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Abstract. Within a simple SO(8) algebraic model, the coexistence between isoscalar and
isovector pairing modes can be successfully described using a mean-field method plus restoration
of broken symmetries. In order to port this methodology to real nuclei, we need to employ
realistic density functionals in the pairing channel. In this article, we present an analytical
derivation of matrix elements of a separable pairing interaction in Cartesian coordinates and we
correct errors of derivations available in the literature. After implementing this interaction in
the code hfodd, we study evolution of pairing gaps in the chain of deformed Erbium isotopes,
and we compare the results with a standard density-dependent contact pairing interaction.

1. Introduction
Pairing correlations play a crucial role in understanding nuclear phenomena, such as, for
example, the odd-even mass staggering [1]. Due to residual pairing interactions, fermions
close to the Fermi energy tend to form a condensate of Cooper pairs that are the source of
superfluidity within the BCS model [2]. Since in a nucleus we have two types of particles,
there can appear, in principle, both isoscalar and isovector Cooper pairs. There is substantial
experimental evidence concerning the nuclear superfluidity arising from the isovector pairing,
however, a direct observation of the isoscalar proton-neutron condensate remains elusive [3].

In a recent article [4], using the mean-field approximation [5] applied to a simple SO(8)
model [6, 7], we showed that it is possible to obtain the coexistence of the two types of condensate.
The main conclusion of our work is that the crucial ingredient to observe such a coexistence is
to apply the variational principle for a projected (symmetry-restored) mean-field states. This
encouraging result motivated us to implement the same technique within a realistic nuclear
density-functional theory (DFT). The first step in this direction is to choose a realistic pairing
functional that is capable of reproducing basic properties of the isovector pairing and at the
same time allows for opening the isoscalar pairing channel. To this end, in this article we discuss
derivations and implementations related to the finite-range separable pairing interaction [8, 9].
The advantage of using such a pairing force is that it is free from ultraviolet divergences [10]
and at the same time it requires computational effort that is comparable with a simple density
dependent delta interaction [11].

The article is organised as follows. In Section 2, we briefly summarise the main findings of
Ref. [4]. In Section 3, we present derivation of matrix elements of the separable interaction
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in Cartesian coordinates and in Section 4 we show sample results obtained for pairing gaps.
Finally, we present our conclusions in Section 5.

2. The SO(8) model
The SO(8) model is based on a simple Hamiltonian written as a linear combination of terms

that depend on the isovector (isoscalar) pair creation P̂+(D̂+) and annihilation operators P̂ (D̂),

Ĥ = −g(1− x)
∑

ν=0,±1

P̂+
ν P̂ν − g(1 + x)

∑

µ=0,±1

D̂+
µ D̂µ, (1)

where the sums run over all possible projections of the isospin (spin) ν (µ), g is the pairing
strength and x is a mixing parameter controlling the relative competition between isoscalar and
isovector contributions. By inserting Eq. (1) into the Hartree-Fock-Bogoliubov (HFB) equations,
we can observe the evolution of the pairs as a function of the mixing parameter x, as shown in
Fig. 1. It is seen that, within the HFB approximation, only full isovector or full isoscalar pair
condensates can exist, with a sharp transition between these two regimes that occurs at x = 0.

The mean-field HFB state that minimizes the average value of Hamiltonian (1) breaks
symmetries of the Hamiltonian such as spin, isospin, and particle-number. The main thrust
of Ref. [4] was to apply projection techniques to select a component of the HFB state with
good quantum numbers and then apply the variational principle to find the minimum of the
corresponding average energy. Such a procedure is called variation after projection (VAP).

For the VAP states, the coexistence of both types of pairs is obtained for all values of x,
Fig. 1, apart from the two limiting cases of purely isovector (x = −1) or purely isoscalar (x = 1)
Hamiltonian. We tested the validity of the VAP approach by comparing our results with the
exact ones. For various values of particle-number, spin, and isospin, we obtained a remarkable
agreement of the corresponding ground state energies. The relative deviations turned out to
be always below 1.5%. We also obtained a perfect agreement between the VAP and exact
deuteron-transfer matrix elements. We refer to our article [4] for details.
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Figure 1. Evolution of the isoscalar
norm as a function of the mixing
parameter x in Eq. (1), obtained in
Ref. [4] using the HFB (open symbols)
and VAP methods (full symbols).
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and proton pairing gaps in 170Er with
increasing number of the HO shells N0,
determined for the zero-range volume
and separable pairing interaction.
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3. Separable pairing interaction
In this Section, we present a detailed derivation of the matrix elements of the separable
interaction in a Cartesian basis. The separable interaction has the general form

V̂ (r1, r2; r1
′, r2

′) = −δ(X −X ′)δ(Y − Y ′)δ(Z − Z ′)P (x)P (y)P (z)P (x′)P (y′)P (z′)

× [W̃ 1̂ + B̃P̂ σ − H̃P̂ τ − M̃P̂ σP̂ τ ] ,
(2)

where ri = (xi, yi, zi), x = x1 − x2 and X = 1
2(x1 + x2) are the relative and center-of-mass

coordinates (equivalent symbols hold for the other Cartesian directions). For the form factor,
we chose a simple Gaussian as

P (x) =
1√
πa

e−x2/a2 , (3)

where a = 1.232 fm is the range [12]. Symbols W̃ , B̃, H̃, and M̃ denote adjustable parameters
(Wigner, Bartlett, Heisenberg, and Majorana coupling constants), 1̂ is the identity operator,

and P̂ σ and P̂ τ are spin and isospin exchange operators, respectively. Because form factor (3)
is symmetric in space coordinates, only parameters W̃ and B̃ are independent.

To calculate the matrix elements of interaction (2), we define the basis of two particles coupled
to total spin S = 0 as

|n1n2, S = 0〉 = φn1
(x1, b)φn2

(x2, b)|S = 0〉 , (4)

where φn(x, b) is the harmonic oscillator (HO) wavefunction with quantum number n and
oscillator constant b,

φn(x, b) = b1/2H(0)
n (bx)e−b2x2/2 . (5)

In Eq. (5), we used a normalized version H
(0)
n (x) of the Hermite polynomials Hn(x), defined as

H(0)
n (x) = (

√
π2nn!)−1/2Hn(x) . (6)

We now evaluate the matrix elements in the new basis as

〈n′
1n

′
2, S = 0|V̂ |n1n2, S = 0〉 = −IxIyIz(W̃ − B̃) , (7)

where Ix is defined as

Ix(n1n2;n
′
1n

′
2) =

∫

dx1dx2dx
′
1dx

′
2δ(X −X ′)P (x)P (x′)φn1

(x1, b)φn2
(x2, b)φn′

1
(x′1, b)φn′

2
(x′2, b) ,

(8)
and similarly for Iy and Iz. To calculate Ix, it is convenient to express the two-particle basis in
the center of mass coordinates,

φn1
(x1, b)φn2

(x2, b) =
∑

nN

MnN
n1n2

φn(x̃, b)φN (X̃, b) , (9)

where x̃ = x√
2
, X̃ =

√
2X, and symbol MnN

n1n2
= 〈n1n2|nN〉 denotes the Moshinsky coefficients,

which are given by the expression [13]

MnN
n1n2

=

√
n1!n2!n!N !

2
n+N

2

δn1+n2,n+N

min(N,n1)
∑

k=max(0,n1−n)

(−1)n−n1+k

k!(N − k)!(n1 − k)!(n− n1 + k)!
. (10)
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We now obtain a new expression for Ix,

Ix(n1n2;n
′
1n

′
2) =

∑

n,n′,N,N ′

MnN
n1n2

Mn′N ′

n′

1
n′

2

×
∫

dxdx′dXdX ′δ(X −X ′)P (x)P (x′)φn(x̃, b)φn′(x̃′, b)φN (X̃, b)φN ′(X̃ ′, b) ,

(11)

The integral over the coordinates X,X ′ can be performed analytically, and gives
∫

dXdX ′δ(X −X ′)φN (X̃, b)φN ′(X̃ ′, b) =
1√
2
δNN ′ , (12)

where we used the normalization condition of the Hermite polynomials H
(0)
n (x) [14]. Inserting

this result into Eq. (11), we get

Ix(n1n2;n
′
1n

′
2) =

1√
2

∑

n,n′,N

MnN
n1n2

Mn′N
n′

1
n′

2

∫

dxdx′P (x)P (x′)φn(x̃, b)φn′(x̃′, b) , (13)

which can be written as

Ix(n1n2;n
′
1n

′
2) =

1√
2

∑

n,n′,N

MnN
n1n2

Mn′N
n′

1
n′

2
W (n)W (n′) , (14)

where W (n) =
∫

dxP (x)φn(x̃, b). Using the properties of the HO wavefunction, this integral
can be expressed as

W (n) =

√
2√

πba2

∫

dte−2t2/(ba)2H(0)
n (t)e−

t
2

2 , (15)

where we changed the integration variable to t = bx/
√
2. Then using the following identity

∫ +∞

−∞
duH

(0)
2m(αu)e−u2

= π1/4

√

(2m)!

m!

(

α2 − 1

2

)m

, (16)

we obtain the final result

W (n) =
2π−1/4

√
b√

a2b2 + 4

√
n!

(n/2)!

(

a2b2 − 4

2a2b2 + 8

)n/2

. (17)

We observe that the sum over n, n′ in Eq. (13) can be further reduced by using the fact that
the Moshinsky coefficients will be zero unless n = n1 + n2 − N and n′ = n′

1 + n′
2 − N . It is

convenient to rewrite the final expression of the matrix elements as

Ix(n1n2;n
′
1n

′
2) =

1√
2

n1+n2
∑

N=0

G(N,n1, n2)G(N,n′
1, n

′
2) , (18)

where
G(N,n1, n2) = Mn1+n2−N,N

n1n2
W (n1 + n2 −N) . (19)

It is worth noting that a similar derivation of matrix elements in Cartesian space has already
been given in Ref. [15], however, in their derivation we have found several errors and missing
factors in the final expressions. In addition, an alternative derivation of the analogous matrix
elements of more general separable interactions was given in Ref. [16].
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4. Pairing gaps
We tested our derivations and implementation in the code hfodd (v2.91a) [17, 18] by comparing
our results with the ones obtained by the code hosphe [19] – an HFB solver in spherical
symmetry, which also contains an implementation of the same separable interaction in the
pairing channel. For a fixed number of shells, we reproduced the results of Fig. 1 of Ref. [12] up
to an eV accuracy, thus obtaining a very strong test on the correctness of our results.

In this work, we present an example of calculations performed for the chain of deformed
Erbium isotopes. First, using the SLy4 functional [20] in the particle-hole channel, we roughly
adjusted parameter W̃ = −B̃ = −300MeV fm3, Eq. (7), to reproduce the values of experimental
neutron, ∆N , and proton, ∆P , pairing gaps in 170Er. In Fig. 2, we plotted the calculated 170Er
neutron and proton pairing gaps as functions of the number of the HO shells N0. We observe
that the results converge nicely as a function of N0, and we can consider that at N0 = 14
the pairing gaps are sufficiently converged [21]. We note that the charge-symmetric separable
pairing interaction used here is not capable of reproducing the experimental values of the 170Er
neutron and proton pairing gaps simultaneously.

In the same figure, we also report the analogous convergence obtained for a simple charge-
symmetric volume contact pairing interaction adjusted to the same experimental data, which for
the equivalent-spectrum cut-off of 60MeV gave the strength of V0 = −195MeV fm3. Contrary
to typical applications of the volume pairing, where different strengths are used for neutrons
and protons, cf. Ref. [22], here the experimental values of the 170Er neutron and proton pairing
gaps are perfectly reproduced by the charge-symmetric parametrization.
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Figure 3. Calculated neutron (upper panels) and proton (lower panels) pairing gaps in Erbium
isotopes determined for the zero-range volume (left panels) and separable (right panels) pairing
interaction for N0 = 14 HO shells. Neutron and proton experimental values are calculated as
averages of the three-point mass staggering centered on two adjacent odd isotopes and isotones,
respectively.

Having adjusted the strengths of the two pairing interactions, in Fig. 3 we compare the
isotopic behaviour of the calculated pairing gaps in Erbium isotopes. We observe that the
separable pairing tends to give a weaker pairing for neutrons and a stronger for protons than
the volume pairing. It is interesting to note that in some nuclei the separable interaction leads
to a vanishing neutron gap, whereas the volume interaction may still give there a non-zero value
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of ∆N ≈ 0.5 MeV. Since Erbium nuclei are deformed (apart from the semi-magic isotopes), we
checked that the values of the quadrupole moment, obtained for both interactions, are practically
the same.

5. Conclusions
In this contribution, we briefly discussed the question of how to observe and describe, within
a simple SO(8) model, the coexistence of isoscalar and isovector pairs by employing mean-field
wave functions with all relevant broken symmetries restored. In the perspective of applying such
a procedure to the realistic cases of finite nuclei, we presented a detailed derivation of matrix
elements of a separable finite-range interaction in Cartesian basis, where we corrected errors
found in the literature derivations. To illustrate a practical implementation in the 3D code
hfodd, we also presented a series of systematic HFB calculations in Erbium isotopes, and we
compared the results with those obtained using a simpler zero-range volume interaction.
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