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DIFFUSION IN A DISK WITH A CIRCULAR INCLUSION

REMUS STANA, GRANT LYTHE AND CARMEN MOLINA-PARÍS

DEPARTMENT OF APPLIED MATHEMATICS, UNIVERSITY OF LEEDS, LS29JT UK

Abstract. We consider diffusion in a disk, representing a cell with a circular interior compart-
ment. Using bipolar coordinates, we perform exact calculations, not restricted by the size or location
of the intracellular compartment. We find Green functions, hitting densities and mean times to move
from the compartment to the cellular surface, and vice versa. For molecules with diffusivity D, mean
times are proportional to R2/D, where R is the radius of the cell. We find explicit expressions for
the dependence on a2 (the fraction of the cell occupied by the intracellular compartment) and on
the displacement of the compartment from the center of the cell. We consider distributions of initial
conditions that are (i) uniform on the nuclear surface, (ii) uniform on the cellular surface, or (iii)
given by the hitting density of particles diffusing from the nuclear to the cellular surface.

1. Introduction. Living cells contain many proteins in ceaseless motion [1, 2].
The mechanism for responding to an event occurring on a cellular surface may involve
the transport of molecular complexes to the nucleus [3–5], or of synthesised molecules
from the nuclear to the cellular surface. Here, we consider transport that is simply
diffusive, not accelerated by directed mechanisms or localised pathways, in a disk with
an internal compartment. With the motivation of cell biology in mind, we refer to
the boundary of the domain as the cellular surface and the internal compartment as
the nucleus. We consider transport from a reflecting nuclear surface to an absorbing
cellular surface, and back.

In many applications, the rate of contacts between diffusing reactants is calculated
by solving the diffusion equation with appropriate boundary conditions [6–8]. Green’s
function is the key to an analytical solution because quantities such as mean hitting
times are obtained from it by standard integration, for any initial distribution [9–16].
Hitting times are important in other contexts, such as animal predators locating
prey [17–19] and immunology, where encounters of T cells and antigen-presenting
cells inside lymph nodes [20–26] trigger the adaptive immune response.

On a domain bounded by concentric circles, Green’s function can be found, as a
series, using the reflection principle [27]. However, when the centres of the nucleus
and cell do not coincide, exact solution has not been possible using cartesian or polar
coordinates [18,28]. An expression can be found using bipolar coordinates [29], in the
case where the nuclear and cellular surfaces are both absorbing [30–32]. Transforming
to bipolar coordinates is an example of a conformal mapping [32–34]. We consider,
firstly, diffusive transport from the nucleus to the surface (reflecting nuclear surface,
absorbing cellular surface) and, secondly, diffusive transport from the cellular surface
to the nucleus (reflecting cellular surface, absorbing nuclear surface).

The problem of searching for a target, or multiple targets, within a closed domain
is of considerable interest. In two and three dimensions, Condamin et al. [35], con-
structed approximate Green functions as a sum of pseudo-Green functions. A related
problem is that of “narrow escape”, where a surface is reflecting everywhere except for
a small hole [34, 36–38]. These analyses share the mathematical feature of a pertur-
bation that is localised in space [25, 39–44]. Kurella et al. [18] have devised a hybrid
asymptotic-numerical method to calculate mean times, and second moments, when
there are multiple targets of different shapes in a two-dimensional region, accurate
when the targets are not too large, not too close to each other and not too close to the
cellular surface. Here, our calculations yield new, exact and explicit series expressions,
on a disk with a single circular inclusion, independent of its size and position.
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Fig. 1. We represent a cell as a circle of radius R, containing a nucleus of radius Rn. The
center of the nucleus is displaced from that of the cell by rc.

1.1. Geometry and coordinates. A circle of radius R (the cellular surface),
contains a circle of radius Rn (the nuclear surface). The center of the nucleus is
displaced from that of the cell by a distance rc, as illustrated in Figure 1. We define
the dimensionless quantities

a =
Rn

R
and c =

rc
R
,

that characterise the geometry. That is, we rescale lengths so that the radius of the
cell is equal to 1. Note that 0 ≤ c ≤ 1− a, and a2 is the fraction of the cell occupied
by the nucleus. We denote the nuclear surface (a circle of scaled radius a, red in
Figure 3) by ∂C1 and the cellular surface (blue in Figure 3) by ∂C2.

We will use bipolar coordinates (τ, σ), which are defined [18, 30] in terms of two
foci whose separation is 2F , as shown in Figure 2. In these coordinates, circles
become curves of constant τ ; a circle of radius r is centred at (

√
r2 + F 2, 0), where

τ = log(F/r +
√

1 + (F/r)2). To represent our geometry, we place the foci so that

the centres of the circles with radii 1 and a are displaced by c. That is, c =
√
1 + d2−√

a2 + d2. Thus, d = F
R

is given by

(1.1) d =
1

2c

√

(1 + a2 − c2)2 − 4a2.

2



• •

•

(−F, 0) (F, 0)

xτ = log
l1
l2

l1

l2
σ

Fig. 2. The bipolar coordinates, τ and σ, of the point x. The foci are at (−F, 0) and (F, 0).
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Fig. 3. Left: the rescaled interfocal distance d as a function of the displacement of the nucleus,
c, when a = 0.1. Right: the domain C is shown in grey.

Hence, the eccentric annular region C (grey in Figure 3) is represented by [32]

τ2 < τ < τ1, 0 ≤ σ < 2π,

where τ1 = log
(

d/a+
√

1 + (d/a)2
)

(nuclear surface) and τ2 = log
(

d+
√
1 + d2

)

(cellular surface). In other words, we have

(1.2) d = a sinh τ1 = sinh τ2.

A point x0 in C has dimensionless coordinates ( d sinh τ0
cosh τ0−cosσ0

−
√
1 + d2, d sinσ0

cosh τ0−cosσ0

)
relative to the centre of the cell.

1.2. Green’s function and mean times. Starting from x0 ∈ C, the mean
time T to reach an absorbing boundary of the domain C, satisfies

(1.3)
D

R2
∆x0

T = −1.

In terms of Green’s function, G(x0,x),

(1.4) T (x0) =
R2

D

∫

C

G(x0,x)dx,

where G(x0,x) satisfies

(1.5) ∆xG(x0,x) = −δ(x− x0) x ∈ C,
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with conditions on the boundaries of C. Let (τ, σ) be the bipolar coordinate repre-
sentation of x and (τ0, σ0) the representation of x0. In bipolar coordinates,

d2∆x = (cosh τ − cosσ)2
(

∂2

∂τ2
+

∂2

∂σ2

)

,

and we can write

(1.6) T (x0) =
R2

D

∫ τ1

τ2

∫ 2π

0

G(x0,x)d
2

(cosh τ − cosσ)2
dσdτ.

2. Transport from the nuclear surface to the cellular surface. We begin
with the case of diffusion with absorption on the cellular surface. Green’s function,
denoted in this case by G1, satisfies (1.5), is equal to zero on the cellular surface
and has vanishing normal derivative on the nuclear surface. That is, we impose the
following boundary conditions:

G1(x0,x) = 0, x ∈ ∂C2,

∂G1

∂n1
(x0,x) = 0, x ∈ ∂C1,

(2.1)

where n1 is normal to ∂C1. We can decompose G1 into singular and regular (smooth)
parts [9, 11, 27]:

(2.2) 2πG1(x0,x) = 2πGr(x0,x) + log
1

|x− x0|
,

where ∆xGr(x0,x) = 0. Let τm = min(τ, τ0) and τM = max(τ, τ0). We use the
following expression in bipolar coordinates [29, 30]:

(2.3) log
1

|x− x0|
= τm − log 2d+

+∞
∑

n=1

1

n
Hn(x0,x),

where

Hn(x0,x) = e−n|τ−τ0| cosn(σ − σ0)− e−nτ cosnσ − e−nτ0 cosnσ0.

Our task is to find Gr(x0,x), and hence G1(x0,x), in bipolar coordinates. The
function is periodic in σ with boundary conditions at τ1 and τ2 [33]. We make use of
the boundary conditions (2.1) to obtain

Gr(x,x0) = −τ2 + log 2d+

+∞
∑

n=1

1

n

(

e−nτ cosnσ + e−nτ0 cosnσ0

)

−
+∞
∑

n=1

1

n

cosn(σ − σ0)

coshn(τ1 − τ2)

(

coshn(τ1 − τ0)e
−n(τ−τ2) − sinhn(τ0 − τ2)e

−n(τ1−τ)
)

.

As a result, G1 takes the convenient explicit form:

(2.4) 2πG1(x0,x) = τm − τ2 +
+∞
∑

n=1

2

n
cosn(σ − σ0)K1(n),
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Fig. 4. Green’s function (2.4) with reflecting nuclear surface and absorbing cellular surface.
Four cases are shown: (i) c = 0.25, a = 0.05, x0 − xc = (−0.25, 0). (ii) c = 0.25, a = 0.05,
x0 − xc = (0.75, 0.75). (iii) c = 0.25, a = 0.2, x0 − xc = (−0.25, 0). (iv) c = 0.25, a = 0.2,
x0 − xc = (0.75, 0.75). Here xc is the position of the center of the cell.

where K1(n) = sinhn(τm − τ2)
coshn(τ1 − τM )

coshn(τ1 − τ2)
. We typically need at least 10 terms

for accurate evaluation of G1, somewhat more as c approaches 1 − a. To resolve the
fine details in Figure 4, we used the first 100 terms in the series (2.4).

The method of images [45], illustrated in Fig. 5, yields a Green function G0(x0,x),
with absorbing cellular surface but without nucleus (the case a = 0). Next, we use
our exact expression to find an approximation, for the case of a small inclusion, that
converges to G0 as a → 0. If the bipolar coordinates of the image point x̃0 (located
outside C) are (τ̃0, σ̃0) then τ0 + τ̃0 = 2τ2 and

2πG0(x0,x) = log |x− x̃0| − log |x− x0|+ log r0

= τm − τ2 +
+∞
∑

n=1

2

n
cosn(σ − σ0)K0(n),

where K0(n) = sinhn(τm − τ2)e
−n(τM−τ2). As a → 0, exp(τ2 − τ1) → a/(1− c2) and
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Fig. 5. The distance from x to xc is r0. The image point x̃0 is defined such that r0r̃0 = 1.

G1(x0,x) can be written as the sum of G0(x0,x) and corrections proportional to a2:

G1(x0,x) = G0(x0,x) +
2a2

π(1− c2)2
sinh(τ − τ2) sinh(τ0 − τ2) cos(σ − σ0) +O(a4).

In the concentric case c = 0,

2πG1(x0,x) = log |x− x̃0| − log |x− x0|+ log r0

+ a2 cos(θ − θ0)

(

1

|x| − |x|
)(

1

|x0|
− |x0|

)

+O(a4).

3. Transport from cellular surface to nucleus. We turn to the case of dif-
fusion from the cellular surface to an absorbing nucleus, and denote Green’s function
by G2(x0,x). It satisfies (1.5) with boundary conditions:

G2(x0,x) = 0, x ∈ ∂C1,

∂G2

∂n2
(x0,x) = 0, x ∈ ∂C2,

(3.1)

where n2 is the normal vector to ∂C2. Following the same methodology as in Section 2,
we find

(3.2) 2πG2(x0, x) = τ1 − τM +

+∞
∑

n=1

2

n
cosn(σ − σ0)K2(n),

whereK2(n) = sinhn(τ1−τM )
coshn(τm − τ2)

coshn(τ1 − τ2)
, τm = min(τ, τ0) and τM = max(τ, τ0).

In Figure 6, the exact Green function is compared with the approximation, accu-
rate as a → 0, of Condamin et al. [35], which was constructed as a sum of pseudo-
Green functions, satisfying (1.5) but not satisfying the boundary condition on ∂C1.
The resulting error is proportional to a2/(1− c2)2 [46].

4. Hitting density on the cellular surface. Apart from mean times, Green
functions are also used to calculate the densities of arrival positions on absorbing sur-
faces [10]. Consider molecules that are released from the nucleus and diffuse until they
arrive at the cellular surface, ∂C2. With the exact Green function, we can calculate
mean times and hitting densities for any initial condition or set of initial conditions.
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Fig. 6. Exact Green function (3.2), with reflecting cellular surface and absorbing nuclear
surface, and the approximation of Condamin et al. [35], which is negative on part of the domain
that is shown in grey. c = 0.25, a = 0.18, x0 − xc = (−0.65, 0).

In this Section, we suppose that molecules may be released from anywhere on the
nuclear surface, with the Cartesian angle θ1 (see Figure 5) random and uniformly
distributed in (0, 2π). Accordingly, we integrate G1 over ∂C1 to define

P (x) =
1

2πa

∫

∂C1

G1(x0,x)dx0.

The density of the arrival, or hitting, point on the cellular surface is minus the outward
normal derivative of P (x). Using (2.4), we express the density as a function of the
angle θ2 on the cellular surface (see Figure 5):

(4.1) ε(θ2) = − ∂P (x)

∂n2

∣

∣

∣

∣

∂C2

=
cosh τ2−cosσ2

2πd

(

1+
+∞
∑

n=1

2e−nτ1 cosnσ2

coshn(τ1 − τ2)

)

.

The coordinate σ2 is a function of θ2 given by

(4.2) tanσ2 = d sin θ2/(1−
√

1 + d2 cos θ2).

In summary, the distribution of values of θ1, the initial angle on the nuclear surface,
is uniform but the distribution of values of θ2, the angle of arrival on the cellular
surface, is not. In fact, if the nucleus is sufficiently displaced from the cell centre,
then the distribution of values of θ2 is bimodal (Figure 7).

5. Mean transport times. We now use the formula (1.6). Let T1(θ1) be the
mean time to reach the cellular surface, starting on a reflecting nuclear surface; the
initial point x0 ∈ ∂C1 is specified by the angle θ1 (see Figure 5). We write

T1(θ1) =
R2d2

D

∫ τ1

τ2

∫ 2π

0

G1(x0,x)

(cosh τ − cosσ)2
dσdτ

=
R2d2

2πD

∫ τ1

τ2

∫ 2π

0

τ − τ2
(cosh τ − cosσ)2

dσdτ

+

+∞
∑

n=1

R2d2

nπD

∫ τ1

τ2

K1(n)

∫ 2π

0

cosn(σ − σ1)

(cosh τ − cosσ)2
dσdτ,

7



2 0 2
2

0

1

(
2)

c = 0.25
c = 0.5
c = 0.89

Fig. 7. The density of the first hitting point on the cellular surface, (4.1), when the initial
condition is uniformly distributed on the nuclear surface. The nucleus has radius a = 0.1 and c is
the distance of its centre from the centre of the cell.

and tanσ1 = d sin θ1/(a−
√
a2 + d2 cos θ1). Using (A.3) and the relationships

d2 (coth τ2 − coth τ1) = dc and a sinh(τ1 − τ2) = dc,

we find

(5.1)
2D

R2
T1(θ1) = dc− a2(τ1 − τ2) + 4

+∞
∑

n=1

cosnσ1

enτ1
×

(

dc

1 + e−2n(τ1−τ2)
− a2

2n
tanhn (τ1 − τ2)

)

.

Let T2(θ2) be the mean time to reach the nuclear surface, starting at θ2 on a reflecting
cellular surface. Then

(5.2)
2D

R2
T2(θ2) = τ1 − τ2 − dc− 4

+∞
∑

n=1

cosnσ2

enτ2
×

(

dc

1 + e2n(τ1−τ2)
− 1

2n
tanhn (τ1 − τ2)

)

.

The dependence on θ2 is shown in Figure 8 for six different combinations of a and c.
The dotted lines are

(5.3)
2D

R2
T2(θ2) ≃ log

1

a(1−c2)
− 1

2
(1− c2) + log

(

(cos θ2 − c)2 + sin2 θ2
)

,

obtained from principal result 2.2 of Kurella et al. [18].
As in Section 4, we are interested in the situation where molecules can be released

from any part of the initial surface. Thus we desire the mean hitting times when the
initial angles (θ1 or θ2) are uniformly distributed. We indicate these times by an
overbar and make explicit that they are functions of a and c. Firstly, when the initial
position is uniform on the nuclear surface,

(5.4) T̄1(a, c) =

∫ 2π

0

T1(θ1)

2πa
dθ1 =

d

2πa

∫ 2π

0

T1(θ1)

cosh τ1 − cosσ1
dσ1.
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Fig. 8. The mean time (5.2) to hit the nucleus, starting at a point on the cellular surface
parametrised by θ2. On the left, for three different values of c, with a = 0.1 fixed. On the right, for
three different values of a, with c = 0.5 fixed. Dotted lines are the approximation (5.3). Disks and
three different inclusions are illustrated at bottom right in each panel.

Using (A.2) and the identities (1.2), we find

(5.5)
2D

R2
T̄1(a, c) = dc− a2(τ1 − τ2) + 4

+∞
∑

n=1

e−2nτ1×
(

dc

1 + e−2n(τ1−τ2)
− a2

2n
tanhn (τ1 − τ2)

)

.

The dependence on a and c is shown in Figure 9.

0.001 0.01 0.1 1

a

0.0

0.2

0.4

0.6

0.8

1.0

c

0.0

0.1

0.2

0.3

0.4

0.5

Fig. 9. Contours of 2D
R2

T̄1, the mean time for a particle, whose initial condition is uniformly
distributed on the nuclear surface, to reach the cellular surface, as a function of the dimensionless
parameters a and c.

Similarly, the mean time for a particle, whose initial condition is uniformly dis-
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Fig. 10. Mean times as a function of c, with a = 0.25. In the upper panel, the mean time to
hit the cellular surface when the initial condition is uniformly distributed on the nuclear surface.
In the lower panel, the mean time to hit the nuclear surface when the initial condition is uniformly
distributed on the cellular surface. Red lines: exact formulae (5.5) and (5.6). Blue lines: (5.7)
and (5.8), including terms up to O(a2) only. Dashed green lines: lowest-order approximations,
2D
R2

T̄1 ≃
1
2
(1−c2)+a2 log a and 2D

R2
T̄2 ≃ log 1

a(1−c2)
−

1
2
(1−c2). Red dots: averages over numerically-

generated realisations.

tributed on the cellular surface, to reach the nucleus is given by

(5.6)
2D

R2
T̄2(a, c) = τ1 − τ2 − dc− 4

+∞
∑

n=1

e−2nτ2×
(

dc

1 + e2n(τ1−τ2)
− 1

2n
tanhn (τ1 − τ2)

)

.

It is instructive to expand these mean times in powers of a2:

(5.7)
2D

R2
T̄1(a, c) =

1

2
(1− c2)− a2 log

1− c2

a
− a2

2

(

1− 2c2

1− c2

)

+O(a4)

and

(5.8)
2D

R2
T̄2(a, c) = log

1

a(1− c2)
− 1

2
(1− c2) +

a2

2

(

1− 2c2

(1− c2)2

)

+O(a4).

The O(a4) terms are zero when c = 0. Performing the integral (1.4) using the ap-
proximate Green function of Condamin et al. [35] yields the first two terms of (5.8),
shown as the dashed line in Figure 10. The latter is a rather good approximation at
a = 0.25, but worsening as the nucleus approaches the cellular surface. Also shown
is the approximation obtained by retaining terms proportional to a2 in (5.8). The
red dots are numerical average times obtained from Brownian paths starting on one,
reflecting, surface and ending on the other, absorbing surface.
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We end this Section by considering the mean time that is obtained by averaging
over all possible positions of the nucleus. The results, functions of a only, are

(5.9)
2D

R2
¯̄T1(a) =

2

(1− a)2

∫ 1−a

0

cT̄1(a, c)dc =
1

4
+

1

2
a−

(

3

4
+ log 2

)

a2 +O(a3)

and

(5.10)
2D

R2
¯̄T2(a) =

(

1− 2a− 2a2
)

log
1

a
+

3

4
+ (1 + log 2) a+ (log 2)a2 +O(a3).

We note that ¯̄T1(a) is a non-monotonic function of a, with maximum at a ≈ 0.173.

6. Mean round-trip time. We now calculate the mean time for a particle to
diffuse outward to the cellular surface and, from there, inward back to the nucleus.
The initial condition is distributed uniformly on the nuclear surface; the end point of
the outward path (on the cellular surface) is the starting point of the inward path.
This affects the inward leg; instead of an initial condition distributed uniformly on
the cellular surface, we use the hitting density, calculated in Section 4, as the initial
distribution. That is,

(6.1) T̄ ε
2 (a, c) =

∫ 2π

0

ε(θ2)T2(θ2)dθ2.

The functions in the integrand have been expanded in (4.1) and (5.2) using the variable
σ2, given by (4.2). Similarly, we can expand the integrand of (6.1) as the Fourier-
cosine series:

ε(θ2)T2(θ2) =
R2

2D

1

2π

(

C0 +

+∞
∑

n=1

Cn cosnσ2

)

.

Then

2D

R2
T̄ ε
2 (a, c) =

d

2π

∫ 2π

0

C0 +
+∞
∑

n=1
Cn cosnσ2

cosh τ2 − cosσ2
dσ2

= C0 +

+∞
∑

n=1

e−nτ2Cn.(6.2)

The mean round-trip time, plotted in Figure 11, is the sum, T̄1(a, c) + T̄ ε
2 (a, c).

7. Direct solution of Poisson’s equation. An alternative way to find mean
transport times, still in bipolar coordinates but without first calculating Green func-
tions, is to solve Poisson’s equation (1.3).We first consider the mean time T3(x0) to
the cellular surface, starting from x0 ∈ C. The boundary conditions are

T3|τ0=τ2
= 0

∂

∂τ0
T3

∣

∣

∣

∣

τ0=τ1

= 0
∂

∂σ0
T3

∣

∣

∣

∣

σ0=0,π

= 0.

We recognise the particular solution

(7.1) T p
3 (x0) = −R2d2

2D

cosh τ0
cosh τ0 − cosσ0

,
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,c
)

exact
concentric
numerical

Fig. 11. Mean round-trip time T̄1(a, c) + T̄ ε

2 (a, c) as a function of c, with a = 0.1. The line is
the sum of the analytic results (5.5) and (6.2). The blue dots are numerical simulations and the red

dot is T̄1(a, 0) + T̄ ε

2 (a, 0) =
R

2

2D
(1− a2) log 1

a
.

and write

(7.2) T3(x0) = Aτ0 +B +

+∞
∑

n=1

(

Cne
nτ0 +Dne

−nτ0
)

cosnσ0 −
R2d2

2D

cosh τ0
cosh τ0 − cosσ0

.

Using the identity

cosh τ

cosh τ − cosσ
= coth τ

(

1 + 2

+∞
∑

n=1

e−nτ cosnσ

)

,

we find

(7.3)
2D

R2
T3(x0) = d2(coth τ2 − coth τ0)− a2(τ0 − τ2)

+ 2d2
+∞
∑

n=1

(

Jn(τ0, τ1, τ2)− coth τ0e
−nτ0

)

cosnσ0,

where

(7.4) Jn(τ0, τ1, τ2) =
e−nτ1 sinhn(τ2 − τ0)

coshn(τ2 − τ1)

( 1

n sinh2 τ1
+ coth τ1

)

+
coth τ2e

−nτ2

coshn(τ2 − τ1)
coshn(τ1 − τ0).

Similarly, the mean time T4(x0) to the nuclear surface, starting from x0 ∈ C, with
the cellular surface reflecting, is

(7.5)
2D

R2
T4(x0) = τ1 − τ0 − d2(coth τ0 − coth τ1)

+ 2d2
+∞
∑

n=1

(

Jn(τ0, τ2, τ1)− coth τ0e
−nτ0

)

cosnσ0.
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8. Discussion. We perform exact calculations that, until now, have only been
possible using approximations or asymptotics. The mean time to reach the cellular
surface, starting at x0 ∈ C with reflecting nuclear surface, is given by (7.3); the
mean time to reach the nuclear surface, with reflecting cellular surface, is given by
(7.5). These results, and the exact Green functions, (2.4) and (3.2), are obtained
using bipolar coordinates. In the appropriate limits, our results agree with those in
Condamin et al. [35], and Kurella et al. [18], obtained using either psuedo-Green func-
tions or matched asymptotic analysis. Our method provides an exact solution even
when the nucleus is close to the cell boundary, where other methods fail. However,
extending our analysis to the case of partially-reflecting boundaries will be compli-
cated by the appearance of a Jacobian, and exact analysis does not appear possible
if the diffusivity is position-dependent.

Once Green’s function is known, we can calculate mean times for any set of initial
conditions. In Section 2, we analyse the case where the initial position is a given point
on the nuclear surface, and the case where it is randomly-distributed on the nuclear
surface. In Section 3, we analyse the case where the initial position is a given point
on the cellular surface, and the case where it is randomly-distributed on the cellular
surface. The motivation is to model diffusive transport under the assumption the
location on the surface of an intracellular compartment where a molecule emerges,
or on the cellular surface where a molecular complex is internalised, is uniformly
distributed. The exact expressions for the hitting densities and mean arrival times
are (4.1), (5.1) and (5.2). When averaged over the initial surface, the mean arrival
times, (5.5) and (5.6), are functions of a and c. We perform a further averaging:
over all possible locations of the nucleus within the cell, obtaining (5.9) and (5.10),
functions of a only.

Bispherical coordinates can be used to undertake calculations, similar to those
presented here, in three space dimensions [46]. However, finding mathematical de-
scriptions of the traffic of small molecules inside living cells and of living cells in
tissues presents challenges; Brownian motion is not sufficient [4,26,47–57]. For exam-
ple, viral trajectories in the cytoplasm may be modelled as epochs of simple diffusion
and of active transport along microtubules [2]. To molecules diffusing inside cells, in-
tracellular compartments may be obstacles or targets. The molecules themselves may
have finite lifetimes [5]. Effects of crowding or of active transport mechanisms may be
modelled as a type of motion that is not diffusive, with the standard time derivative
replaced by a fractional one [26,54,58]. A reacting surface may itself contain absorb-
ing and reflecting regions [59]; one way to take this heterogeneity into account is via
Robin boundary conditions [25].
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Appendix A. Evaluation of integrals.

We define

In,k =

∫ 2π

0

cosn(σ − σ0)

(cosh τ − cosσ)k
dσ = cosnσ0

∫ 2π

0

cosnσ

(cosh τ − cosσ)k
dσ.(A.1)
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If z = eiσ then In,k = −i cosnσ0

∫

|z|=1
fn,k(z)dz, where

fn,k(z) =
(2z)kzn−1

(z − z1)k(z2 − z)k
,

z1 = e−τ and z2 = eτ . Thus, we have

∫

|z|=1

fn,k(z)dz =
2πi

(k − 1)!

∂k−1

∂zk−1

(

zn−1(2z)k

(z2 − z)k

)

∣

∣

∣

∣

∣

z=z1

.

In particular,

(A.2) In,1(τ) =
2π cosnσ0

enτ sinh τ

and

(A.3) In,2(τ) = 2π cosnσ0
n sinh τ + cosh τ

enτ sinh3 τ
.
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