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Supporting information:

A non-adiabatic model for jacketed agitated

batch reactors experiencing thermal losses

Michael Johnson,∗,†,‡ Karrar H. Al-Dirawi,† Erik Bentham,† Tariq Mahmud,† and

Peter J. Heggs†

†School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT

‡Current address: CEA, DES, IRESNE, DTN, SMTA, LEAG, 13115

Saint-Paul-lez-Durance, France

E-mail: michael.johnson@cea.fr

This supporting information document presents a commented derivation of the non-

adiabatic heat transfer model for jacketed agitated batch reactors introduced in the main

article.

Model derivation

Reactor configuration and governing energy balances

The geometry considered for the purpose of this derivation, includes a jacketed batch reactor

with a dished base, the thermal jacket surrounds the entirety of the wetted portion of the

vessel (above the liquid line on the process side) including the dished base. The reactor has

a lid which through which some heat may be lost. A total condenser is installed on the

process side to condense vapour from the reactor ullage and maintain a constant volume in
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Nomenclature

A heat transfer area

E thermal effectiveness

Emod modified thermal effectiveness

Q quantity of heat transferred

T temperature

Φ Phi-factor, or thermal inertia

α heat transfer film coefficient

α0 free convection film coefficient

cp specific heat capacity

t time

CA concentration of reagent A

Ea activation energy

M mass

R gas constant

U overall heat transfer coefficient

V volume

∆Hrxn enthalpy of reaction

Ṁ mass flow

Q̇ heat flow

kA reaction rate constant for reagent A

u measurement uncertainty

x position along the length of the
jacket

Superscripts

˙ time derivative

˜ dimensionless

Subscripts

0 initial condition, t = 0

1 inlet

2 outlet

∞ ambient

C cooling

c condenser

H heating

j jacket

jloss jacket losses

p process

ploss process losses

s source (generation/consumption)

set target

the process. Heat may also be lost from the outer wall of the thermal jacket. While the

model presented is relevant to this specific geometry, the following derivation can be easily

adapted to consider alternative reactor geometries. A schematic of the reactor geometry,

presented in the main article, is repeated in Figure 1 for reference.

Figure 1 identifies six rates of heat transfer for this reactor configuration necessary to

fully characterize the system. Identities for each of these terms are defined in eq. (1):
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Q̇j1

Tj1

Q̇j2

Tj2

Q̇j, Ṁ

Q̇j−p

Q̇p

Tp
Q̇jloss

T∞

Q̇ploss

Q̇c, Ṁc, Tc1, Tc2

Figure S1: Schematic of heat transfer processes in a non-adiabatic jacketed batch reactor
experiencing thermal losses to its surroundings and with a total condenser on the process-
side.

Q̇p =
N
∑

n=1

(Mcp)n
dTp

dt

Q̇j =

∫ L

0

(Ṁcp)j
dTj(x)

dx
dx

Q̇j−p =

∫ L

0

(UA′)p(Tj(x)− Tp) dx

Q̇jloss =

∫ L

0

(UA′)jloss(Tj(x)− T∞) dx

Q̇ploss = (UA)ploss(Tp − T∞)

Q̇c = (Ṁcp)c(Tc1 − Tc2)

(1)

The (UA) terms represent products of overall heat transfer coefficients and heat transfer

areas (OHTCA), while (UA′) terms represent the OHTCAs expressed per unit length of the

jacket. These (UA′) terms are fundamental to the derivation but will be eliminated from

the ultimate ordinary differential equation (ODE) model.

The signs of each rate of heat transfer are significant to the governing energy balance

and require clarification. From the identities in eq. (1), in the case that Tj(x) > Tp > T∞

(i.e. heat is transferred from the jacket to the process and heat is lost from both the jacket
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and the process), all of the rates of heat transfer will be positive except for the jacket duty

which will be negative, since the jacket temperature will diminish along the length of the

jacket (Tj1 > Tj2).

Two governing heat balances can be defined in terms of these rates of heat transfer. First,

all heat transferred from the jacket is either transferred across the jacket-process wall, or

across the outer jacket wall and lost to the surroundings. This jacket-side energy balance is

given in eq. (2):

−Q̇j = Q̇j−p + Q̇jloss (2)

Second, the combined rates of heat transfer across the wall from the jacket to the process

and heat generation within the process must balance the sum of (1) heat accumulation in

the process, (2) thermal losses from the process to the surroundings, and (3) heat removal

from the process by the condenser. This process-side energy balance is defined in eq. (3):

Q̇j−p + Q̇s = Q̇p + Q̇ploss + Q̇c (3)

The rate of heat generation in the process, Q̇s, may include heats of crystallisation,

reaction, mixing, and the mechanical heat introduced by the impeller and will be discussed

further following the model derivation. For the heat transfer investigation in the main article,

an inert fluid was used on the process side and the mechanical input from the impeller was

considered negligible, thereby eliminating the heat generation term, Q̇s → 0.

Expanding the jacket-side energy balance

Substituting the relevant identities from eq. (1) into the jacket-side energy balance, eq. (2),

generates the integral expression in eq. (4):
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−

∫ L

0

(Ṁcp)j
dTj

dx
dx =

∫ L

0

[(UA′)p(Tj(x)− Tp) + (UA′)jloss(Tj(x)− T∞)] dx (4)

Rearranging and factorizing the jacket temperature terms on the right hand side enables

eq. (4) to be expressed as follows:

∫ L

0

dTj

dx
dx =

∫ L

0

[−aTj(x) + b] dx (5)

where a =
(UA′)p+(UA′)jloss

(Ṁcp)
j

and b =
(UA′)pTp+(UA′)jlossT∞

(Ṁcp)
j

. Integrating eq. (5) to find the

jacket temperature at position x along the jacket, Tj(x), yields eq. (6):

Tj(x) =
b

a
+

(

Tj1 −
b

a

)

exp(−ax)















Tj(0) = Tj1

Tj(L) = Tj2

(6)

Applying the boundary conditions reveals the following expression for the temperature

drop along the length of the jacket:

Tj1 − Tj2 =

(

Tj1 −
b

a

)

(1− exp(−aL))

Tj1 − Tj2 =





(Tj1 − Tp) + (Tj1 − T∞)
(UA)jloss
(UA)p

1 +
(UA)jloss
(UA)p





(

1− exp

(

−
(UA)p + (UA)jloss

(Ṁcp)j

)) (7)

Two dimensionless parameters revealed in eq. (7) recur frequently throughout the deriva-

tion. The first is a dimensionless OHTCA, representing the ratio of jacket loss and pro-

cess OHTCAs, ˜(UA) =
(UA)jloss
(UA)p

. The second is the complement to the exponential term,

which resembles the thermal effectiveness,1,2 E = 1− exp
(

−
(UA)p
Ṁcp)j

)

, but includes the addi-

tional jacket loss OHTCA. This parameter will be labeled the modified thermal effectiveness,
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Emod = 1 − exp
(

−
(UA)p+(UA)jloss

(Ṁcp)j

)

. For the case of constant flow rate in the jacket, and

assuming the physical properties of the fluids do not evolve significantly with time, these

two dimensionless parameters can be considered constant, but could equally be expressed

as functions of temperature or reactant conversion.3 Adopting this nomenclature, eq. (7)

reduces to:

Tj1 − Tj2 =
Emod

1 + ˜(UA)

(

(1 + ˜(UA))Tj1 − Tp −
˜(UA)T∞

)

(8)

This identity for the temperature drop along the length of the jacket enables the charac-

terization of the rate of heat transfer from the the jacket:

−Q̇j = k
(

(1 + ˜(UA))Tj1 − Tp −
˜(UA)T∞

)

(9)

where k =
(Ṁcp)jEmod

1+ ˜(UA)
. A similar procedure is repeated to define the rate of heat transfer

across the jacket-process wall. The jacket-side energy balance rearranges to give:

Q̇j−p = −Q̇j − Q̇jloss

Q̇j−p = (Ṁcp)j(Tj1 − Tj2)−

∫ L

0

(UA′)jloss (Tj(x)− T∞) dx
(10)

Substituting the local jacket temperature, Tj(x), expression from eq. (6) yields:

Q̇j−p = (Ṁcp)j(Tj1 − Tj2)−

∫ L

0

(UA′)jloss

(

b

a
+

(

Tj1 −
b

a

)

exp(−ax)− T∞

)

dx (11)

Solving the integral on the right hand side gives:

Q̇j−p =(Ṁcp)j(Tj1 − Tj2) + (UA)jloss

(

T∞ −
b

a

)

−
(UA′)jloss

a

(

Tj1 −
b

a

)

(1− exp(−aL))

(12)

The product of the final two bracketed terms is recognisable as the temperature drop

along the length of the jacket, previously stated in eq. (7). Factorizing all Tj1 − Tj2 terms
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gives:

Q̇j−p =

(

(Ṁcp)j −
(UA′)jloss

a

)

(Tj1 − Tj2) + (UA)jloss

(

T∞ −
b

a

)

(13)

Substituting for the a and b terms provides the following expression for the rate of heat

transfer from the jacket to the process:

Q̇j−p =
(UA)jloss(T∞ − Tp) + (Ṁcp)j(Tj1 − Tj2)

1 + (ŨA)
(14)

Since the temperature drop along the length of the jacket has been defined in eq. (8),

the jacket outlet temperature can be eliminated from the model. The equation for the rate

of heat transfer across the jacket-process wall is then factorized in terms of the three key

temperatures, Tj1, Tp and T∞ for readability:

Q̇j−p = kTj1 −
(UA)jloss + k

(1 + ˜(UA))
Tp −

k ˜(UA)− (UA)jloss

(1 + ˜(UA))
T∞ (15)

The final rate of heat transfer relevant to the jacket-side balance requring definition is

the rate of heat loss from the outer jacket wall. This can be obtained either from the sum

of the two rates of heat transfer previously defined, Q̇jloss = −(Q̇j + Q̇j−p), or by repeating

the integration procedure for the identity of the thermal losses from the jacket defined in

eq. (1). The resulting expression is given in eq. (16):

Q̇jloss = k(ŨA)Tj1 +
(UA)jloss − k(ŨA)

1 + (ŨA)
Tp −

k(ŨA)2 + (UA)jloss

1 + (ŨA)
T∞ (16)

Expanding the process-side energy balance

Having defined all the rates of heat transfer relevant to the jacket-side energy balance, the

relevant heat transfer identities can be substituted into the process-side energy balance to

solve for the rate of heat accumulation in the process, Q̇p = Q̇j−p + Q̇s − Q̇ploss − Q̇c.
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N
∑

n=1

(Mcp)n
dTp

dt
= kTj1−

(

k + (UA)jloss

(1 + ˜(UA))
+ (UA)ploss

)

Tp+

(

(UA)jloss − ˜(UA)k

(1 + ˜(UA))
+ (UA)ploss

)

T∞−

(Ṁcp)c(Tc1 − Tc2) + Q̇s

(17)

This ODE governs the evolution of process temperature. While incorporating the ther-

mal losses from the outer jacket wall complicates the derivation of the model, and requires

an additional OHTCA to be characterized, solving the ODE numerically is no more com-

putationally expensive than the classical adiabatic models. For constant flow rates in the

jacket and condenser, and assuming no significant evolution in the thermophysical proper-

ties with time, each of the temperature multipliers remain constant with time. Furthermore,

the model simplifies with various commonly applied assumptions. For the case of (1) no

heat generation within the process, Q̇s → 0, (2) no condenser on the process side, Ṁc → 0,

and (3) a perfectly insulated outer jacket wall, (UA)jloss → 0, the model reduces to the

two-coefficient semi-adiabatic model presented in a previous article by the current authors:2

N
∑

n=1

(Mcp)n
dTp

dt
=(Ṁcp)jE Tj1−

(

(Ṁcp)jE + (UA)ploss

)

Tp+

(UA)plossT∞

(18)

The identities and correlations for each of the rates of heat transfer identified in Figure 1

are summarized in Table 1.
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Heat generation in the process

Heats of reaction, mixing, phase change or mechanical agitation may be significant during

standard reactor operation. Reactions are particularly significant due to the well established

exponential dependence of reaction rate on process temperature from the Arrhenius equation.

Using the example of a first order liquid phase reaction, the rate of heat generation can be

calculated as follows:

Q̇s = VpkACAexp

(

−
Ea

RTp

)

∆Hrxn (19)

The introduction of an exponential function of process temperature into the ODE indi-

cates that numerical errors arising during the solution of eq. (17) are likely to propagate more

quickly, especially when coupled with expressions for the evolution of concentration with time

and the evolution of thermophysical properties with conversion.3 It may become necessary

to use a higher order numerical method and/or a shorter time-step to perform the numerical

integration. A similar numerical sensitivity will likely be observed during crystallisation due

to the power law dependencies of crystal nucleation and growth on supersaturation.
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Table S1: Correlations for the various rates of heat transfer identified in Figure 1

Property Identity Equation

Q̇j

∫ L

0 (Ṁcp)j
dTj(x)

dx
dx −k

(

(1 + ˜(UA))Tj1 − Tp −
˜(UA)T∞

)

Q̇j−p

∫ L

0 (UA′)p(Tj(x)− Tp) dx kTj1 −
(UA)jloss+k

(1+ ˜(UA))
Tp −

k ˜(UA)−(UA)jloss

(1+ ˜(UA))
T∞

Q̇jloss

∫ L

0 (UA′)jloss(Tj(x)− T∞) dx k(ŨA)Tj1 +
(UA)jloss−k(ŨA)

1+(ŨA)
Tp −

k(ŨA)2+(UA)jloss

1+(ŨA)
T∞

Q̇p

∑N
n=1 (Mcp)n

dTp
dt

kTj1 −

(

k + (UA)jloss

(1 + ˜(UA))
+ (UA)ploss

)

Tp+

(

(UA)jloss − ˜(UA)k

(1 + ˜(UA))
+ (UA)ploss

)

T∞−

(Ṁcp)c(Tc1 − Tc2) + Q̇s

Q̇ploss (UA)ploss(Tp − T∞) (UA)ploss(Tp − T∞)

Q̇c (Ṁcp)c(Tc2 − Tc1) (Ṁcp)c(Tc2 − Tc1)
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