (5)-(8).
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