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Abstract 

Thick-walled cylinder (TWC) tests are widely used to obtain soil properties and 

investigate wellbore instability problems in laboratory-controlled conditions. This paper 

presents analytical cavity expansion and contraction solutions for modelling undrained 

TWC tests under three typical loading and unloading programs. Both cylindrical and 

spherical cavities in critical state soils with a finite radial extent subjected to monotonic 

loading or unloading under undrained conditions are considered. The solutions are 

developed in terms of finite strain formulations, and the procedure is applicable to any 

isotropically hardening materials. Parametric studies show the boundary effect may 

significantly affect the cavity expansion/contraction response. A limit outer-to-inner 

diameter ratio of the soil sample exists, beyond which the boundary effect becomes 

negligible. The limit ratio varies with the cavity geometry, soil stress history (OCR), and 

cavity deformation level. For undrained TWC tests, a diameter ratio over 20 should 

normally be adequate to remove the possible boundary effect. Predicted expansion and 

contraction curves by the new solutions are compared with published data of TWC tests 

in the literature, and good agreement is shown in each loading/unloading program. This 

indicates that the boundary effect, which greatly limits the application of conventional 

cavity expansion/contraction solutions into TWC problems, is successfully captured by 

the present solutions. The solutions can also serve as valuable benchmark for verifying 

various numerical methods involving critical state plasticity models. 

KEYWORDS: Cavity expansion, Cavity contraction, Thick-walled cylinder tests, 

Boundary effect, Critical state soil 
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1 Introduction  1 

Loading and unloading of a thick-walled cylinder (TWC) of soil in a triaxial cell or 2 

chamber have been used to investigate the soil behaviour involved in a wide class of 3 

geotechnical problems [3,5,27,36]. In laboratory-controlled conditions, three 4 

loading/unloading programs are commonly applied in TWC tests, namely internal loading 5 

(i.e. increasing the internal pressure), internal unloading (i.e. reducing the internal 6 

pressure) and external loading (i.e. increasing the external pressure), while keeping other 7 

confining pressures constant [1] (see Fig. 1). The internal loading program (also known 8 

as the boundary condition BC1 [27]) is often used to investigate the pressuremeter 9 

response [6,26,31,33,35,58]; the internal unloading and external loading programs are 10 

common in the study of wellbore instability problems [1,18,24,74]. 11 

For the purpose of saving energy, time, cost and space during sample preparation and 12 

testing and/or improving detectability or traceability of internal soil deformation with 13 

non-destructive measurement techniques (e.g. X-ray Computed Tomography), hollow 14 

cylinder triaxial apparatuses with outer-to-inner diameter ratios (or chamber diameter to 15 

pressuremeter diameter ratio) in a range of 2 to 20 have widely been used in the laboratory 16 

[3,5,6,23,26,31,33-36,43,58,60]. It has been reported that significant boundary effects (or 17 

container size effect) usually exist in the loading and unloading tests within such small-18 

sized containers, which may lead the measured soil response to be quite different from 19 

that in an infinite or ‘semi-infinite’ soil mass [3,25,29,35,47,49,54,55]. Cavity 20 

expansion/contraction theory is a useful theoretical tool for the study of pressuremeter 21 

tests and wellbore instability problems [14,18,28,32,42,71]. However, the focus of most 22 

previous studies has been on the analysis of a cavity embedded in an infinite soil mass 23 

ideally simulating the field conditions [69]. The aforementioned boundary effect is 24 

apparently overlooked in these infinite cavity expansion and contraction models. 25 

Consequently, they are not suitable for the analysis of pressuremeter and wellbore 26 

instability problems in TWC tests as discussed by Juran and BenSaid [34], Silvestri [57], 27 

and Abdulhadi [1], among others. To address this problem, this paper presents novel and 28 

general solution procedures for undrained cavity expansion and contraction analysis in 29 

soils with a finite radial extent under the aforementioned three loading/unloading 30 

programs, and a set of analytical/semi-analytical finite strain solutions for several Cam-31 

Clay-type soil models is derived. 32 
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Before presenting the theoretical analysis, some pioneering studies into quasi-static 33 

cavity expansion and contraction behaviour under the considered loading/unloading 34 

programs are briefly reviewed. For a cavity expanding and contracting in an infinite soil 35 

mass under the internal loading and unloading programs, undrained expansion and 36 

contraction solutions in the framework of critical state soil mechanics refer to some 37 

pioneering works from Collins and Yu [22], Chen and Abousleiman [15], Vrakas [61], 38 

Mo and Yu [40] and Yu and Rowe [73], Vrakas and Anagnostou [62], Chen and 39 

Abousleiman [17], Mo and Yu [39], respectively. For brevity, we focus here on reviewing 40 

relevant elastic-plastic solutions for the analysis of a cavity embedded in a finite soil mass 41 

as below. 42 

Existing analytical solutions for the problem of an internally pressurized cavity within 43 

a finite soil mass are mainly restricted to elastic-perfectly plastic models such as the 44 

Tresca model [30,34,69] and Mohr-Coulomb model [25,48,66,67]. When considering the 45 

hardening and softening behaviour of soil, a few semi-analytical drained solutions have 46 

also been developed so far. Salgado et al. [53] presented solutions for expansion analysis 47 

of a cylindrical cavity in Mohr-Coulomb soils considering non-linear elasticity and 48 

variations of friction and dilation angles. The solution was combined with stress rotation 49 

analysis to investigate the effects of several types of boundaries to the cone penetration 50 

resistance in sand [54]. Adopting an elastic-plastic constitutive model formulated in the 51 

critical state framework, Pournaghiazar et al. [48] developed approximate solutions using 52 

the similarity technique for both cylindrical and spherical cavities expanded from zero 53 

radius subjected to either constant stress or zero displacement at the finite boundary under 54 

drained conditions. For the same problem, a more rigorous spherical solution was 55 

obtained by Cheng and Yang [19] with the aid of the auxiliary independent variable 56 

proposed by Chen and Abousleiman [16]. Cheng et al. [20] further applied the method to 57 

the cavity expansion analysis in a finite unsaturated soil mass assuming that the 58 

contribution of suction to the effective stress is constant. Lately, Wang et al. [63] derived 59 

a solution for a spherical cavity expanding in modified Cam Clay of finite radial extent 60 

under undrained conditions. The development of these solutions highly relied on the 61 

assumption that the conditions at the elastic-plastic boundary satisfy the plastic and elastic 62 

governing equations simultaneously. This requires that the radius of the elastic-plastic 63 

boundary must always be smaller than the outer radius of the finite soil medium upon 64 

loading, which may valid for the cavity creation or cone penetration problems that were 65 
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studied in these references. However, this is not generally appropriate for the loading 66 

analysis of a hollow cylinder or spherical shell with small outer-to-inter diameter ratios 67 

as the entire soil mass may easily yields plastically [49,66,67], in particular for normally 68 

consolidated soils. In more general conditions, existing studies into this problem were 69 

mainly based on numerical techniques [4,11,35,49]. 70 

The external loading and internal unloading programs have often been applied in both 71 

laboratory tests [1,24,45] and numerical simulations [4,44,74] of TWCs, but a very 72 

limited number of analytical solutions were obtained for these cavity contraction 73 

problems in a finite soil mass. Durban and Papanastasiou [24] presented semi-analytical 74 

solutions for the external compression analysis of a thick-walled cylinder using non-75 

associated Mohr-Coulomb and Drucker-Prager models with arbitrary hardening. Very 76 

recently, focusing on the short-term contraction behaviour of soil around shallow tunnels 77 

in clay, Zhuang et al. [75] presented a set of undrained cavity contraction solutions for 78 

both thick-walled cylinders and spherical shells of Cam clays under the internal unloading 79 

program in the companion paper. However, solutions for undrained contraction analysis 80 

under the external loading program are not common in the literature to the best knowledge 81 

of the authors, particularly for advanced critical state models of soil. 82 

In the light of the above discussion, the novelty and importance of the present solutions 83 

mainly lie in the following: (a) three typical loading/unloading programs that commonly 84 

used in TWC tests are considered, and the associated boundary effect is captured in a 85 

rigorous semi-analytical manner; (b) the strain is finite, and the solution procedure 86 

applicable for any isotropically hardening materials; and (c) the solution for the unified 87 

state parameter model of CASM [68] is able to describe the cavity expansion and 88 

contraction behaviour in both clay (including heavily overconsolidated clay) and sand. 89 

The paper is structured as follows: Section 2 defines the problem; Section 3 presents the 90 

general solution procedure first, which is followed by solutions for several critical state 91 

soil models; Section 4 gives results of model validation and parametric studies; Section 5 92 

shows comparisons between predicted and measured cavity expansion and contraction 93 

curves for TWC tests under three different loading and unloading programs. Finally, some 94 

conclusions are drawn. 95 

2 Problem Definition 96 
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As depicted in Fig.1, in a hollow cylinder triaxial cell, the soil specimen is subjected to 97 

three independently controlled confining stresses: the axial stress ( ap ), the uniform radial 98 

pressures acting on the inner ( inp ) and outer ( outp ) surfaces. The height, the inner and 99 

outer diameters of the hollow cylinder specimen are denoted by Ht, Di and Do, 100 

respectively. It has been shown that, with constant axial confining stress, the height of the 101 

specimen has minimal effect on the radial expansion or contraction response as long as 102 

the ratio of Ht/Do is greater than 1.5 [1,3]. In this case, the hollow cylinder 103 

loading/unloading tests can be ideally modelled as plane-strain cylindrical cavity 104 

expansion/contraction problems. In Fig.1, the inner and outer radii of a soil annulus upon 105 

radial loading or unloading are expressed by a  and b , respectively, and 0a  and 0b  106 

represent their initial values, respectively. 107 

It was previously introduced that three typical loading/unloading modes (named as 108 

internal loading, internal unloading and external loading) are often applied in TWC tests 109 

for investigating pressuremeter and borehole instability problems in the laboratory. In the 110 

internal loading or unloading program, the internal radial pressure is increased or 111 

decreased monotonically, while keeping the external cell pressure and the axial confining 112 

stress constant [3,35,58]. With the external loading program, TWC tests are performed 113 

by increasing the external cell pressure, while keeping the internal cavity pressure and the 114 

axial stress constant [1,24,74]. In general, the rate of loading/unloading in TWC tests 115 

under undrained conditions is much faster than the rates of consolidation and creep of soil 116 

[2,4,58], hence the behaviour of soil is considered as rate-independent in this study. 117 

The TWC tests subjected to monotonic loading or unloading are transformed into a 118 

typical boundary value problem of one-dimensional quasi-static cavity expansion or 119 

contraction. It has been shown that the analyses of spherical and long cylindrical cavity 120 

problems under uniform stress conditions are quite similar and can be treated 121 

simultaneously by introducing a parameter k  ( k  is equal to 1 for a cylindrical cavity and 122 

2 for a spherical cavity) [12,22,72,73]. Hence, solutions for the analysis of a thick-wall 123 

spherical shell of soil are also derived. The spherical expansion and contraction solutions 124 

may offer a chance to model point injection tests (e.g. Au et al. [8]) and cone penetration 125 

tests(e.g. Cheng and Yang [19] in small sized calibration chambers and spherical sinkhole 126 

formation problems at shallow depths (e.g. Augarde et al. [9]), but this is considered 127 

beyond the scope of this paper. 128 
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For convenience, cylindrical coordinates (r, θ, z) and spherical coordinates (r, θ, φ) 129 

with the origin located at the centre of the cavity are employed for the analysis of thick-130 

walled cylinder and spherical shell, respectively. The cylindrical cavity 131 

expansion/contraction analyses are performed under plane strain conditions with respect 132 

to the z-axis. Taking compression as positive, the initial stress boundary conditions are 133 

expressed as: 134 

0
0r r a

p
=

=     ,      
0

0r r b
p

=
=  (1 a,b) 135 

where r  represents the total radial stress. r  is the current radial coordinate of a material 136 

element which was initially at 0r . 0p  is the initial total confining pressure. 0 0 0p p U= + , 137 

0p  is the initial mean effective stress, and 0U  is the initial ambient pore pressure. 138 

The expansion and contraction analyses are performed under undrained conditions. 139 

The surrounding soil is assumed to be homogeneous and isotropic. For convenience, the 140 

mean effective and deviatoric stresses ( p , q ) below are used for the quasi-static analysis 141 

of the axisymmetric cavity expansion/contraction problem following Collins and Yu [22] 142 

and Yu and Rowe [73]. 143 

1

r k
p

k

  + =
+

    ,    rq   = −  (2 a,b) 144 

where r   and    are the effective radial and circumferential stresses, respectively. 145 

The volumetric and shear strains ( ; ) are defined as: 146 

r k   = +     ,    r   = −  (3 a,b) 147 

where r  and   are radial and circumferential strains, respectively. It needs to be 148 

pointed out that for the cylindrical case the above definitions for the stress and strain 149 

invariants are slightly different from the usual three-dimensional definitions in critical 150 

state soil models. However, it has been shown (e.g. in references of Sheng et al. [56] and 151 

Chen and Abousleiman [15]) that the error due to these simplifications is negligible for 152 

the analysis of cylindrical cavity problems under an isotropic in-situ stress state which is 153 

of interest in this paper. 154 

3 Undrained cavity expansion/contraction analysis 155 

3.1 Governing equations 156 
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Quasi-static cavity expansion/contraction analysis is mainly concerned with two typical 157 

problems: (a) continuous pressure-displacement curves; and (b) stress and strain 158 

distributions in soil at a given instant. Solutions for them can be obtained by solving a set 159 

of equations of stress equilibrium, deformation compatibility and stress-strain 160 

relationships of soil (as defined below) with given boundary conditions. 161 

(1) Stress equilibrium 162 

Under uniform and monotonic loading or unloading, neglecting body force and 163 

dynamic effect, the stress equilibrium condition along the radial direction can be 164 

expressed in terms of total stresses (Eulerian description) as: 165 

d
0

d

r
r

r

k r


 − + =   (4) 166 

where   is the total circumferential stress. 167 

Since ( )1r p kq k = + +  and U p p= −  ( p : the mean total pressure; U : the pore 168 

pressure), the gradient of U  along the radial direction is given as: 169 

d d d

d d 1 d

U p k q k
q

r r k r r


= − − −

+
  (5) 170 

(2) Deformation compatibility 171 

For the axisymmetric cavity expansion/contraction problem under undrained 172 

conditions, the constant-volume condition can be expressed as: 173 

1 1 1 1

0 0

k k k ka a r r T+ + + +− = − =   (6) 174 

where T is the variable representing the volumetric change of soil at an arbitrary radius. 175 

While keeping the external confining pressure constant, internal loading will lead to 176 

outward expansions of the surrounding soil, whereas inward contractions will be caused 177 

by internal unloading. Compressive deformation is taken as positive in this paper. Based 178 

on Eq. (6), the corresponding deformation compatibility equations for these two cases can 179 

be readily obtained [22,73]. Rigorous relations between the finite shear strain and the 180 

radial coordinate without any restriction on the deformation level are given: (a) for a given 181 

particle (i.e. Lagrangian description in Eq. (7)), and (b) at a fixed instant of time (i.e. 182 

Eulerian description in Eq. (8)), respectively, as: 183 
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1

0

1

0 0

ln ( 1) ln
k

k

r T r
k

r r


+

+

 +
= = + 

 
           (internal loading/unloading)  (7) 184 

1
ln 1

k

T

r
 +

 = − −  
                               (internal loading/unloading)  (8) 185 

Hence relations between the radial coordinate and shear strain increments: (a) for a 186 

given particle, and (b) at a fixed instant of time, respectively, are: 187 

d
( 1) d

r
k

r
+ =     ,    

d d
( 1)

exp( ) 1

r
k

r




+ = −
−

     (internal loading/unloading) (9 a, b) 188 

In the external loading program, the surrounding soil moves inwards (i.e. cavity 189 

contraction) with increasing external pressures. The soil movement is similar to that 190 

which occurred in the internal unloading program, but the soil deforms under 191 

compression. Therefore, new relations between the finite shear strain and the radial co-192 

ordinate are constructed in Eqs. (10) and (11), which are: (a) for a given particle, and (b) 193 

at a fixed instant of time, respectively. 194 

1

0

1

0 0

ln ( 1) ln
k

k

r T r
k

r r


+

+

 +
= − = − + 

 
         (external loading)  (10) 195 

1
ln 1

k

T

r
 +

 = −  
                                    (external loading)  (11) 196 

and the incremental expressions of these relations become: 197 

d
( 1) d

r
k

r
+ = −     ,    

d d
( 1)

exp( ) 1

r
k

r




+ = −
− −

        (external loading) (12 a,b) 198 

(3) Stress-strain relationships 199 

The stress-strain relationships are conveniently defined in general forms appropriate 200 

for a wide class of two-invariant critical state soil models in this subsection. Before 201 

entering plastic, soil behaviour is purely elastic. The elastic constitutive law is expressed 202 

in rate forms as: 203 

o

( , )

e p

K p v



=


    ,    

o

2 ( , )

e q

G p v
 =


 (13 a,b) 204 

where e  and e  represent the elastic volumetric and shear strain rates, respectively. 205 

( , )K p v  and ( , )G p v  are the instantaneous bulk and shear moduli, which are pressure-206 
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dependent (e.g. Eq.14). v  is the specific volume. The symbol (
o

) denotes the material 207 

time derivative associated with a given material particle; (
•

) denotes the local time 208 

derivate, evaluated at a fixed position r . 209 

The hypoelastic model that commonly adopted in Cam-Clay-type models (e.g. Table 210 

1) can be recovered by combining Eqs. (13) and (14). 211 

( , ) /K p v vp  =     ,    ( , )
vp

G p v 



 =  (14 a,b) 212 

where 0.5[(1 )(1 2 )] / [1 ( 1) ]k k  = + − + − , and   denotes Poisson’s ratio of soil.   213 

denotes the slope of the swelling line in the v - lnp  space. 214 

The loading and unloading programs are treated in a single analysis by introducing a 215 

parameter   (i.e. 1 =  for internal and external loading; 1 = −  for internal unloading) 216 

in this paper. Then the yield function and the plastic flow rule that used to describe the 217 

plastic behaviour of soil (e.g. Table 1) are written in a general form as: 218 

( , )yq f p p =     ,    
/

( )
/

p

p

g p
D

g q

 


 
= =

 
 (15a,b) 219 

where g  is the plastic potential; ( )D   represents the stress–dilatancy function; 220 

/q p  = , is the stress ratio. 
yp  denotes the preconsolidation pressure, which controls 221 

the size of the yield surface as a hardening parameter. In usual Cam-Clay type soil models 222 

[50,51,68], hardening is attributed solely to accumulated plastic volumetric strains, and 223 

the volumetric hardening rule of Eq.(16) is usually adopted. 224 

d( )
d

yp

y

p

v p

 
−

=


  (16) 225 

where   denotes the slope of the normal consolidation line (NCL) in the v - lnp  space. 226 

Table 1 Critical state constitutive models considered in the present study. 227 

Model Yield function Stress–dilatancy function ( )D  * 

Original Cam-Clay 

[51] 
ln( / )yq Mp p p   =  ( ) ( )

( 1)

k
D M

k
  = −

+
 

Modified Cam-Clay 

[50] 
/ 1yq Mp p p   = −  

2 2

( )
( 1) 2

k M
D

k

 

−

=
+

 

CASM [68] 

1/

*

ln( / )

ln

n

yp p
q Mp

r


  
= − 
 

§ ( ) ( )
9( )

( )
1 9 3 2

k M
D

k M M

 


−
=

+ + −
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* Note that the conjugate shear strain to the shear stress of Eq. (2b) is in the form of 228 

/ ( 1)q k k = + . Accordingly, expressions of ( )D   are modified by definition. 229 

§ n and *r  are the stress-state coefficient and the spacing ratio, respectively. *r  controls 230 

the intersection position of the the critical state line (CSL) and the yield surface; n  231 

defines the shape of the yield surface (see Fig.2) in CASM [68]. 232 

The critical state is defined by the following two equations [52]. 233 

lnv Γ p = −   (17) 234 

q Mp =   (18) 235 

where Γ  is the value of v  on the CSL at =1kPap . M  is the slope of the CSL in the p236 

- q  space, which can be expressed as    2( 1)sin / ( 1) ( 1)sincs csM k k k = + + − −  for 237 

the present problem with Eq. (2). cs  is the critical state friction angle of soil. It has been 238 

shown that cs  measured in plane strain tests is up to 10-20% larger than that in triaxial 239 

compression tests ( tc ) due to the shear mode effect (or intermediate effective stress 240 

effect) [13,65]. To account for this effect in the analysis, it is assumed that cs  equals 1.1-241 

1.2 times of tc  for the plane strain conditions (k=1) and cs = tc  for the spherical 242 

symmetric conditions (k=2) [20]. 243 

3.2 Analytical effective stress analysis under undrained loading and unloading 244 

The above stress-strain relationships define that one soil element may successively enter 245 

three stress states (including purely elastic state, elastic-plastic state, and critical state) 246 

upon monotonic loading or unloading. Solutions for each state are derived as follows. 247 

(1) Purely elastic state 248 

According to the constant-volume condition and Eq. (13a), the mean effective stress 249 

remains constant and equals its initial value 0p  at the purely elastic state. Therefore, the 250 

bulk and shear moduli also remain constant and equal to their initial values 0K  and 0G  251 

respectively. The elastic shear stress 
eq  can be obtained by integrating Eq. (13b) along a 252 

particle path as: 253 

02eq G =   (19) 254 
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Then the effective radial and circumferential stresses ( e

r   and e

  ) are given as: 255 

0
1

e e

r

k
p q

k
  = +

+
  ,  0

1

1

e ep q
k

  = −
+

  (20) 256 

(2) Elastic-plastic state 257 

The soil yields plastically when the shear stress invariant reaches the yield value of 
epq258 

, which will depend upon the particular yield criterion. According to Eqs. (7) (or (10)) 259 

and (19), plastic deformation occurs first at the inner wall of the cavity upon loading or 260 

unloading, and the corresponding limit elastic shear strain equals: 261 

02

ep

ep

q

G
 =   (21) 262 

The plastic zone propagates outwards with subsequent loading or unloading. From Eqs. 263 

(8) (or (11)) and (21), the current and initial radii of the elastic-plastic boundary ( c  and 264 

0c , respectively) at the instant of the cavity with a radius of a  under different 265 

loading/unloading programs can be expressed, respectively, as: 266 

1 1

0( / ) 1

exp( ) 1

k k

ep

a ac

a 

+ + −  =  − − 
    ,    

1

1 1
0 ( )k kc c T+ += +     (internal loading/unloading) (22a,b) 267 

1 1

0( / ) 1

exp( ) 1

k k

ep

a ac

a 

+ + −  =  − 
    ,    

1

1 1
0 ( )k kc c T+ += +     (external loading)  (23a,b) 268 

As 0e p + =  under undrained conditions, integrating Eqs. (13a) and (16) gives: 269 

0 0

ln ( )ln 0
y

y

pp

p p
  

  
+ − =        

 (24) 270 

Eq. (24) defines a relationship between the hardening parameter 
yp  and the mean 271 

effective stress, by which the functions of ( , )yf p p   and ( )D   in Eqs. (15 a,b) can be 272 

explicitly converted into functions in terms of p  solely (e.g. Table 2). Then the total 273 

elastic-plastic shear strain rate   can be expressed into Eq. (25) based on the constant-274 

volume condition and Eqs. (13)-(16). 275 

o

( )e p L p p    = + =   (25) 276 

where  277 
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( ) 1
( )=

2 ( ) ( ) ( )

q p
L p

G p K p D 
 

 −
 

  (26) 278 

Integrating Eq.(25) in terms of p  along a particle path starting from the initial yield 279 

time, at which 0p p =  and 
epq q= , gives an expression of   as: 280 

0( ) ( )ep I p I p   = + −   (27) 281 

where 282 

( )= ( )d
p

I p L p p


     (28) 283 

Note that Eqs. (24)-(28) suit for any case of stress-controlled proportional loading or 284 

unloading under undrained conditions [46], which certainly includes the 285 

loading/unloading programs considered in this study. 286 

(3) Critical state 287 

Under undrained conditions, the specific volume of soil remain unchanged. Therefore, 288 

once the soil has reached the critical state, the mean effective stress and shear stress 289 

remain constant (i.e. csp  and csq , respectively) as defined by in Eqs. (17) and (18), values 290 

of which will depend upon the particular yield criterion. 291 

(4) Solution procedure for effective stresses 292 

Taking the CASM model [68] as an example, here the procedure to derive the functions 293 

of ( )I p  and ( )L p  is further detailed. Based on Eq. (24), the yield function of CASM 294 

(see Table 1) is converted into Eq. (29) in terms of p , which is required for obtaining an 295 

explicit expression of ( )L p . 296 

 1

1 2( ) ln
n

q p Mp A A p = +   (29) 297 

in which 298 

1

0 0
1 *

ln ln

ln

R p
A

r

− + 
= ,  

1

2 *ln
A

r

−
= − , and  

 

−

 = . (30 a,b,c) 299 

where 0R  is the isotropic over-consolidation ratio, defines as 
0 0/yp p  . 

0yp  is the initial 300 

value of 
yp . 0R  is different from the usual one-dimensional definition of the over-301 

consolidation ratio (i.e. OCR), and relationships between 0R  and OCR refer to the 302 
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references of Wood [64], Yu and Collins [71] and Chang et al. [13]. Eq. (29) can recover 303 

the yield surface of the original Cam-Clay model exactly by choosing n =1 and *r =2.718 304 

(e.g. Fig.2a); the ‘wet’ side of the modified Cam-Clay model can be approximated by 305 

choosing *r =2 in conjunction with a suitable value of n  (e.g. Fig.2b). 306 

With the given constitutive equations of CASM and Eq. (26), the function of ( )L p  is 307 

obtained as: 308 

( ) ( ) ( ) ( )1/ 1/ 12
1 2 1 2

1 9 3 2
( )= ln ln

2 9( )

n n k M MAM
L p A A p A A p

vp n k M


 

− + + −    + + + −   −  
 (31) 309 

Then integrating Eq. (31) in terms of p  along the stress history of a particle gives: 310 

( ) ( )

( )

1 1
1

1 2 1 2

2

1
2

2

( ) ln ln
2 (1 )

( 1) 2
9 3 2 d

9

n n

n
n

n

M n
I p A A p A A p

v n A

n m M
M M

vA M m n M




   


+

−

 
  = + + + + 

 +
− + + − − 


  (32) 311 

in which 312 

( )1
2 1

2

1, 1; 2; / ( 1)
d

( 1)

nn n F n n M M n

M n n M

   


− + + + +  =
− +   (33) 313 

where ( )2 1 1, 1; 2; /F n n M+ +  is the Gaussian hypergeometric function in terms of 314 

/ M . 315 

With 0p p = , Eq. (29) gives the elastic limit of the shear stress in Eq. (34).  316 

1

0
0*

ln

ln

n

ep

R
q Mp

r
   =  

 
  (34) 317 

Then by substituting Eq. (34) into Eq. (21), the elastic limit of the shear strain (
ep ) 318 

required for the determination of the finite shear strain in Eq.(27) is known. 319 

Similarly, solutions of ( )I p  and ( )L p  for the widely used original and modified 320 

Cam-Clay models are also derived as given in Table 2. The above procedure is applicable 321 

for any constitutive model in the form of that defined in the last subsection. 322 

Table 2 Solutions of ( )I p  and ( )L p  for original and modified Cam-Clay models. 323 

Model Solutions 
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Original 

Cam-Clay 

0

0

1
( ) ln ln

p
q p Mp R

p


 
 = − −  

 ,  
0 0lnepq Mp R =  

0

0

1 1 ( 1)
( )= + ln ln

2 ( )

p k
L p M R

p vp k vp M

 
 

   +  − − +      −   
 

( )2

0 0

1 1 1 ( 1)
( )= (ln ) ln ln ln ln

2 2

M k
I p p p R p M

v k vM

  


   +     − + − − + −        

Modified 

Cam-Clay 

1/

0 0( ) ( / ) 1q p Mp R p p −    = −  ,  0 0 1epq Mp R = −  

2

2 2

1
1 ( ) 1 1

( 1) 22
( )=

2 / ( )

M kM
L p

vp M k vp M


  
  

   − + −   +    −   − 
  

 

1 1 12( 1)
( )= (1 2 ) 2 tan tanh tan

2

k
I p M

v M k vM M M

     


− − − +      −  +  + −        

Once the soil has reached the critical state, the mean effective stress and shear stress 324 

remain constant (i.e. csp  and csq , respectively) under undrained conditions. For the 325 

constitutive models listed in Table 1, csp  and csq  can be expressed as: 326 

0
0 *

exp( )cs

R Γ v
p p

r 


−  = = 

 
    ,    cs csq Mp =   (35 a,b) 327 

where *r =2.718 and *r =2 for the original and modified Cam clays, respectively. 328 

In the above, the shear strain was expressed in two ways by means of strain 329 

compatibility analyses and integrations of the stress-strain relationships, respectively. 330 

Based on them, the effective stresses in the soil can be readily related to the kinematic 331 

process of cavity expansion/contraction. In summary, (a) during purely elastic loading or 332 

unloading, p  remains constant as 0p , and q  can be obtained by Eq.(19) in conjunction 333 

with the compatibility relations (i.e. Eqs. (7), (8), (10) and (11)); (b) in the elastic-plastic 334 

state, continuous changes of the effective stresses in a given soil element upon loading or 335 

unloading can be determined by equalling Eq. (27) with Eq. (7) (or Eq. (10)), and 336 

distributions of the effective stresses along the radial coordinate at a fixed instant can be 337 

determined by equalling Eq. (27) with Eq. (8) (or Eq. (11)); (c) in the critical state, both 338 

p  and q  remain constants as defined in Eq. (35). 339 

3.3 Calculation of excess pore pressures 340 
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The excess pore pressure ( U ) at a given instant can be determined by integrating Eq. 341 

(5) along the radial direction. Although all soil particles go through the same effective 342 

stress path, the total stress path of each element varies along the radial direction due to 343 

the difference in the total pressure between the inner and outer boundaries of the finite 344 

soil mass [35]. This is different to the self-similar cavity expansion or contraction problem 345 

in an infinite soil mass and makes the solution procedure for obtaining U  become more 346 

complicated. A general solution procedure for this typical non-self-similar boundary 347 

value problem is developed as follows. 348 

(1) Solutions for a cavity under loading or unloading 349 

In the internal loading or unloading program, the total radial pressure at the outer 350 

boundary (i.e. r b= ) is kept constant. With Eq. (9b), integrating Eq. (5) from r b=  gives: 351 

d
( ) ( )

1 1 exp( ) 1b
b br b r r

k k q
U U p p q q

k k








  =  − − − − +
+ + −   (36) 352 

where 
r

U , 
r

p  and 
r

q  are excess pore pressure, mean effective stress and shear stress 353 

at an arbitrary radius of r . b  and 
b

U  are the shear strain and the excess pore pressure 354 

at r b= , respectively. 355 

It is clear that 
r

U  depends on the effective stress states of soil at both r b=  and the 356 

position of concern. According to the stress state at both positions, it is found that six 357 

phases possibly occur. To facilitate the calculation of 
r

U , Eq. (36) can be simplified 358 

into different forms at different phases as follows. 359 

(a) Purely elastic phase (elastic at both r b=  and r a= ) 360 

While the entire soil mass stays at the purely elastic state, the mean effective stresses 361 

in the whole field remain constant and equal 0p . The shear stresses are known with Eq. 362 

(19). Hence, by simplifying Eq. (36), a closed-form solution for 
r

U  in the elastic region 363 

is obtained as: 364 

02 d

1 1 exp( ) 1b
r

G kk
U q

k k





 


 = − +
+ + −   (37) 365 

in which 366 
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  2

2
1

1 exp( )d

exp( ) 1 2

i

i i

  




=

−
= − −

−    (38) 367 

(b) Elastic-plastic phase (elastic at r b=  and plastic at r a= ) 368 

Upon further loading or unloading, soil particles enter the plastic state first at the inner 369 

cavity wall. Subsequently, the plastic region propagates outwards, the radius of which 370 

can be determined by Eq. (22). In the elastic-plastic phase that the soil at r b=  remains 371 

elastic while the soil at r a=  yields plastically already, 
r

U  in the outside elastic region 372 

can be calculated by Eq. (37). Thus the excess pore pressure at the elastic-plastic 373 

boundary (i.e. 
r c

U
=

 ) is obtained as the shear strain therein (i.e. 
ep ) is known from Eq. 374 

(21). Then the excess pore pressure within the inside plastic region is obtained from Eqs. 375 

(15a), (27) and (36) as: 376 

0( )
1

ep partialr r c

k
U U p p q q J

k=
    =  − − − − − +

  (39) 377 

in which 378 

0

d ( )d

exp( ) 1 exp( ) 1ep

p

partial
p

q qL p p
J






 





 
= =

− −    (40) 379 

With further loading or unloading, two phases may appear according to the stress states 380 

at r b=  and at r a= . One is that the soil at r a=  enters the critical state while the soil 381 

at r b=  still stays as elastic. The other is that the soil at r b=  yield plastically before the 382 

soil at r a=  enters the critical state. The sequence of occurrence of these two phases 383 

mainly depends on the ratio of 0 0/b a  and the stress history (e.g. 0R ). Therefore, solutions 384 

for them are given as follows in no particular order. 385 

(c) Elastic-critical-state phase (elastic at r b=  and critical state at r a= ) 386 

In this phase, elastic, plastic and critical state regions exist simultaneously within the 387 

surrounding soil from the outside in. 
r

U  in the outside two regions can be calculated 388 

with the procedure for the analysis of the elastic-plastic phase. Hence, the value at the 389 

plastic-critical-state boundary csr r=  (i.e. 
csr r

U
=

 ) can be obtained from Eq. (39) with 390 

inputs of the critical state effective stresses (i.e. csp  and csq  in Eq. (35 a,b). Then 
r

U  391 

within the critical state region (i.e. csa r r  ) can be obtained from Eq. (36) as: 392 
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exp( ) 1
ln

1 exp( ) 1cs

cs

r r r
cs

kq
U U

k


=

 − −
 =  +  + − − 

  (41) 393 

where cs  is the shear strain at csr r= . 394 

(d) Fully plastic phase (plastic at both r b=  and r a= ) 395 

In this case, Eq. (36) goes to: 396 

( )
1

b b fullr r b

k
U U p p q q J

k=
    =  − − − − − +

  (42) 397 

in which 398 

d ( )d

exp( ) 1 exp( ) 1b b

p

full
p

q qL p p
J






 





 
= =

− −    (43) 399 

At a known expansion/contraction instant, b  can be determined by Eqs. (6) and (7) 400 

as: 401 

( ) ( )1/ 1
1

0 0( 1) ln
k

k

b k b T b
++ = + +  

  (44) 402 

The mean effective stress at r b=  (i.e. bp ) in this phase can thus be back-calculated 403 

by equalling Eqs. (27) and (44), and the shear stress at r b=  (i.e. bq ) is then known from 404 

the yield function. Finally, as the external radial total pressure is kept constant, 
r b

U
=

  is 405 

obtained as: 406 

 0 / ( 1)b br b
U p p kq k

=
  = − + +   (45) 407 

(e) Plastic-critical-state phase (plastic at r b=  and critical state at r a= ) 408 

Following the above phases, the soil at r a=  may enter the critical state upon further 409 

loading or unloading, which results in two stress regions within the surrounding soil, 410 

namely plastic and critical state regions from the outside in. Similarly, 
r

U  within the 411 

outside plastic region can be determined taking the previous procedure for the fully-412 

plastic phase (i.e. Eq. (42)); U  within the critical state region in this phase can be 413 

computed with Eqs. (41) and (42). 414 

(f) Fully critical-state phase of expansions 415 

If the entire soil mass enters the critical state, the excess pore pressures can be readily 416 

obtained from Eq.(36) as: 417 
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exp( ) 1
ln

1 exp( ) 1

cs cs

r b
b

kq
U U

k


=

 − −
 =  +  + − − 

  (46) 418 

where  0 / ( 1)
cs

cs csr b
U p p kq k

=
  = − + + . 419 

(2) Solutions for a cavity under external loading 420 

In the external loading program, the internal cavity pressure is kept constant. In this 421 

case, to determine the excess pore pressure 
r

U  within the surrounding soil, Eq. (5) 422 

should be integrated from the inner cavity wall (i.e. r a= ). With the use of Eq. (12b), the 423 

integration of Eq. (5) gives: 424 

d
( ) ( )

1 1 exp( ) 1a
a ar a r r

k k q
U U p p q q

k k








  =  − − − − +
+ + − −   (47) 425 

where 
a

U , ap  and aq  are the excess pore pressure, the mean effective stress and the 426 

plastic shear stress at r a= , respectively. a  is the shear strain at r a= . 427 

According to Eqs. (6) and (47), 
r

U  under the external loading program can be 428 

obtained in a similar procedure as that developed for the other two programs, although 429 

the paths of integration are opposite. The solution procedure is presented briefly as follow. 430 

(a) Purely elastic phase (elastic at both r b=  and r a= ) 431 

By simplifying Eq. (47), 
r

U  in the elastic region can be rewritten as: 432 

02 d

1 1 exp( ) 1a
r

G kk
U q

k k





 


 = − +
+ + − −   (48) 433 

in which 434 

 
2

1

1 exp( )d

exp( ) 1

i

i i

 




=

−
=

−    (49) 435 

At a given instant, a  can be calculated from Eqs. (6) and (10) as: 436 

( ) ( )1/ 1
1

0 0( 1) ln
k

k

a k a T a
++ = − + +  

  (50) 437 

(b) Elastic-plastic phase (elastic at r b=  and plastic at r a= ) 438 
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The current and initial radii of the elastic-plastic boundary were given in Eqs. (23a,b). 439 

r
U  within the inside plastic region (i.e. a r c  ) can be expressed as: 440 

( )
1

a a partialr r a

k
U U p p q q J

k=
    =  − − − − − +

  (51) 441 

in which 442 

d ( )d

exp( ) 1 exp( ) 1a a

p

partial
p

q qL p p
J






 





 
= =

− − − −    (52) 443 

The mean effective stress ap  can be back-calculated by equalling Eqs. (27) and (50), 444 

and the plastic shear stress aq  is then known from the yield function. As the internal radial 445 

pressure is kept constant, 
r a

U
=

  equals: 446 

 0 / ( 1)a ar a
U p p kq k

=
  = − + +   (53) 447 

The excess pore pressure at the elastic-plastic boundary (
r c

U
=

 ) can then be computed 448 

by inputting 0p p =  and 
epq q=  into Eq. (51). Substituting the above values into Eq. 449 

(47), 
r

U  within the outside elastic region is obtained as: 450 

0
0

2 d
(2 )

1 1 exp( ) 1c
epr r c

kGk
U U G q

k k





 
=

 =  − − +
+ + − −   (54) 451 

(c) Elastic-critical-state phase (elastic at r b=  and critical state at r a= ) 452 

At this phase, 
r

U  in the inside critical state region (i.e. csa r r  ) can be obtained 453 

as: 454 

exp( ) 1
ln

1 exp( ) 1

cs a

r r a

kq
U U

k


=

 −
 =  +  + − 

  (55) 455 

With Eq. (55), the excess pore pressure at csr r= (i.e. 
csr r

U
=

 ) can be determined with 456 

inputs of csp  and csq . Taking the stress conditions at csr r=  as the initial values, 
r

U  457 

in the outside two regions can be calculated taking the above procedure for the analysis 458 

of the elastic-plastic phase. 459 

(d) Fully plastic phase (plastic at both r b=  and r a= ) 460 

In this phase, Eq. (47) can be simplified to be: 461 
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( )
1

a a fullr r a

k
U U p p q q J

k=
    =  − − − − − +

  (56) 462 

in which  463 

d ( )d

exp( ) 1 exp( ) 1a a

p

full
p

q qL p p
J






 





 
= =

− − − −    (57) 464 

Stresses at r a=  can be obtained with the same method that was just introduced above. 465 

(e) Plastic-critical-state phase (plastic at r b=  and critical state at r a= ) 466 

At this phase, 
r

U  within the inside critical state region can be computed using Eq. 467 

(55); 
r

U  within the outside plastic region can be determined from Eq. (56) with initial 468 

values of stresses conditions at csr r=  instead of those at r a= . 469 

(f) Fully critical-state phase 470 

When the entire soil enters the critical state, Eq. (47) can be simplified as: 471 

exp( ) 1
ln

1 exp( ) 1

cs cs a

r r a

kq
U U

k


=

 −
 =  +  + − 

  (58) 472 

where  0 / ( 1)
cs

cs csr a
U p p kq k

=
  = − + + . 473 

4 Solution validation and parametric analysis 474 

This section presents some selected results of cavity expansion and contraction curves 475 

under different loading/unloading programs. The following results were calculated with 476 

the critical state parameters relevant to London Clay ( 2.759Γ = , 0.161 = , 0.062 = , 477 

o22.75cs =  [22]), v =2.0 and  =0.3. All the results are normalised by the undrained 478 

shear strength us , which can be obtained with 2cs uq s=  as: 479 

( )*

0 00.5 /us Mp R r


=   (59) 480 

4.1 Cavity response under internal loading 481 

Solutions for cavity expansion in an infinite soil mass under internal loading have been 482 

developed by Collins and Yu [22] and Mo and Yu [40] for the (original and modified) 483 

Cam-Clay and CASM models, respectively. While taking the surrounding soil as infinite 484 

(i.e. setting 0 0/ 0a b  ), the present solutions can reduce exactly to their solutions. 485 
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Taking the solution for the modified Cam-Clay model as an example, selected results for 486 

clay samples with different values of 0R  and b0/a0 are compared in Figs. 3-5 to show their 487 

effects to the cavity expansion response and associated stress distributions. 488 

Fig. 3 shows that the present solution gave virtually the same results as Collins and Yu 489 

[22] while considering an infinite soil mass. For a finite soil mass under internal loading, 490 

the ratio of b0/a0 may greatly influence the cavity pressure-expansion response. For 491 

example, with an expansion level up to a/a0=4, three typical pressure-expansion 492 

responses are shown in Fig. 3, including: (a) In an infinite soil mass, a limit cavity 493 

pressure is reached (typically at around a/a0=2), and this value remains almost constant 494 

during afterwards expansions. (b) For a cavity embedded in an intermediate-thick soil 495 

mass, a maximum cavity pressure close to the aforementioned limit pressure is reached 496 

upon loading. However, the cavity pressure drops with afterwards expansions when the 497 

effect of the constant stresses at the outer boundary prevails. (c) For a thin hollow cylinder 498 

or spherical shell, the maximum cavity pressure that can be reached is much smaller than 499 

the limit pressure, and the cavity pressure drops after a local peak when the outside 500 

boundary effect is activated and eventually gets close to the outside radial confining 501 

pressure at sufficiently large deformations. Overall, the maximum cavity pressure that the 502 

surrounding soil can sustain may decrease significantly with a decreasing value of b0/a0. 503 

A limit value of b0/a0 exists, beyond which the cavity expansion response immunes from 504 

the outer boundary effect. The limit ratio of b0/a0 decreases with increases of the over-505 

consolidation ratio, and the limit ratio for a spherical cavity is generally smaller than that 506 

for a cylindrical cavity. 507 

The observed reduction in the total cavity pressure during expansion is further 508 

explained by plotting results of stress distributions in the soil (Figs. 4 and 5) and stress 509 

paths of soil at the inner wall (Fig. 6) for typical values of b0/a0 and the over-consolidation 510 

ratio. The results were calculated with expansions up to a/a0=4. Note the peak and 511 

ultimate points in Fig. 6(c) and 6(d) correspond to the points at which the peak and 512 

ultimate values of the internal cavity pressure were reached in Fig. 3, respectively. For 513 

the cylindrical case, increments of the out-of-plane stress were calculated using 514 

0( )z rv     =  +   according to the plane strain assumption [72]. It was shown that the 515 

outer boundary effect may alter the total stress path of a soil particle but applies no 516 

influence on the effective stress path, which is consistent with that has been observed by 517 
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Juran and Mahmoodzadegan [35] in undrained TWC tests. At a given deformation level, 518 

Figs. 4-6 show that the excess pore pressures generated throughout the hollow cylinder 519 

or spherical shell are typically smaller than that generated at the same radii in the 520 

corresponding case of an infinite soil mass when the outer boundary effect applies, and 521 

the reductions caused become larger for smaller values of b0/a0. This explains the 522 

specimen radius ratio (i.e. b0/a0) dependent behaviour that was observed in the cavity 523 

expansion curves of Fig. 3. Besides, the excess pore pressure generated at the inner cavity 524 

wall remains positive upon loading in normally consolidated soils, whereas it may 525 

become negative in heavily consolidated soils when the value of b0/a0 is sufficiently 526 

small. This is consistent with the experimental observations of Silvestri et al. [58] in 527 

laboratory pressuremeter tests with TWCs of undrained clay. 528 

Fig. 6 also shows that, once the soil element enters the plastic state, the mean effective 529 

stress reduces gradually before resting on the CSL for soft clays (i.e. *

0R r ), and, in 530 

contrast, it increases with expansions for heavily overconsolidated clays (i.e. *

0R r ) 531 

until reaches the critical state value. Although the effective stress path varies with the soil 532 

model or the values of n  and *r  used (e.g. Fig. 2) [22,40], it was found that the above 533 

conclusions about the effects of the b0/a0 value and the over-consolidation ratio to the 534 

cavity expansion response still validate for other models in Table 1. Therefore, results for 535 

other models are not presented here for brevity. 536 

4.2 Cavity closure under external loading 537 

In this subsection, the cavity closure response under external loading is discussed based 538 

on the results calculated using the solution for the CASM model (setting n =2 and *r =2) 539 

with different values of the ratio of b0/a0 and the over-consolidation ratio. For illustration, 540 

stresses at both the inner and outer boundaries of a hollow cylinder or spherical shell are 541 

presented in Figs. 7-10, plotted against the volumetric strain of the inner cavity 542 

1 1

0

1

00( / ) ( ) /k k k

r a
V a aV a + + +

=
 = − . 543 

The soil mass moves inwards with increasing external pressure, while keeping the 544 

internal cavity pressure constant (Figs. 7-10). Initially, the total external pressure rises 545 

rapidly with cavity contractions; then the speed of the increase slows down, followed by 546 

a sharp increase when the inner cavity becomes very small or almost filled (for example, 547 

with 
0( / )

r a
V V

=
  larger than 0.8 for a cylindrical cavity and 0.9 for a spherical cavity). 548 
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The external pressure required for compressing the soil to contract may decrease 549 

significantly with a decreasing value of b0/a0 when it is smaller than a limit value, and 550 

this disparity slightly varies with the deformation level. Similar to that observed in the 551 

previous cavity expansion analysis, the limit ratio of b0/a0, beyond which the boundary 552 

effect to the cavity closure response become negligible, is also closely related to the stress 553 

history and cavity shape in this loading program. The limit value of b0/a0 decreases with 554 

increases of the over-consolidation ratio and is generally smaller for a spherical shell than 555 

a hollow cylinder. For example, it is approximately 20 (Fig. 7) and 10 (Fig. 8) for a hollow 556 

cylinder and spherical shell of normally consolidated soil (i.e. 0R =1.001), respectively, 557 

and the corresponding values while 0R =4 are 10 (Fig. 9) and 5 (Fig. 10), respectively. 558 

The effective stress state of soil is mainly dependent on the over-consolidation ratio 559 

and local deformation. Once the soil element enters the plastic state, the mean effective 560 

stress reduces gradually before resting on the CSL for soft clay, and, in contrast, it 561 

increases gradually to the critical state value for heavily overconsolidated clay (Figs. 7-562 

10). With the same level of cavity contraction, the compatibility conditions of Eqs. (6) 563 

and (11) describe that the shear strain at the outer boundary becomes smaller for a thicker 564 

soil sample, which results in the observed difference in the effective stresses at r b=  in 565 

Figs. 7-10. For example, the soil at r b=  may always remain elastic in a sufficiently thick 566 

soil sample, whereas it yields plastically or enters the critical state easily while the 567 

thickness of the surrounding soil is very thin. 568 

As the soil goes through the same effective stress path and the internal cavity pressure 569 

is kept constant in the external loading program, the stress path of soil particles at the 570 

inner wall of the cavity for different values of b0/a0 overlap in Figs. 7-10 (i.e. blue lines). 571 

Hence, at the same level of cavity contraction, the initial boundary values at r a=  for the 572 

integration of the excess pore pressure remain unchanged for different values of b0/a0. 573 

However, the difference in the effective stresses between at r a=  and r b=  becomes 574 

greater for a larger value of b0/a0. As a result, greater excess pore pressure will be 575 

generated at r b=  for a thicker soil cylinder or spherical shell according to Eq. (47), 576 

which leads to the increase of the total external pressure with the value of b0/a0 in Figs.7-577 

10. Although slight decreases may occur in a very thin cylinder or spherical shell of stiff 578 

clays (e.g. Figs. 9d and 10d), during contractions the excess pore pressure at r b=  579 

changes in a very similar way as the external cavity pressure. 580 
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4.3 Cavity contraction under internal unloading 581 

For the prediction of soil behaviour around shallow tunnels, undrained solutions for a 582 

cavity in a finite soil under the internal unloading program were derived by Zhuang et al. 583 

[75], adopting the original and modified Cam-Clay models. To investigate the unloading 584 

behaviour of TWCs, these solutions are also included in this paper together with the 585 

solutions for the internal loading program and new solutions for the CASM model under 586 

internal unloading. To briefly show the effect of the most relevant parameters (e.g. the 587 

over-consolidation ratio and b0/a0 value) to unloading response, some results obtained 588 

with the solution for the CASM model (taking *r =3 and n=2) are presented in this 589 

subsection. Detailed parametric studies into this problem with the Cam-Clay models refer 590 

to Zhuang et al. [75]. 591 

Considering the surrounding soil as infinite (i.e. setting 0 0/ 0a b  ), the present 592 

unloading solution for the CASM model reduces to the solution of Mo and Yu [39]. 593 

Therefore, they produced identical results in this special case (Fig. 11). From the 594 

comparison shown in Fig. 11, it can be concluded that: (a) The stability of the surrounding 595 

soil (e.g. evaluated by 0( ) /in up p s− ) [10]) may drop significantly with smaller values of 596 

b0/a0, and a spherical shell of soil has higher stability than a hollow cylinder, keeping 597 

other parameters the same. (b) A limit ratio of b0/a0 exists, beyond which the boundary 598 

effect is negligible. The limit radius ratio for a spherical shell of soil is smaller than that 599 

for a hollow cylinder, and it decreases slightly with the over-consolidation ratio. (c) The 600 

degree of unloading in pressure (i.e. 0 0( ) /inp p p− ) that the soil can sustain increases 601 

with the over-consolidation ratio (i.e. the cavity stability can be improved as R0 (or OCR) 602 

increased). This is consistent with the experimental observations of wellbore instability 603 

in undrained clays that were reported by Abdulhadi et al. [2]. 604 

5 Prediction of soil behaviour in TWC tests 605 

To demonstrate the relevance of the derived solutions for modelling soil behaviour in 606 

TWC tests, comparisons between predicted and measured results of cavity expansion and 607 

contraction curves under each loading/unloading program are presented in this section. 608 

5.1 Prediction of pressuremeter curves in TWC tests 609 

Cavity expansion tests in a triaxial cylinder cell or calibration chamber have been widely 610 

used to stimulate self-boring pressuremeter tests, and TWC apparatuses with a small 611 
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outer-to-inner diameter ratio (i.e. b0/a0) of 2 to 20 were often used in the laboratory 612 

[1,6,26,33,34,58]. Fig. 3 showed that the undrained cavity expansion response may be 613 

greatly influenced by the outer constant-stress boundary while b0/a0<20. This has also 614 

been reported by Pyrah and Anderson [49] and Juran and Mahmoodzadegan [35], among 615 

others. In this subsection, a comparison between predicted and observed expansion curves 616 

for TWC tests reported by Frikha and Bouassida [26] is presented to validate the ability 617 

of the derived solutions on capturing the outer boundary effect (or b0/a0 effect) in the 618 

interpretation of laboratory pressuremeter tests. 619 

A hollow cylinder cell of Di=20mm, Do=100mm and Ht/Do=3 was used in the 620 

undrained expansion tests of Frikha and Bouassida [26]. Keeping the outer confining 621 

pressure constant, the hollow cylinder specimens were loaded by increasing the internal 622 

cavity pressure. This conforms to the defined internal loading program. Therefore, the 623 

TWC test is simulated as an undrained cylindrical cavity expansion process based on the 624 

derived solutions for the internal loading analysis. The CASM model is used to describe 625 

the stress-strain behaviour of the normally consolidated Speswhite kaolin that used in the 626 

tests. With reference to the soil parameters that were reported by Atkinson et al. [7] and 627 

Frikha and Bouassida [26], model parameters of CASM are calibrated by simulating the 628 

undrained triaxial compression tests that were conducted with the same soil as shown in 629 

Fig. 12. It gives: 3.14Γ = , 0.136 = , 0.025 = , o

tc 22.5 = , 0.3 = , 2n = , and 630 

* 1.7 2.0r = . 631 

To account for the shear mode effect, tc1.2cs =  is taken in the cylindrical cavity 632 

expansion analysis [13]. For comparison, results without considering the shear mode 633 

effect (i.e. tccs = ) or the boundary effect (i.e. setting 0 0/b a   , corresponding to the 634 

infinite solutions) were also calculated. Predicted and observed expansion curves are 635 

compared by plotting the net total cavity pressures in 0( )p p−  against the cavity 636 

volumetric strain 
0( / )

r a
V V

=
  in Fig. 13. From Fig. 13, it can be concluded that the 637 

present finite solution can accurately predict the pressuremeter curves of undrained TWC 638 

tests with due consideration of the boundary effect and the shear mode effect. Without 639 

considering the finite thickness of the TWCs of soil, the infinite solution significantly 640 

over-predicts the cavity pressure, and the over-prediction becomes more serious at larger 641 

cavity expansions. On the contrary, the required expansion pressure is under-estimated 642 

when the shear mode effect is neglected. 643 
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By plotting pressuremeter results in terms of cavity pressure against the logarithm of 644 

the volumetric strain, the plastic portion is almost a straight line (e.g. in the range of cavity 645 

strains between 5 and 15%) for tests performed in large containers or ‘semi-infinite’ field 646 

conditions, and the slope is often assumed to be equal to the undrained shear strength of 647 

the soil [21,28,38]. However, Fig. 14 shows that this method is not always suitable for 648 

the interpretation of laboratory pressuremeter tests in TWC apparatuses. An obvious 649 

reduction in strength is observed due to the boundary effect while 0 0/b a  of the soil 650 

specimen is smaller than 20. Yu [70] gave a comprehensive review of various sources of 651 

inaccuracy that may exist in this simplified interpretation method, including effects of 652 

pressuremeter geometry, water drainage conditions, strain rate and disturbance during 653 

installation. The present study further demonstrates that attention should also be paid to 654 

the outer boundary effect while small-sized hollow cylinder cells are used in laboratory 655 

pressuremeter tests. 656 

5.2 Contraction response under internal unloading and external loading 657 

A series of TWC tests were performed by Abdulhadi [1] to investigate the wellbore 658 

instability problem in soils under either internal unloading (e.g. TWC1 and TWC3) or 659 

external loading (e.g. TWC2). Tests TWC1, TWC2 and TWC3 were chosen for the 660 

comparison here as they were performed in fully saturated, uniform, isotropically 661 

consolidated hollow cylinder specimens. The inner and outer diameters of the hollow 662 

cylinder specimen were 25mm and 76mm, respectively. The specimen height was 663 

152mm, and it has been verified that this height to outer diameter ratio (Ht/Do=2) 664 

produced a minimal impact on the borehole response [3], which fulfils the plane strain 665 

assumption. Reconstituted Boston blue clay (RBBC) was used in the tests. To determine 666 

the soil parameters in CASM, the triaxial compression test on isotropically consolidated 667 

RBBC that reported by Ladd [37] is simulated as shown in Fig. 15. It gives: 2.671Γ = , 668 

0.184 = , 0.01 = , 0.28 = , o

tc 33.4 = , 1.5n = , and 
* 2.1r = . The soil parameters 669 

were determined by cross-referencing to the oedometric test data reported by Abdulhadi 670 

[1] and those summarised by Akl and Whittle [4]. These tests are simulated as a 671 

cylindrical cavity contraction process using the derived solutions. The same set of model 672 

parameters were used in the model predictions, and R0=1.001 was taken as the soil 673 

specimens were normally consolidated. 674 
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Predicted and measured cavity contraction curves for tests performed under internal 675 

unloading and external loading are compared in Figs. 16 and 17, respectively. In tests 676 

TWC1 and TWC3, the soil cylinder contracts due to the internal unloading (Fig. 16). 677 

Instead, the specimen deforms inwards driven by the external compression in test TWC2 678 

(Fig. 17). Compared to the experimental data, the theoretical solutions tend to 679 

underestimate soil stiffness during the initial contractions in both cases. A comparison 680 

between the idealised cavity contraction models and the experimental observations 681 

indicates that this discrepancy may be attributed to the following aspects. Firstly, it was 682 

observed that the pore pressures were not fully equilibrated across the width of the clay 683 

specimen with a loading or unloading rate of 10%/hour (approximately 80-90% 684 

equilibrated [2]). In other words, the applied pressures at the boundaries cannot transfer 685 

through the whole soil specimen immediately. Secondly, the predicted effective stress 686 

paths within soil slightly deviate from that occurred in the tests. Although RBBC has been 687 

used at MIT (Massachusetts Institute of Technology) for over 50 years, the raw Boston 688 

clay, the re-sedimentation procedure and consolidation pressures during sample 689 

preparations in the triaxial compression tests of Ladd [37] and the TWC tests of 690 

Abdulhadi [1] were not exactly the same, which may lead to some deviations in the stress-691 

strain behaviour. Moreover, the inherent boundary effect caused during sample 692 

preparation and the rate dependence in soil behaviour, which are ignored in the present 693 

model, may also result in differences between physical tests and theoretical models more 694 

or less [2]. It seems that the overall influences of the above factors produced relatively 695 

greater influences on the initial contraction response as the predicted and measured results 696 

are in close agreement at relatively large deformations (e.g. the steady contraction stage). 697 

Nevertheless, the comparisons in Figs. 16 and 17 indicate that, with due consideration of 698 

the shear mode effect, the predicted cavity contraction curves under either internal 699 

unloading or external loading are basically consistent with those measured in the tests, in 700 

particular, at the steady contraction stage (or the most vulnerable stage) which is of great 701 

concern for the borehole instability analysis. If the boundary effect is ignored (e.g. in the 702 

infinite solution), the soil stability under internal unloading could be significantly over-703 

predicted (Fig. 16). 704 

Tests TWC1 and TWC3 were performed with the same initial confining pressures. It 705 

is interesting to note these two tests show similar soil stability results if evaluated in terms 706 

of out in( ) / up p s− . However, the total stress paths or excess pore pressures are essentially 707 
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different in these two cases as also highlighted by Abdulhadi [1]. In addition, the results 708 

in Figs. 16 and 17 indicate that the back-calculated critical state friction angle cs  from 709 

the test under internal unloading (e.g. TWC1) is slightly smaller than that based on the 710 

test under external loading (e.g. TWC1). This minor difference might be caused by the 711 

loading path effect, but this needs to be justified with more experimental evidence. 712 

It should be pointed out that, in previous TWC tests, the pore pressure is mostly 713 

measured at the axial ends and only assumed average values across the width of the 714 

specimen are available. Therefore, only the total stresses are compared in the above cases. 715 

As a consequence, possible influences of local consolidation and rate-dependent 716 

redistribution of the pore pressure cannot be evaluated from these experimental results. 717 

These effects might be significant, in particular, for tests with relatively thick soil 718 

samples, and direct detection of them could be very useful for the investigation on 719 

relevant soil properties (e.g. hydraulic properties). Therefore, it is believed that TWC test 720 

apparatus equipped with more advanced imaging techniques such as X-ray Computed 721 

Tomography [36,41,59] can offer additional insight into the soil behaviour involved due 722 

to its ability to probe the 3D in situ soil porous architecture at high resolutions (i.e. 1 µm). 723 

6 | Conclusions 724 

We have presented a general solution procedure for undrained loading and unloading 725 

analyses of both cylindrical and spherical cavities embedded in soils with a finite radial 726 

extent, which is applicable to many two-invariant critical state soil models. Three stress-727 

controlled loading programs (internal loading, internal unloading and external loading) 728 

that are commonly used in TWC tests are considered. Following the proposed procedure, 729 

a set of large strain analytical/semi-analytical cavity expansion and contraction solutions 730 

are derived for several critical state soil models, which can provide valuable benchmark 731 

for verifying various numerical programs. The derived solutions are used to investigate 732 

the boundary effect (or specimen size effect) to the cavity expansion and contraction 733 

responses. It is shown that a limit value of b0/a0 exists in each loading/unloading program, 734 

below which the boundary effect could lead to significant reductions in the degree of 735 

loading or unloading that the surrounding soil can sustain. Although the limit value of 736 

b0/a0 may vary with the over-consolidation ratio and the cavity deformation level, it was 737 

found that, in general, 0 0/ 20b a   is a minimum practical requirement to remove the 738 
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boundary effect in common TWC tests under undrained conditions, and this value is much 739 

smaller for a spherical shell of soil (approximately 0 0/ 10b a  ).  740 

Using the published results of several TWC tests under different stress-controlled 741 

loading/unloading programs in the literature, comparisons between predicted and 742 

measured cavity expansion and contraction curves are made. Overall, the theoretical 743 

predictions show satisfactory agreement with the experimental data. The results of these 744 

comparisons suggest that the proposed cylindrical solutions are able to capture the 745 

boundary effect that is commonly observed in undrained TWC tests under the considered 746 

three loading/unloading programs. This is essential for the interpretation of laboratory 747 

TWC tests. Inversely, the finite cavity expansion and contraction solutions may be 748 

calibrated or validated with relevant TWC tests which require less energy, time and space 749 

than site tests. Then setting 0 0/b a   , the calibrated solutions can be used to simulate 750 

field pressuremeter tests and investigate the in-situ wellbore instability problem as the 751 

infinite cavity expansion or contraction solutions often did [14,18,71]. 752 
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Figure captions 955 

Fig.1. Schematic of a thick-walled cylinder. 956 

Fig.2. Example yield surfaces of Cam-Clay models and CASM. 957 

Fig.3. Total pressure and excess pore pressure at the inner cavity of modified Cam clay: 958 

(a) cylindrical solution with R0=1.001; (b) spherical solution with R0=1.001; (c) 959 

cylindrical solution with R0=4; (d) spherical solution with R0=4; (e) cylindrical solution 960 

with R0=16; (f) spherical solution with R0=16. 961 

Fig.4. Stress distribution in modified Cam clay with R0=1.001: (a) cylindrical model in 962 

an infinite soil mass; (b) spherical model in an infinite soil mass; (c) cylindrical model 963 

with small values of b0/a0; (d) spherical model with small values of b0/a0. 964 

Fig.5. Stress distribution in modified Cam clay with R0=16: (a) cylindrical model in an 965 

infinite soil mass; (b) spherical model in an infinite soil mass; (c) cylindrical model with 966 

small values of b0/a0; (d) spherical model with small values of b0/a0. 967 

Fig.6. Typical stress paths in modified Cam clay: (a) cylindrical model with b0/a0=1000; 968 

(b) spherical model with b0/a0=1000; (c) cylindrical model with b0/a0=2; (d) spherical 969 

model with b0/a0=2. 970 

Fig.7. A thick-walled cylinder of normally consolidated London clay (R0=1.001) under 971 

external loading. 972 

Fig.8. A spherical shell of normally consolidated London clay (R0=1.001) under 973 

external loading. 974 

Fig.9. A thick-walled cylinder cavity of stiff London clay (R0=4) under external loading. 975 

Fig.10. A spherical shell of stiff London clay (R0=4) under external loading. 976 

Fig.11. Cavity contraction curves under internal unloading: (a) and (c) cylindrical 977 

model; (b) and (d) spherical model. 978 

Fig.12. Model prediction for undrained triaxial compression tests with soft Speswhite 979 

kaolin. 980 

Fig.13. Predicted and measured cavity expansion curves in a thick-walled cylinder of 981 

kaolin clay. 982 

Fig.14. Pressuremeter curves with different values of b0/a0 (Speswhite kaolin). 983 

Fig.15. Model prediction for an undrained triaxial compression test on isotropically 984 

consolidated RBBC. 985 
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Fig.16. Predicted and measured cavity contraction curves in thick-walled cylinders of 986 

RBBC under internal unloading. 987 

Fig.17. Predicted and measured cavity contraction curves in a thick-walled cylinder of 988 

RBBC under external loading.  989 
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Notation 990 

ap , inp , outp  axial stress, internal and external radial pressures 991 

  1 =  for loading and 1 = −  for unloading 992 

k 1k =  for a cylindrical cavity and 2k =  for a spherical cavity 993 

r, θ, z coordinates of the cylindrical coordinate system 994 

r, θ, φ coordinates of the spherical coordinate system 995 

0r  initial value of the radial co-ordinate r 996 

p , q  mean effective stress and deviatoric stress 997 

csp , csq  mean effective stress and deviatoric stress at the critical state 998 

p  mean total pressure 999 

0p , 0p  initial values of p  and p  1000 

U , 0U , U  total, initial ambient, excess pore pressures 1001 

r a
U

=
 , 

r b
U

=
  excess pore pressures at r a=  and at r b=  1002 

r a
U

=
 , 

r b
U

=
  excess pore pressures at r c=  and at csr r=  1003 

r  ,    effective radial and circumferential stresses 1004 

r ,   total radial and circumferential stresses 1005 

r ,   radial and circumferential strains 1006 

 ,   volumetric and shear strains 1007 

0a , a ; 0b , b ; 0c , c  initial and current radii of the inner cavity wall, the outer cavity 1008 

wall, the elastic-plastic boundary 1009 

csr  radius of the plastic-critical state boundary 1010 

ap , aq  mean effective and shear stresses at r a=   1011 

bp , bq  mean effective and shear stresses at r b=  1012 

a , b  shear strains at r a=  and at r b=  1013 

ep , 
epq  shear strain and shear stress at the state just enters plastic yielding 1014 

K , G  instantaneous bulk and shear moduli with initial values of 0K  and 1015 

0G  1016 

M  the slope of the CSL in the p - q  space 1017 

  slope of the normally compression line 1018 

Γ  the value of v  on the CSL at 1kPap =  1019 
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v ,   specific volume and Poisson’s ratio of soil 1020 

  slope of the swelling line 1021 

  plastic volumetric strain ratio, equals ( )  −  1022 

0R  isotropic over-consolidation ratio, defines as 
0 0/yp p   1023 

n, *r  stress-state coefficient and spacing ratio in CASM 1024 

yp , 
0yp  preconsolidation pressure and its initial value 1025 

us  undrained shear strength of soil 1026 

 , 
ep   stress ratio and its value at the elastic-plastic boundary 1027 

cs  critical state friction angle, Hvorslev friction angle 1028 

tc  critical state friction angle under triaxial compression and plane 1029 

strain 1030 

0/V V  cavity volumetric strain 1031 

  1032 
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 1033 

Fig 1 Schematic of a thick-walled cylinder 1034 

 1035 

 1036 

 1037 

Fig 2 Example yield surfaces of Cam-clay models and CASM.   1038 
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Fig. 3. Total pressure and excess pore pressure at the inner cavity of modified Cam clay: 1042 

(a) cylindrical solution with R0=1.001; (b) spherical solution with R0=1.001; (c) 1043 

cylindrical solution with R0=4; (d) spherical solution with R0=4; (e) cylindrical solution 1044 

with R0=16; (f) spherical solution with R0=16. 1045 

  1046 
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 1047 

 1048 

  1049 

 1050 

  1051 

Fig. 4. Stress distribution in modified Cam clay with R0=1.001: (a) cylindrical model in 1052 

an infinite soil mass; (b) spherical model in an infinite soil mass; (c) cylindrical model 1053 

with small values of b0/a0; (d) spherical model with small values of b0/a0. 1054 
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  1056 

 1057 

  1058 

Fig. 5. Stress distribution in modified Cam clay with R0=16: (a) cylindrical model in an 1059 

infinite soil mass; (b) spherical model in an infinite soil mass; (c) cylindrical model with 1060 

small values of b0/a0; (d) spherical model with small values of b0/a0. 1061 
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 1064 

 1065 

 1066 

Fig. 6. Typical stress paths in modified Cam clay: (a) cylindrical model with 1067 

b0/a0=1000; (b) spherical model with b0/a0=1000; (c) cylindrical model with b0/a0=2; 1068 

(d) spherical model with b0/a0=2. 1069 
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 1071 

 1072 

Fig 7. A thick-walled cylinder of normally consolidated London clay (R0=1.001) under 1073 

external loading. 1074 
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 1075 

Fig 8. A spherical shell of normally consolidated London clay (R0=1.001) under 1076 

external loading. 1077 
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 1079 

Fig 9. A thick-walled cylinder cavity of stiff London clay (R0=4) under external loading. 1080 
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Fig 10. A spherical shell of stiff London clay (R0=4) under external loading. 1082 
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Fig 11. Cavity contraction curves under internal unloading: (a) and (c) cylindrical 1085 

model; (b) and (d) spherical model. 1086 
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 1088 

Fig 12. Model prediction for undrained triaxial compression tests with soft Speswhite 1089 

kaolin. 1090 

 1091 

 1092 

Fig 13. Predicted and measured cavity expansion curves in a thick-walled cylinder of 1093 

kaolin clay. 1094 
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 1099 
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 1102 

Fig 14. Pressuremeter curves with different values of b0/a0 (Speswhite kaolin): (a) 1103 

normally consolidated clay (R0=1.001); (b) heavily overconsolidated clay (R0=10). 1104 
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 1114 

Fig 15. Model prediction for an undrained triaxial compression test on isotropically 1115 

consolidated RBBC. 1116 
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 1125 

Fig 16. Predicted and measured cavity contraction curves in thick-walled cylinders of 1126 

RBBC under internal unloading. 1127 
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 1129 

Fig 17. Predicted and measured cavity contraction curves in a thick-walled cylinder of 1130 

RBBC under external loading. 1131 
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