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Spatial impact of Cropland Supplement Policy on regional ecosystem 25 

services under urban expansion circumstance: a case study of Hubei 26 

Province, China 27 

Abstract: The Cropland Supplement Policy (CSP) helps maintain the total area of 28 

cropland in China as urban areas expand, but can result in environmental 29 

degradation as areas of more natural habitat are turned into cropland. Current and 30 

future impacts of the CSP are explored under different land use change scenarios 31 

by comparing the differences in ecosystem services value (ESV) at prefecture 32 

level. Scenario based simulation results suggest that in Hubei province, the CSP 33 

cost 19.53 billion CNY in the period 2000 to 2015 and would cost an additional 34 

12.54 billion CNY in the period 2015 to 2030 in terms of ESV loss. A policy 35 

analysis framework for land use planning is proposed which enables ecological 36 

impacts of the CSP to be considered. 37 

Keywords: Cropland protection; Cropland supplement policy; Ecosystem 38 

protection; Ecosystem Services Value; Land use change model 39 
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1. Introduction 41 

More than 50% of people now live in urban areas, this proportion is expected to reach 42 

68.4% by 2050 (United Nations, 2018). Whilst more people can be accommodated into 43 

existing urban areas, typically urbanization involves expanding urban areas (Seto et al., 44 

2012). McDonald et al. (2018) forecast a worldwide increase of 120 million hectares of 45 

urban land from 2000 to 2030, and in many cases the expansion will be at the expense of 46 

some highly productive farmland (Angel et al., 2011; Xin & Li, 2018). Martellozzo et al. 47 

(2015) reported that in Canada around 60% of the urban area built in the Calgary-48 

Edmonton corridor between 1988 and 2010 occupied land that was previously cropland, 49 

and unsurprisingly agricultural productivity in the area fell as a result. van Vliet et al. 50 

(2017) estimates that by 2050, due to urban expansion, agricultural production in the close 51 

vicinity of large cities will be 65 million tons less. Global population is expected to 52 

increase significantly in the coming years, and people are preferring to consume products 53 

requiring more land to produce (Seto & Ramankutty, 2016). Thus at a global scale, the 54 

demand for agricultural land is increasing. What is typically being lost are many more 55 

natural habitats and areas of wetland and forest, and this is a major concern documented 56 

by numerous case studies (Gibbs et al., 2010). Typically, wetlands and forested areas are 57 

more easily changed into cropland than more barren or wasteland areas, and similarly 58 

grassland is more likely to be turned into cropland than perhaps any other land use type 59 

(van Vliet et al. 2017; Gibbs et al., 2010; Zheng et al., 2019). There are major concerns 60 

about the loss of natural habitats and habitat fragmentation as a result of these changes at 61 

all scales. As well as direct expansion into what could be classed as natural habitat on the 62 

fringes of an urban area, urban expansion has knock on indirect displacement effects 63 

which may impact such habitats locally, regionally and globally (Ke et al., 2018).  64 

The United Nations Human Settlements Programme (UN-Habitat) advocates 65 



4 

 

compact cities to mitigate the negative impacts of urban expansion (Seto & Ramankutty, 66 

2016). More compact cities accommodate more people, industry and everything that 67 

makes up the urban fabric within a smaller urban area footprint than a less compact, more 68 

sprawling city. Cropland Protection Policies (CPP) have been introduced in some densely 69 

populated parts of the world, to both restrict urban area expansion and encourage 70 

agricultural production in urban areas and their periphery. In recent years, the Japanese 71 

government enacted cropland protection laws to protect cropland directly, and also placed 72 

restrictions on the imports of primary agricultural products to increase the price of locally 73 

produced agricultural products which has had the effect of protecting cropland indirectly 74 

(Monk et al., 2013). In western European countries cropland is protected by: planning 75 

restrictions; delineating priority areas for cropland; and, setting targets to control cropland 76 

loss (Oliveira et al., 2019).  77 

For the last 30 years or more, there has been rapid urbanization in China. In 2017 78 

it was estimated that 58.52% of the population lived in urban areas (National Bureau of 79 

Statistics of China, 2018). Whilst the total population of China is unlikely to change much 80 

in the next decade, the proportion of people living in urban areas is expected to rise to 81 

around 70% by 2030 (United Nations, 2018). In response to concerns about food security, 82 

various CPP have been implemented in China. (Lichtenberg & Ding, 2008).   83 

There are natural language translation difficulties when considering land use and 84 

policy terminology. The meanings of farmland, cropland, cultivated land and natural 85 

habitat are different in different contexts. In the Chinese context, cropland, which is 86 

protected by CPP, commonly refers to areas planted with high yielding cereals: including 87 

drier tilled land used to grow wheat and barley; and, wet paddy fields where the main 88 

crop is rice. Cropland in this context may also include land where vegetables are grown 89 
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but is typically not where fruit is grown (Xin & Li, 2018).  90 

Among various CPP enacted in China, the Cropland Supplement Policy (CSP) 91 

applies when urban land expands into cropland. In general, the CSP aims to ensure that 92 

overall the amount of cropland area is maintained at the province level, thus cropland 93 

changed to urban land use is replaced by other land changed to cropland (via land 94 

development, land consolidation, land rehabilitation, or agricultural restructuring 95 

projects). The CSP mainly involves cropland supplement via land development projects, 96 

which typically results in natural habitats being converted into cropland (Wu et al., 2017). 97 

In this study, natural habitat refers to forest, grassland, wetland, open water, and unused 98 

lands (IUCN, 2013; Ke et al., 2018).  99 

The CSP in China has been variously studied. Song & Pijanowski (2014) revealed 100 

that in the whole of China “the total gained cropland by land exploitation, consolidation 101 

and rehabilitation” from 1999 to 2008 was 27,677 km2 and the “the total lost cropland by 102 

construction occupation” was 21,011 km2. Yet in this period, the total cropland area 103 

reduced by around 6% (Song & Pijanowski, 2014). Feng et al. (2015) and Song & 104 

Pijanowski (2014) contend that the displacement of cropland as a result of the CSP can 105 

lead to productivity decline and ecosystem degradation, and Chen et al. (2019) revealed 106 

that newer cropland is generally less productive. Academic study has also focused on the 107 

trade-off between changes of Ecosystem Services Value (ESV) and changes of potential 108 

productivity of supplemented cropland (Zheng et al., 2018); and the amount, 109 

heterogeneity, and patterns of supplemented cropland (Liu et al., 2019). Although 110 

historical impacts of the CSP on ESV have been estimated in several studies (Chen et al., 111 

2019), few of them identified the impacts of the CSP from other related policies, in 112 

particular the Grain to Green Project, implemented during the same period (Wang et al., 113 
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2017). This study begins to address a need for investigating the likely future impacts of 114 

the CSP on local ecosystem services, which is arguably essential for any adaptive and 115 

forward looking policy appraisal.   116 

Given the landscape diversity and the CSP implementation context (will be 117 

illustrated in Section 2.2), herein a case study of Hubei Province in China, which 118 

investigates the impacts of the CSP on land use changes in associated with ESV variations 119 

during the periods 2000-2015 and 2015-2030 is examined. It presents results of a 120 

modelling exercise which explores the differences of both land use changes and ESV 121 

changes under a couple of different policy scenarios: a scenario with Loose Cropland 122 

Protection (LCP) and a scenario with Strict Cropland Protection (SCP). By comparing 123 

the differences of land use and ESV changes between two scenarios, some impacts of the 124 

CSP are identified. 125 

2. Methodology and Data Source 126 

2.1.  Research framework 127 

In order to investigate the impacts of the CSP on land use changes and ecosystem services, 128 

the study was divided into two parts (Figure 1). The first step was to examine observed 129 

land use changes across the study area between 2000 and 2015. As the CSP was 130 

introduced in 1998 in Hubei Province, observed land use changes were under the 131 

influence of the CSP, thus a possible way to investigate the impacts of the CSP on land 132 

use change is to compare observed land use changes and simulated land use changes 133 

without the CSP influence. However, the CSP was not the only policy or change 134 

influencing observed land use changes, the Grain for Green Project and major water 135 

reservoir construction projects also had a significant influence on land use change during 136 

this period. Thus, in order to identify the impacts of the CSP, two contrasting policy 137 
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scenarios were developed: the Strict Cropland Protection (SCP) scenario and Loose 138 

Cropland Protection (LCP) scenario. Under the SCP scenario, the CSP applied, any loss 139 

of cropland resulting from urban expansion was to be supplemented somewhere else in 140 

the province to keep the area of cropland constant; whereas under the LCP scenario, any 141 

cropland loss due to urban expansion was not required to be supplemented. The 142 

LANDSCAPE model was applied to simulate the land use changes in the period 2000 to 143 

2015 under both scenarios. Thus, the influence of the CSP on land use changes could be 144 

examined by comparing the simulated land use from 2000 to 2015 under both LCP and 145 

SCP scenarios. Then, the impacts of the CSP on ecosystem service associated with land 146 

use change can be translated into ESV differences by using an equivalent factor method.  147 

Based on a number of assumptions, land use change under the two scenarios was 148 

simulated for the period 2015 to 2030. Again these changes were translated into estimated 149 

changes in ESV to suggest the ecological impacts of the CSP under the different scenarios 150 

in the next ten years. 151 

 152 

[Insert Figure 1 here] 153 

 154 

Figure 1. Research framework 155 

 156 

2.2.  Study area and data sources 157 

Located in the central China, Hubei Province covers an area of 185,900 km2. Altitude 158 

varies from less than 60m to more than 1800m above sea level. The western, northern 159 

and eastern parts of the province are mountainous areas dominated by forest and 160 

grasslands; the central and southern parts are lake plains covered by cropland, wetlands, 161 

and urban land (Figure 2). Since the CSP has been implemented in the province (over the 162 
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last 20 years), many areas of natural habitat have been converted into cropland (Tang et 163 

al., 2020). More areas of natural habitat are expected to be converted in the future if the 164 

same CSP remains.  165 

 166 

[Insert Figure 2 here] 167 

 168 

Figure 2. Land use of Hubei Province in China, 2015 169 

 170 

The data employed in the study are listed in Table 1. These include land use, 171 

terrain, accessibility, soil, climate, and socio-economic data.   172 

Table 1. Data Source: (Ke et al., 2018) 173 

 174 

[Insert Table 1 here] 175 

 176 

Land use data for Hubei Province are derived from Landsat TM images, and the 177 

overall accuracy is estimated to be above 90% in general at a spatial resolution of 30 178 

meters (Liu et al., 2005). For this study, the land use maps original twenty-five classes 179 

were reclassified to eight primary land use types (Table 2).   180 

Table 2. Land-use reclassification for Hubei Province, China Source: (Liu et al., 2005) 181 

 182 

[Insert Table 2 here] 183 

 184 

The digital elevation model (DEM) has a resolution of 90 meters. Slope was 185 

calculated from the DEM data. Soil data were obtained at a scale of 1:1,000,000. And, 186 

following Tang et al., (2020), the average annual cumulative temperature and annual 187 

precipitation for the period 1990 to 2010 were interpolated from sample points to the 188 
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surface by applying Kriging approach. The absolute errors of interpolation of the average 189 

annual accumulated temperature and annual precipitation were 0.20° C and 2.15 mm, 190 

respectively. Soil data and climate data were used to evaluate agricultural suitability in 191 

the LANDSCAPE model. Accessibility was estimated based on road network data, which 192 

was extracted from the Traffic Atlas of Hubei Province (Table 1).  The road network was 193 

used to generate a Euclidean distance surface, which is used as a proxy for accessibility. 194 

All the spatial datasets were converted to raster format with a resolution of 100 meters 195 

for use in the LANDSCAPE model. 196 

2.3 The LANDSCAPE model 197 

The LANDSCAPE model is a cellular automata (CA) model (Ke et al., 2017; Ke et 198 

al.,2018), which represents the study area as a regular gird of cells each with a single 199 

(dominated) type of land use.  In the LANSCAPE model, land use types are classified 200 

into active or passive types, which are determined by the relationship between land use 201 

and human demand (Ke et al., 2017). Changes in the area of active land use types are 202 

specifically driven by demand, for example demand for new residential areas. In contrast, 203 

changes in the area of passive land use types are driven by changes in the area of active 204 

land use types (e.g., urban areas can expand into grassland areas, but grassland areas will 205 

not expand into urban areas). The simulation of land use change is controlled by the 206 

probability of transition (POT), which is the probability of occurrence of a target land-207 

use type on any cell. The POT is derived from the suitability of each land use type and 208 

the resistance to change of the existing land use type, formulated as Eq.(1): 209 

 𝑃𝑂𝑇𝑗,𝑒𝑢,𝑜𝑢 = 𝑃𝑗,𝑜𝑢𝑅𝑗,𝑒𝑢 (1) 210 
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where 𝑃𝑂𝑇𝑗,𝑒𝑢,𝑜𝑢 represents the probability that a cell j will transform from the 211 

existing land use type eu into the objective land use type ou; Pj,ou refers to the suitability 212 

of land use type ou at cell j; Rj,eu refers to the resistance to change of the existing land use 213 

type eu, which represents the likelihood of cell j being converted from the existing land 214 

use eu to any other land-use type. 215 

Suitability Pj,ou for a cell at location j is calculated as in Eq.(2): 216 

 𝑃𝑗,𝑜𝑢 = (1 + (− ln 𝑟)𝛼) × 𝑃𝐺𝑗,𝑜𝑢 × 𝐶𝑜𝑛(𝐶𝑗,𝑜𝑢) × 𝛺𝑗,𝑜𝑢 (2) 217 

where r is a stochastic pseudo random number which is a value between 0 and 1 218 

in the simulation; α is a dispersion factor that represents a random factor. 𝑃𝐺𝑗,𝑜𝑢 is a factor 219 

that represents the likelihood of change to the objective land use type ou given a 220 

combination of biophysical and socioeconomic factors for the cell j including terrain 221 

suitability, accessibility, soil and climate factor. 𝐶𝑜𝑛(𝐶𝑗,𝑜𝑢)  is a binary constraint 222 

variable, which indicates whether cell j is suitable for changing into a specific type of 223 

land use ou (1 for suitable and vice versa ).  𝛺𝑗,𝑜𝑢 is the proportion of cells with the 224 

objective land use type ou among all of the cells in the neighbourhood(commonly a 3 × 3 225 

window) of the cell j. 226 

Resistance in Eq.(1) refers to transition difficulty from current land use type to 227 

other land use types, which indicates the degree of neighbourhoods of the original land 228 

use can be occupied by the target type of land use, and can be calibrated and formulated 229 

as Eq.(3) (Ke et al., 2017). 230 

 𝑅𝑖 = 𝑀𝑚𝑎𝑥−𝑀𝑖𝑀𝑚𝑎𝑥−𝑀𝑚𝑖𝑛 × (𝑅𝑚𝑎𝑥 − 𝑅𝑚𝑖𝑛) + 𝑅𝑚𝑖𝑛  (3) 231 

where 𝑅𝑖  is resistance of land use type i, and 𝑀𝑚𝑎𝑥 ,  𝑀𝑖 ,  𝑀𝑚𝑖𝑛 ,represent the 232 

maximum, median, minimum of degree of neighborhood of land use type i occupied by 233 



11 

 

other land use types. In the model calibration, the degree of neighbourhood will be 234 

estimated by historical land use changes of study area.  𝑅𝑚𝑎𝑥 and 𝑅𝑚𝑖𝑛 are upper and 235 

lower bound of resistance range, respectively, and in this study these values were set as 236 

1.5 and 1.0 following Ke et al., (2017) and Tang et al.,(2020). 237 

Once the parameters have been calibrated, the LANDSCAPE model will run 238 

iteratively with the given demand for each active land use type. The simulated change in 239 

land use of the study is then revealed iteratively year by year.  240 

2.4 Evaluation of ESV changes 241 

ESV has been a popular topic in ecological research (Costanza et al., 2014; Akber et al., 242 

2018). de Groot et al. (2012) outlines two types of approach to evaluate ecosystem 243 

services values: a so called primary data based approach which includes markets value 244 

method and travel costs method, and is often applied to evaluate a single type of 245 

ecosystem service; and, the equivalent factor method (Turner et al., 2015), where ESV is 246 

assessed as the economic value per unit area of ecosystem via a basic value transfer 247 

function (Costanza et al., 2014). Due to its extensive data requirements, the primary data-248 

based approach is usually only employed on a small spatial scale. Therefore, given that 249 

this study is a relatively-large scale study, the equivalent factor method was employed 250 

with ESV calculated as in Eq.(4): 251 

 𝐸𝑆𝑉 = ∑ (𝐴𝑓 × 𝑉𝐶𝑓)𝑛𝑓=1  (4) 252 

where ESV is the ecosystem services value for the entire study area; f refers to the 253 

land use types; Af is the area of a land use type; and VCf is the economic value of 254 

ecosystem services per unit area of land use type f. The values for VCf used are given in 255 

Table 3. 256 
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Table 3. Economic value of ecosystem services per unit area of each land use type 257 

(CNY/km2) 258 

 259 

[Insert Table 3 here] 260 

 261 

Each VCf value is taken from Xie et al., (2017) and adjusted using agricultural net 262 

profit values of Hubei Province derived from social and economic data. Following Xie et 263 

al. (2017) and Song et al. (2017), the ESV of cropland was considered in this study in 264 

order to avoid underestimating the ESV at prefecture or provincial level.   265 

2.5 Implementation of the LANDSCAPE model 266 

2.5.1 Model calibration and validation 267 

The probability of transition (POT) is the key parameter to calibrate the LANDSCAPE 268 

model. In this study, eight different types of land use (Table 2) were identified in the 269 

model. For each land use type, the suitability was calculated by Eq.(2). Following Ke et 270 

al., (2017), the C5.0 decision tree algorithm was applied to estimate 𝑃𝐺𝑗,𝑜𝑢 based on the 271 

four spatial driving factors, including terrain, accessibility, soil condition, and climate 272 

factors (variables are listed in Table 1). The resistance was calculated based on Eq. (3) 273 

with land use changes between 2000 and 2015. 274 

The validation of LANDSCAPE model involve comparison between simulated 275 

land use map and real land use map. In this study, we set the demands for each type of 276 

land use in LANDSCAPE model as the total area of each land use in 2015, then run the 277 

simulation from 2000 to 2015. The Kappa Simulation approach, which is a coefficient of 278 

agreement between the observed land use changes and the simulated land use changes 279 

(van Vliet et al., 2011), was used to measure the goodness of fit between the simulated 280 

and actual land use map 2015. The value of Kappa Simulation varies between -1 and 1, 281 
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where: 1 indicates perfect agreement; 0 indicates that the simulation is only as good as 282 

results would be expected from a random model; and, negative values indicate that the 283 

model is worse than random. In this research, the Kappa Simulation scores for all land 284 

use types for the best fitting model are shown in Table 4, they are all above 0 although 285 

for Grasslands the value is close to 0, suggesting an acceptable goodness-of-fit. 286 

Table 4. Kappa Simulation scores for the model results 287 

 288 

[Insert Table 4 here] 289 

 290 

2.5.2 Land use changes simulation with LANDSCAPE under different scenarios 291 

Urban land and cropland were set as active lands in the study as the urbanization process 292 

and the implementation of the CSP in Hubei province are effectively demand driven. The 293 

demand for urban land in 2015 was set as the observed area of urban land for both 294 

scenarios. Under the SCP scenario, the demand for cropland in 2015 was set strictly as 295 

the value in 2000; while under the LCP scenario it was set as open, the amount and 296 

distribution of cropland was revealed by the simulation process. 297 

As for 2030, the demand for urban land was set equal (Table 5) under both 298 

scenarios, which was estimated via a simple exponential growth model with a static 299 

growth rate starting from 2015. The annual growth rate was set as the average growth rate 300 

of urban expansion in the period 2000 to 2015.  301 

The demand for cropland between 2015 and 2030 was set the same way as the 302 

simulation for the period 2000 to 2015. With the SCP scenario, demand for cropland was 303 

set to be constant (as it was in 2015), and under the LCP scenario it was set open.  304 

For the two periods of simulation (2000-2015 and 2015-2030), the location for 305 

rural settlements and water areas was set as constant under both scenarios to establish a 306 
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baseline for comparison. Even though the area of water increased considerably during 307 

2000–2015 in Hubei Province - due to large scale water reservoir construction (i.e., The 308 

Three Gorges Reservoir), the water area was set to be constant for simplicity. The demand 309 

for each type of land is shown in Table 5. 310 

Table 5. The parameters applied for the land use scenarios 311 

 312 

[Insert Table 5 here] 313 

 314 

3. Results 315 

3.1 Observed and simulated land use change 2000-2015 316 

Figure 3 shows the observed and simulated land use change in Hubei province in the 317 

period 2000 to 2015. In the real world, the total area of urban land and water expanded 318 

significantly (by 3099.78 km2 and 3004.17 km2 respectively) in the province during this 319 

time, while the area of cropland fell by 4682.51km2 despite the CSP being in place. A 320 

considerable loss of natural habitat, including forest (667.92 km2) and wetlands (704.63 321 

km2), is observed in this period. In the simulation, the urban area expanded at the same 322 

speed as observed, the changes of other types of land use vary. Under the LCP scenario, 323 

cropland area shrank by 1851.51 km2, and the area of forest fell by 1006.56 km2. Under 324 

the SCP scenario, the area of cropland remained as it was in the year 2000, but there were 325 

reductions in the areas of forest (2479.74 km2) and wetland (437.87 km2).  326 

The considerable differences between the observed land use change and the 327 

simulated data under the SCP scenario suggests that urbanization and the CSP are not the 328 

only driving forces for land use change. In fact, the loss of cropland during this 15 years 329 

is mainly a consequence of the large scale water reservoir construction projects (i.e. the 330 

Three Gorges Project) and the Grain for Green Project. Neither of these projects required 331 
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cropland supplement practice. The Grain for Green Project contributed to there being 332 

less forest loss overall in the observed land use compared with the simulations.  333 

A comparison between the simulated land use changes under different scenarios 334 

(i.e. SCP vs. LCP) offers a way to investigate the impacts of the CSP in terms of land use 335 

change and ecosystem services value (ESV) change. 336 

 337 

[Insert Figure 3 here] 338 

 339 

Figure 3. Observed and simulated land use changes in the period 2000 to 2015 in the 340 

Hubei Province. 341 

 342 

3.2 Ecological impact of cropland supplement policy during 2000-2015 343 

The impacts of the CSP on ecosystem can be revealed by comparing the land use changes 344 

and ESV changes under LCP and SCP scenarios. As shown in Figure 3, under the LCP 345 

scenario, the area of cropland decreased by 1851.51 km2 in the period 2000 to 2015, 346 

whereas under SCP scenario, the area of cropland remains constant. Since large areas of 347 

more natural habitat were converted into cropland in the province, the total area of natural 348 

habitat fells to 107538.51km2 in 2015 under the SCP scenario – an additional loss of 349 

1847.50km2. The estimated cost in terms of loss of ESV in financial terms is 19.53 billion 350 

CNY.  351 

Figure 4 shows the differences of natural habitat areas between the LCP and SCP 352 

scenarios. The results show that the western part of Hubei Province, including Shiyan, 353 

Xiangyang, Yichang and Enshi, lost a significant amount more natural habitat than the 354 

eastern part of the province where higher population and urban expansion is observed. 355 

 356 
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[Insert Figure 4 here] 357 

 358 

Figure 4. Natural habitats areas differences among prefectures in Hubei Province between 359 

LCP and SCP (2000-2015) 360 

 361 

Figure 5 illustrates the non-urban land use changes under two scenarios (LCP and 362 

SCP) between 2000 and 2015 at prefecture level. This figure is in three parts. In parts a) 363 

and b): the horizontal axis represents the amount of land use changes, where a positive 364 

value indicates an area increase and negative value indicates an area loss; and, the results 365 

for each prefecture are shown as a bar. 366 

The difference between Figure 5 a) and b), reveals a spatial effects of the CSP. 367 

Under the LCP scenario, the areas of most land use types decreases and cropland 368 

decreases in all prefectures. In Enshi, Shiyan and Yichang, the biggest change in land use 369 

is a reduction in forest area. These three prefectures are located in a mountainous area in 370 

the west of the province. The result for the more urban prefectures of Wuhan, Jingzhou, 371 

and Huanggang in the east is a considerable loss in cropland, account for more than 60% 372 

of the total loss of all land use types. These prefectures are located in the Jianghan Plain 373 

which is a major rice and other grain growing area. 374 

Figure 5 b) shows that under SCP the results are that in some prefectures cropland 375 

will increase, but that overall the loss of forest land is huge. Wuhan is the prefecture that 376 

is likely to experience the greatest loss of cropland. 377 

The difference between the LCP and SCP scenarios is shown in Figure 5 c). The 378 

main difference is that under SCP there is more cropland, but far less forest, wetland and 379 

grassland. But differences at the prefecture level are revealed with regard the proportion 380 

and relative amounts of change. 381 
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The model results are that in total: 1472.85 km2 area of forest (mainly in Shiyan, 382 

Enshi, Yichang and Xiangyang); 99.94 km2 of grassland (mainly in Enshi and Shiyan); 383 

and, 274.71 km2 of wetland (mainly in Jingzhou, Wuhan and Huanggang) would become 384 

cropland under SCP for the period 2000 to 2015. 385 

 386 

[Insert Figure 5 here] 387 

 388 

Figure 5. Simulated change of non-urban land use type area by prefectures under two 389 

scenarios in the period 2000 to 2015 in Hubei Province. 390 

 391 

3.3 Ecological impact of cropland supplement policy during 2015 and 2030 392 

This section presents the LANDSCAPE model results and the difference in ESV 393 

changes under the SCP and LCP scenarios from 2015 to 2030. Under the LCP scenario, 394 

the amount of cropland is modelled to decrease by 2108.32 km2 between 2015 and 2030, 395 

the total amount of natural habitat is modelled to decrease to 110681.19km2. 396 

Comparatively, under the SCP scenario, the amount of cropland remains constant, while 397 

the total amount of natural habitat is modelled to decrease to 108576.61km2, suggesting 398 

an extra 2104.58km2 loss of natural habitat compare to the LCP scenario. Figure 6 shows 399 

land use change under both scenarios by land use types. It shows that new cropland often 400 

replaces forest or wetland areas.  401 

 402 

[Insert Figure 6 here] 403 

 404 

Figure 6. Land use changes under LCP and SCP in the period 2015 to 2030 in the Hubei 405 

Province.  406 

 407 



18 

 

Under the LCP scenario, the total ESV of Hubei Province falls to 925.77 billion 408 

CNY by 2030, which is 11.13 billion CNY less than 2015. Under the SCP scenario, the 409 

total ESV decreases to 913.23 billion CNY in 2030, suggesting an additional 12.54 billion 410 

CNY loss during the period compared to the LCP scenario.  411 

Figure 7 shows the spatial impact of the CSP at prefecture level. The model results 412 

are that natural habitats of central Hubei prefectures (i.e., Xiangyang and Jingmen) will 413 

experience the greatest loss of natural habitats under the SCP compared with LCP. 414 

 415 

[Insert Figure 7 here] 416 

 417 

Figure 7. Natural habitats areas differences between LCP and SCP (2015-2030) in the 418 

Hubei Province  419 

 420 

Figure 8 shows the area changes of non-urban land use types at prefecture level 421 

during 2015-2030. Under LCP scenario (illustrated in Figure 8 a), the area of cropland 422 

drops in all prefectures. Four prefectures account for more than 50% of the total cropland 423 

loss, which are Wuhan (471.01 km2), Huangggang (257.87 km2), Jingzhou (192.89 km2), 424 

and Jingmen (151.93 km2). Figure 8 b) shows the land use changes by prefecture under 425 

SCP scenario, where considerable increase in cropland area can be expected in Xiangyang 426 

(129.56 km2), Shiyan (126.84 km2), Jingmen (86.94 km2) and Enshi (60.70 km2). Overall 427 

under SCP, there is a loss of more natural habitat (i.e., 1560.44 km2 of forest, 89.6 km2 428 

of grassland, 454.54 km2 of wetland). Figure 8 c) makes the details about these 429 

differences between the two scenarios clearer. The major differences under SCP 430 

compared with LCP are an extra loss of wetland area in Jingzhou (97.90km2) and extra 431 
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losses of forest in Huanggang (208.44km2), Jingmen (209.19km2) and Xiangyang 432 

(224.60km2). 433 

 434 

[Insert Figure 8 here] 435 

 436 

Figure 8. Simulated changes of non-urban land use type area by prefecture under two 437 

scenarios in the period 2015 to 2030 in Hubei Province 438 

 439 

Figure 9 shows the loss of the natural habitat as a proportion of the total land area 440 

at prefecture level in 2015. The results suggest that Qianjiang would lose more than half 441 

of its forest and all of its grassland, Tianmen and Xiaogan would lost more than half its 442 

grassland under SCP. 443 

 444 

[Insert Figure 9 here] 445 

 446 

Figure 9. The proportion of natural habitat loss during 2015-2030 against the level of 447 

2015 in the Hubei Province 448 

4. Discussion 449 

Given food security concerns and considering increasing demand for food and 450 

agricultural produce generally, cropland reclamation could be vital for countries with 451 

large and growing populations. Many countries undergoing large scale and rapid 452 

urbanization with scarce cropland resources have adopted CPP to maintain the quantity 453 

and/or quality of cropland. Many countries in central Asia, South America and Africa are 454 

experiencing cropland expansion (Liu et al.,2018; Zabel et al., 2019). Even though 455 

cropland reclamation is a feasible option to meet future demand for food and agricultural 456 

production, it is believed that cropland reclamation in association with urbanization 457 
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comes at the cost of natural habitat loss and ecosystem degradation (Zabel et al., 2019). 458 

It is essential for planners and stakeholders to further understand the spatial spill-over 459 

effects of cropland reclamation practice and minimize the trade-off between crop 460 

production and ecosystem protection. 461 

Land use change as a result of rapid urban expansion does not have to pose 462 

negative impacts in terms of agricultural productivity and ecosystems in general, but in 463 

practice this is often the case. There is a legitimate concern and a need for wide reaching 464 

consideration and analysis of policy and potential policy impacts at all scales. Given the 465 

complex nature of spatial process, the advent of modern spatial simulation techniques (i.e. 466 

Cellular Automata) offers a way to help understand spatial impacts of policy. This paper 467 

demonstrated that the LANSCAPE model offers a feasible framework that is beneficial 468 

for policy maker and stakeholders around the world to design local policy or assess the 469 

ecological effects proactively. The framework can be employed to develop “what-if” 470 

scenarios to assess the long-term consequences of different land use policies associated 471 

with urban expansion in terms of changes in ESV. 472 

In China, since early 2000, the CSP has been implemented in an attempt to maintain 473 

agricultural productivity and food production capability. Although the CSP has been 474 

largely successful in maintaining cropland area in the face of rapid urbanization, Song & 475 

Pijanowski (2014) revealed that in general productivity is lower in the newly created 476 

cropland areas, and Chen et al. (2019) raised concerns that the CSP contributed to 477 

widespread ecosystem degradation. Whilst these and other previous studies, such as Xin 478 

& Li (2018), highlight some of the general issues of the current CSP implementation, few 479 

studies have investigated the impacts spatially in the way done in this study. By adopting 480 

a scenario based simulation approach, this study not only identified impacts of the CSP 481 

on regional ecosystem service from a series of land use related policies implemented at 482 
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the same time, but also quantified the potential impact of the CSP on ecosystem service 483 

in the future. 484 

A series of reforms have been proposed that aim to balance the productivity of 485 

cropland in China (Lu et al., 2017). The impacts of these reforms at prefecture and 486 

provincial levels should be investigated as they are likely to lead to a detrimental loss of 487 

ecosystem services in some places adversely impacting human health and well-being. 488 

According to the “ecological civilization construction” strategy promoted by the Chinese 489 

government, the ecological (and social) impacts of the CSP shouldn’t be ignored in 490 

implementation (Lu et al., 2017). This paper adds to the call for the development of a 491 

comprehensive cost, benefit and risk assessment framework for evaluating the CSP and 492 

for use as a policy making instrument. 493 

Some simplifying assumptions were made in the study to cope computationally 494 

with the demands of the LANDSCAPE model. In particular, the mechanism of land use 495 

change was simplified as a probability function in the modelling process. The land use 496 

type with the highest conversion probability is the priority for grid cell allocation. 497 

However, similar to previous land use changes simulation models, such as FLUS (Liu et 498 

al., 2017), the probability function is widely accepted for the land use change simulations. 499 

And, the simulated amount of cropland area of 2015 for both scenarios were higher than 500 

the observed cropland area in 2015 mainly due to the extra cropland acquisition for 501 

construction of the water reservoirs, which is not considered in the model. Additionally, 502 

natural protected areas are not considered, due to lack of accurate and available data. 503 

The area based equivalent factor approach applied in this study also introduces 504 

uncertainty into the ESV evaluation. The uniform equivalent factor method ignores the 505 

spatial heterogeneity in ecosystem service for each type of land use, and does not take the 506 

spatial patterns (e.g. natural habitat fragmentation etc.) into consideration.  The difference 507 
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in ESV between newly reclaimed cropland and those mature cropland areas was ignored 508 

in this study, as the maturation period for newly reclaimed cropland is assumed to be 509 

relatively short within the simulated period.  This simplification may tend to slightly 510 

underestimate the impact of the CSP on ecosystem service, however it does not change 511 

the main conclusion since the expected reduction in ESV is large anyway. 512 

The ESV for urban land was set as zero in this study, although in reality urban 513 

land can also provide some ecosystem services. Yet, there is a lack of in-depth 514 

understanding and robust approach to evaluation of ecosystem services of urban land (Yi 515 

et al., 2017). From the provincial or even larger scale policy perspective, it is reasonable 516 

to ignore the ESV provided by urban land as those values are cumulatively small 517 

compared with those of cropland and natural habitats. 518 

The spatially explicit nature of the LANDSCAPE model provides flexibility and 519 

takes the spatial heterogeneity of land use into consideration, to evaluate the impact of 520 

any land use policy on ecosystem service in the future. For cropland protection purposes, 521 

a more comprehensive evaluation framework is wanted to help policy-makers and 522 

stakeholders further understand the spatial impact of CPP on habitat quality, carbon 523 

storage and biodiversity as well as on ESV. The simulation based policy appraisal 524 

framework demonstrated in this study provides a good foundation for future policy 525 

optimization practice which aims to minimize the trade-off between the crop production 526 

and ecosystem protection. 527 

5. Conclusions 528 

By taking Hubei province as a case, this study identified and quantified negative impacts 529 

of the CSP on natural habitats and ecosystem service under urban expansion by 530 

comparing simulated land use change under two different policy scenarios (known as 531 
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LCP and SCP). The results suggest that not only urban expansion but also the CSP 532 

threatens ecosystems in the study area. The differences of ESV changes in the simulated 533 

results under both scenarios indicates how much of an effect the CSP can have at different 534 

levels. There are significant differences in the expects loss of natural habitat in the 535 

prefectures of Hubei Province under the two scenarios, and a general significant loss of 536 

natural habitat for the province as a whole under both. During the period 2000 to 2015, 537 

about 1847.50 km2 of natural habitat was replaced by new cropland, and this is associated 538 

with a total 19.53 billion reduction in ESV. In the period 2015 to 2030 it is estimated that 539 

the current CSP implementation will require 2104.58 km2 of natural habitat to be replaced 540 

with new cropland, and this may lead to an additional loss of 12.54 billion CNY of ESV 541 

if rapid urban expansion continues as predicted. Additionally, due to the spatial 542 

heterogeneity of the land use, prefectures of Hubei Province will meet various degrees of 543 

ecosystem degradation risk under the influence of the CSP. For instance, even though the 544 

total area of forest and grassland are not that high in Qianjiang, Xiaogan and Tianmen, 545 

the high percentage loss of this natural habitat might result in worse degradation of the 546 

already fragile ecosystems in these areas. 547 

This research reveals that implementation of the CSP in rapidly urbanizing areas 548 

has significant effects on the ecosystem services value. Decision-makers should not 549 

ignore the spatial differences of ecological impacts in economic decisions or land use 550 

planning practice. Given the negative effects of the CSP, more sophisticated policies 551 

should be proposed to balance economic growth, food security and maintain ecological 552 

balance and avoid the further environmental degradation especially of very fragile areas. 553 

 554 
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Table 1. Data Source: (Ke et al., 2018) 

Dataset Variables Data Source 

Land use data Land use 2000 Resource and Environment Data Cloud Platform, Chinese Academy of 

Science Land use 2015 

Terrain data Elevation The Shuttle Radar Topography Mission (SRTM) 

Slope 

Accessibility data Euclidean distance to the nearest railway The Traffic Atlas of Hubei 

Euclidean distance to the nearest highway 

Euclidean distance to the nearest state road 

Euclidean distance to the nearest provincial road 

Euclidean distance to the nearest main road 

Euclidean distance to the nearest county road 

Soil data Soil pH value The China Soil Database 

Effective soil depth 

Soil organic matter content 

Soil phosphorus 

Climate data Average annual cumulative temperature Chinese Meteorological Administration 

Annul precipitation 

Socio-economic 

data 

Net profits of agricultural products National Agricultural Statistics 2016 

Planting areas of rice, wheat and maze Hubei Provincial Statistical Yearbook 2016 
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Table 2. Land-use reclassification for Hubei Province, China Source: (Liu et al., 2005) 

Land-use reclassification Sub-classes of land-use 
Cropland Paddy land, and Dry land 

 

Forest Forest, Shrub, Woods, and Others 
 

Grasslands Dense grass, Moderate grass, and Sparse grass 
 

Water area Stream and rivers, Reservoir and ponds, and Lakes 
 

Wetlands Permanent ice and snow, Beach and shore, Bottomland, and Swampland 
 

Urban land Urban built-up,  
Industrial, mining and transportation construction 
 

Rural settlement 
 

Rural settlement 
 

Unused land Sandy land, Gobi, Salina, Bare soil, Bare rock, and Others 
 

 

 

Table 3. Economic value of ecosystem services per unit area of each land use type (CNY/km2) 

Land use types Cropland Forest Grasslands Water area Wetlands Unused land 

Equivalent value 958,061 5,583,432 3,778,882 30,466,329 12,641,550 48,509 
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Table 4. Kappa Simulation scores for the model results 

Land use types Cropland Forest Grasslands Wetlands Urban land Rural settlement Unused land 

Kappa Simulation 0.105 0.026 0.008 0.186 0.307 0.037 0.101 

 

Table 5. The parameters applied for the land use scenarios 

  
2000 2015 SCP (2030) LCP (2030) 

Area (km2) Area (km2) Demand (km2) Resistance Demand (km2) Resistance 

Cropland 69598.07 64915.56 64915.56 1 - 1 

       

Forest 92468.27 91800.35 - 1.25 - 1.25 

       

Grasslands 7005.37 6815.35 - 1.25 - 1.25 

       

Water area 6349.98 9354.15 - 1.5 - 1.5 

       

Wetlands 4771.14 4066.51 - 1.25 - 1.25 

       

Urban land 1487.3 4587.08 8054.95 1.5 8054.95 1.5 

       

Rural settlement 3648.55 3796.61 - 1.5 - 1.5 

       

Unused land 52.87 45.94 - 1 - 1 
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Figure 1. Research framework 

 

Figure 2. Land use of Hubei Province in China, 2015 
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Figure 3. Observed and simulated land use changes in the period 2000 to 2015 in the 

Hubei Province. 

 

Figure 4. Natural habitats areas differences among prefectures in Hubei Province 

between LCP and SCP (2000-2015) 
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Figure 5. Simulated change of non-urban land use type area by prefectures under two 

scenarios in the period 2000 to 2015 in Hubei Province. 

 

Figure 6. Land use changes under LCP and SCP in the period 2015 to 2030 in the Hubei 

Province. 
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Figure 7. Natural habitats areas differences between LCP and SCP (2015-2030) in the 

Hubei Province  

 

Figure 8. Simulated changes of non-urban land use type area by prefecture under two 

scenarios in the period 2015 to 2030 in Hubei Province 
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Figure 9. The proportion of natural habitat loss during 2015-2030 against the level of 

2015 in the Hubei Province 

 

 

 

 

 

 


