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ABSTRACT User interests modeling has been exploited as a critical component to improve the predictive

performance of recommender systems. However, with the absence of explicit information to model user

interests, most approaches to recommender systems exploit users activities (user generated contents or user

ratings) to inference the interest of users. In reality, the relationship among users also serves as a rich source

of information of shared interest. To this end, we propose a framework which avoids the sole dependence

of user activities to infer user interests and allows the exploitation of the direct relationship between users

to propagate user interests to improve system’s performance. In this paper, we advocate a novel modeling

framework. We construct a probabilistic user interests model and propose a user interests propagation

algorithm (UIP), which applies a factor graph based approach to estimate the distribution of the interests

of users. Moreover, we incorporate our UIP algorithm with conventional matrix factorization (MF) for

recommender systems. Experimental results demonstrate that our proposed approach outperforms previous

methods used for recommender systems.

INDEX TERMS Propagation, recommender system, sum-product algorithm, user interest modeling.

I. INTRODUCTION

social networks is now the most popular service platform

consumed by users and has become a crucial part of our life.

Consumers on these platforms are spoiled with choices. For

instance, Douban1 offers a huge selection of movies, books

and music for customer satisfaction. Sifting through all the

available products to isolate and recommend what is relevant

to a customer is the main highlight to ensure customer satis-

faction and loyalty in these networks. Thus, a user’s interest

is key to determine relevant products for users.

The vast amount of content on social networks such as

rating scores on items on Douban, arguably, has influence

when modeling the interest of a user [26]. As a simple

example, it can be argued that the interest of a user can be

determined by how frequent she rates movies of a particular

genre. This freely available content, provides a great oppor-

The associate editor coordinating the review of this manuscript and

approving it for publication was Ke Guan .
1https://www.douban.com/

tunity for the research community to model user interests,

which are the foundation of online advertising [24], [37],

personalized recommendation [7], [8], [25], [30], includ-

ing travel recommendations [28], [39]. Based on the intu-

ition that contents generated from users can be employed

when modeling user interests, some earlier works have been

proposed [22], [32]. These works simply extract keywords

from user contents to represent user interests. Besides that,

some studies have also modeled user interests at a semantic

level, among of which some algorithms are based on matrix

factorization [20], [21], [34], others employ Latent Dirichlet

Allocation (LDA) topic model [16], [18], [33], while others

employ both LDA and matrix factorization [38].

While many of the applications mentioned above essen-

tially employ user contents to enhance the modeling of user

interests, they neglect the social relationship of users which

occur naturally on online social network platforms. It can

be argued that the topological structure of a social network

contain essential information which can be harnessed for user

interest inference. Consider the social network Twitter for an

108300 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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example, a user may have never posted pop music related

tweets, but considering the fact that she follows several pop

artists such as Madonna on Twitter, we can make the infer-

ence that she is actually interested in popmusic. This intuition

suggest that relationship between users in a network has an

influence on user interest, and we can infer user interests from

these relationships.

A common approach to incorporate social networks for

user interest modelling in recommender systems (RS) is via

the propagation of interest to a user from similar neighbors

of the user [1], [12], [21], [27], [36]. One key problem of

these methods is the prediction of user interest when there

are few neighbors of the user, or when there is sparsity of the

interests of the user. Thus, there is an element of uncertainty

as to how the available interests of a user best describe his

interest. Hence for the user interest modelling in RS, it is of

importance to explore statistical methods to make inference

on users interest.

In the present work, we interpret the user interest prediction

problem as a propagation problem and formulate a factorized

probability model expressed readily in the framework of a

factor graph [15]. Our proposed model has two key variables

which are used: observed interests and true interests. The

observed interests refers to the interests that are expressed in

social online networks by users via user generated contents,

and the true interests refers to the interests that can be inferred

from both the observed interests and the relationship between

users. Thus, we wish to predict the true interests of a user

by leveraging both user generated content and relationships

of the network. Accordingly, we propose a probabilistic user

interests model and develop a user interests propagation algo-

rithm (UIP), which utilizes a sum-product algorithm (a belief

propagation algorithm) that operates directly on the induced

factor graph of the social network [15], with the aim to

estimate the distribution of true interests for each user. The

algorithm is naturally designed to propagate the interests of

users along the relationships.

To demonstrate the effectiveness of UIP, we integrate UIP

with a basic matrix factorization (MF) algorithm to predict

unknown ratings of user interests as an RS task. Experimental

results on public datasets demonstrates that this modified

MF-based recommendation algorithm achieves better perfor-

mance than existing MF-based methods including, the basic

matrix factorization (MF), probabilistic matrix factorization

(PMF) [23], matrix factorization with social regularization

(MF-SR) [21], social matrix factorization (SocialMF) [12],

and NeuralMF [11].

II. RELATED WORKS

Accurately predicting the interest of users is crucial for rec-

ommender systems (RS). Early works focus on exploiting

natural language processing (NLP) tools to process the user

generated contents and then identify user interests, among

which are the first kind of algorithms which operate at the

term level [22], [32]. Specifically, [32] use TF-IDF to extract

keywords which are assumed to be informative to express a

user’s interest, while [22] extend theworks of [32] by employ-

ing an entity extraction algorithm and knowledge base to link

keywords to topics. On one hand, traditional NLP tools per-

form badly on short and noisy texts, such as tweets on Twitter.

On the other hand, term level interests can be very unique

to users and it is not easy to judge the similarity between

users by several keywords. Moreover, if one user does not

express their interests in the text content, their interest will

not be discovered at all. Several of these studies are based on

matrix factorization [34], where the ratingmatrix is factorized

into factors for users and items, allowing unknown ratings

to be predicted. Although the semantic level algorithms are

superior to term level algorithms, they only take account

of user generated contents, neglecting relationships between

users to improve system performance.

In recommender systems, some existing works focus on

using side information, such as the relationships in social net-

works, as an add-on to the existing user-generated contents to

enhance user interest (represented as latent features) predic-

tions. Among these works, SoRec [20] proposed a social reg-

ularization method which considers the constraints on social

relationships to model users features. RSTE [9] proposed

social trust ensembles in a factor analysis framework, which

linearly combines a basic MF model and a trust-based neigh-

borhood model to learn both user and item features jointly.

SocialMF [12] employs a trust propagation mechanism over

the neighbors of a user in a social network to model the

user’s interest. Reference [35] explore both category-specific

social trust circles and the social network to improve RS.

Reference [21] adds a social relationship regularization term

to a loss function of MF, based on the assumption that there is

a similarity between users interests and social relationships.

TrustMF [2] and RoRec [36] both consider the influence of

trusters and trustees in social networks for RS. Reference [27]

takes advantage of several factors in social circles such as

the interest of the user, relationships between users of sim-

ilar interest and the influence between users to model users

features. Other works which consider social networks for

RS include [3], [8].

Majority of these works are based on MF, and have shown

that MF-based models regularized by social relationships can

enhance user features for RS. However, it is worth noting

that these MF-based models learn both user and item features

jointly, which may result to the risk of overgeneralizing on

user features. Moreover, these methods [2], [12], [21], [35]

model two-way linear interactions between user and item

features for RS which may not capture the complex interac-

tions between users and items. To mitigate the latter problem,

recent methods have considered to use neural networks to

learn higher-order interactions between user and item fea-

tures [10], [11], [19], [31]. For example, NeuralMF [11],

leverages a multi-layer perceptron to generalizeMF, allowing

it to learn higher-order two-way interactions between user

and item features. Based on this work, other models have

been proposed for cross-domain recommendations [19], [31],

while [10] explore the viability of convolutional neural

VOLUME 8, 2020 108301
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networks to improve the performance of NeuralMF. Some

recent works have also taken advantage of social relationships

by imposing a graph neural network on the social graph

for RS [4], [29]. However, it is worth noting that applying

non-linear models to large and sparse datasets may face scal-

ability issues. Moreover, the sparsity of user-item interactions

may be as a result of several factors, e.g. users may either rate

items they like or dislike, whichmay result in weak parameter

estimation of these models.

In this paper, we follow majority of recent works which

incorporate the social network to improve user interest mod-

eling [2], [12], [27]. Here, we cast the problem as an infer-

ence problem, and formulate user interest in a probabilistic

framework, where we use a declarative approach to solve

the problem. Here, we propagate interest from neighbors to

users by means of a sum-product algorithm imposed on an

induced factor graph of the social network, thereby model-

ing the true interests of users. Thus, we propose the user

interest propagation (UIP) algorithm for this purpose. We

apply this algorithm for recommender system, showing that

our approach can independently enhance the user features

modelled by anMF-based method, solving the generalization

issue of MF-based methods. Instead of leveraging param-

eter prone models such as NeuralMF [11], we consider to

integrate a basic MF with the UIP algorithm (MF-UIP) for

rating predictions in RS. Interestingly, we show that MF-UIP

outperforms NeuralMF. To the best of our knowledge, this is

the first study to approach the problem in this way.

This paper is an extension of our paper titled ‘‘User

interest propagation and its application in recommender

system’’ which appeared in IEEE ICTAI’17. In this extension,

we provide a detailed description of our model, showing how

messages are computed and propagated on the factor graph,

and also provide extensive experiments including interest

recovery experiments, sparsity experiments, and the impact

of parameters. We compare our model to recent proposed

methods for RS, showing the effectiveness of our approach.

III. USER INTERESTS MODEL AND INTERESTS

PROPAGATION ALGORITHM

We begin by introducing the probabilistic framework for the

user interests model, which integrates both user generated

contents and relationship between users in the social network.

Next, we present the interests propagation algorithm which

is based on the sum-product algorithm of an induced factor

graph.

A. PROBLEM DEFINITION

Given a social networkG = (N ,E), whereN andE are the set

of users and following relationships respectively. We denote

ui ∈ N as a user, and eij ∈ E as a following relationship that

connects ui to uj, whichmeans that user ui is a follower/truster

of uj in G.

One can employ existing algorithms such as LDA topic

model, or simply count the number of items of interest of a

user to extract an interest vector for the user. Here, we define

−→
µX i = [−→µX i(1),

−→
µX i(2), · · ·, −→

µX i(k)] as the k-dimensional

interest vector of ui. We model the observed interests of ui
as a random variable

−→
Xi following a k-dimensional normal

distribution, i.e.
−→
Xi ∼ N (−→µX i, σX

2
i ).

As mentioned in the introduction, the observed inter-

ests of user ui is solely based on the content generated by

ui, and neglects information between the connectivity of

users in the network. Intrinsically, a user might not express

all his interests through user generated contents, we there-

fore assume that each user ui has true interests expressed

implicitly in the observed interests of all users and the

connectivity between users in the social network. In this

paper, the true interests of ui is modeled as a random vari-

able
−→
Yi following a k-dimensional normal distribution, i.e.

−→
Yi ∼ N (−→µY i, σY

2
i ).

In fact, there is a mutual relationship between an observed

interest and the true interest of a user ui. To an extent, the true

interests is the intrinsic factor of the observed interests, and

the observed interests reflect the true interests of user ui.

We therefore formulate the observed interests of ui as the true

interests plus
−→
Wi, where

−→
Wi denotes a disturbance variable fol-

lowing a k-dimensional normal distribution with a zero mean.

Thus,
−→
Xi =

−→
Yi +

−→
Wi. Based on this assumption, we model the

conditional distribution of
−→
Yi when the observed interests is

known. This can be expressed as f (
−→
Yi |

−→
Xi ) ∼ N (−→µX i, σW

2
i ).

Here, we set the expectation of the disturbance to zero

because we assume that the observed interests and true

interests are similar, and there is no empirical relationship

between them.

We now focus on how the relationship between users come

into play in our framework. Taking account of the homo-

geneity of social networks [17], when a typical following

relationship which indicates that a user ui follows a user uj,

we expect the interests of ui to be close to the interests of uj.

For that reason, we can assume the disturbance of the true

interests of uj with a disturbance variable
−−→
Zi→j will result in

the true interests of ui. By respectively denoting
−→
Yi ,

−→
Yj as

the true interests of ui, uj, we can express this assumption as
−→
Yi =

−→
Yj +

−−→
Zi→j, where

−−→
Zi→j follows a k-dimensional normal

distribution with zero mean, i.e.
−−→
Zi→j ∼ N (

−→
0 , σ 2

Zi→j
). Based

on this assumption, the conditional distribution of
−→
Yi given

−→
Yj is given by f (

−→
Yi |

−→
Yj ) ∼ N (−→µY j, σ

2
Zi→j

).

In brief, we have defined the distribution of observed

interests and the true interests, how these variables are

related, and the influence between users. The model is sum-

marized as follows:











































−→
Xi ∼ N (−→µX i, σX

2
i )

−→
Yi ∼ N (−→µY i, σY

2
i )

−→
Wi ∼ N (

−→
0 , σW

2
i )

−−→
Zi→j ∼ N (

−→
0 , σ 2

Zi→j
)

−→
Xi =

−→
Yi +

−→
Wi

−→
Yi =

−→
Yj +

−−→
Zi→j

(1)
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Besides, we have two conditional distributions to be

estimated:
{

f (
−→
Yi |

−→
Xi ) ∼ N (−→µX i, σW

2
i )

f (
−→
Yi |

−→
Yj ) ∼ N (−→µY j, σ

2
Zi→j

)
(2)

In this framework, we derive the observed interests of a

user from the generated content, and capture the relationship

information between users with the equation
−→
Yi =

−→
Yj +

−−→
Zi→j. In summary, this modeling perspective takes account

of the user generated content and relationships between users,

leading to a better performance in user interest prediction.

B. USER INTERESTS PROPAGATION (UIP) ALGORITHM

1) SOCIAL NETWORK FACTOR GRAPH

We present a probabilistic formulation of the user interest

prediction problem as a conditional distribution of the true

interests of all users given the observed interests of all users,

along with the relationship between users.

f (
−→
Y1 , . . . ,

−→
Yn |

−→
X1, . . . ,

−→
Xn,E) (3)

For clarity of exposition, we can simplify the expres-

sion f (
−→
Y1 , . . . ,

−→
Yn |

−→
X1, . . . ,

−→
Xn,E) as f (Y |X ,E). We aim to

estimate the distribution of each
−→
Yi , which is the marginal

distribution fi(
−→
Yi |X ,E) of the global distribution f (Y |X ,E).

In reality, social networks are complex and large in scale,

this makes it difficult to directly calculate the marginal dis-

tribution from the global distribution. We therefore employ a

sum-product algorithm on an induced factor graph to tackle

this problem in an efficient way.

A factor graph is a bipartite graph representing the fac-

torization of a global probability function, which efficiently

enables message passing algorithms such as the sum-product

algorithm to estimate the marginal functions. Consider the

factorized function g(x1, . . . , xn) =
∏

fj(Xj) as an example,

whereXj is the independent variable set of fj, we can construct

a factor graph as follows:

• For each independent variable xi, create a variable

node xi.

• For each local function fj, create a factor node fj.

• For each pair of xi and fj, create an edge between them

if xi is in the independent variable set of fj.

Since the factor graph is a bipartite graph, edges exist only

between variable nodes and factor nodes. The sum-product

algorithm is imposed on the factor graph to pass messages

along edges, thus, messages are only passed from variable

nodes to factor nodes and vice versa. The messages are

computed as follows.

• Message from a variable node to a factor node:

µx→f (x) =
∏

h∈n(x)\{f }

µh→x(x) (4)

• Message from a factor node to a variable node:

µf→x(x) =
∑

∼x

(f (X )
∏

y∈n(f )\{x}

µy→f (y)) (5)

where n(v) is the set of neighbors of a given node v in the

factor graph, and X = n(f ) is the set of arguments of the

function f . Then the marginal function of xi is

gi(xi) =
∏

h∈n(xi)

µh→xi (xi) (6)

We refer the reader to the standard source [15] for further

background on factor graphs and the sum-product algorithm.

For our social network, we assume that the true interests of

users are conditionally independent of each other given their

observed interests and the edges. Therefore we factorize the

global distribution f (Y |X ,E) as

∏

1≤i≤n

f (
−→
Yi |

−→
Xi )

∏

eij∈E

f (
−→
Yi |

−→
Yj ), (7)

allowing the construction of a factor graph and enabling a

sum-product algorithm to estimate the marginal functions.

To this end, we can construct the factor graph of the social

network using the following steps:

• For each ui, create a variable node
−→
Xi to represent the

observed interests of ui.

• For each ui, create a variable node
−→
Yi to represent the

true interests of ui.

• For each ui, create a factor node f (
−→
Yi |

−→
Xi ) to represent

the conditional distribution of
−→
Yi given

−→
Xi . The corre-

sponding function is f (
−→
Yi |

−→
Xi ) ∼ N (−→µX i, σW

2
i ).

• For each following relationship from ui to uj, create a

factor node f (
−→
Yi |

−→
Yj ) to represent the conditional distri-

bution of
−→
Yi given

−→
Yj . The corresponding function is

f (
−→
Yi |

−→
Yj ) ∼ N (−→µY j, σ

2
Zi→j

).

• The factor node f (
−→
Yi |

−→
Xi ) is connected to the variable

nodes
−→
Xi and

−→
Yi .

• The factor node f (
−→
Yi |

−→
Yj ) is connected to the variable

nodes
−→
Yi and

−→
Yj .

We present in Fig. 1 a local structure of the factor graph for

a social network consisting of two users ui and uj. Recall that

the user ui is a follower/truster of uj.

FIGURE 1. A local structure of the factor graph for a social network.

In our model, the parameters σW
2
i and σ 2

Zi→j
are optional,

we set these parameters to
−→
I for simplification.
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2) MESSAGE PASSING ON THE SOCIAL NETWORK FACTOR

GRAPH

The factor graph of the social network has two types of factor

nodes, namely f (
−→
Yi |

−→
Xi ) and f (

−→
Yi |

−→
Yj ). The node f (

−→
Yi |

−→
Xi )

connects the observed interests vector
−→
Xi and the true inter-

ests vector
−→
Yi for user ui. The node f (

−→
Yi |

−→
Yj ) connects the

true interests
−→
Yi and

−→
Yj of ui and uj. Each edge in the factor

graph corresponds to two messages. Next, we compute the

messages propagated along the edges.

Messages Corresponding to f (
−→
Yi |

−→
Xi ): As shown in Fig. 2,

the function node f (
−→
Yi |

−→
Xi ) is related to four messages,

namely µ−→
Xi→f

, µ
f→

−→
Xi
, µ−→

Yi→f
and µ

f→
−→
Yi
. According to the

message passing rule of sum-product algorithm,

µ−→
Xi→f

= 1 (8)

µf→Yi =
∑

−→
Xi

f (
−→
Yi |

−→
Xi ) ∝ N (

−→
Xi ,

−→
I ) (9)

FIGURE 2. Messages corresponding to f ( EYi |
EXi ).

The messages µ
f→

−→
Xi

and µ−→
Yi→f

is irrelevant to the calcu-

lation of marginal functions of Y , so we just ignore them.

Messages Corresponding to f (
−→
Yi |

−→
Yj ): As shown in Fig. 3,

the function node f (
−→
Yi |

−→
Yj ) is related to four messages,

namely µ−→
Yi→f

, µ
f→

−→
Yi
, µ−→

Yj→f
and µ

f→
−→
Yj
, where

µ−→
Yi→f

=
∏

g∈n(
−→
Yi )\{f }

µ
g→

−→
Yi (x)

(10)

µ
f→

−→
Yi

=

∫

f (
−→
Yi |

−→
Yj )µ−→

Yj→f
d
−→
Yj (11)

FIGURE 3. Messages corresponding to f ( EYi |
EYj ).

Symmetrically, we have

µ−→
Yj→f

=
∏

g∈n(
−→
Yj )\{f }

µ
g→

−→
Yj (x)

(12)

µ
f→

−→
Yj

=

∫

f (
−→
Yi |

−→
Yj )µ−→

Yi→f
d
−→
Yi (13)

We introduce two equations that can be deduced using

advanced mathematics.

N (x,m1, σ
2
1 )N (x,m2, σ

2
2 ) ∝ N (x,m3, σ

2
3 ) (14)

in which

m3 =
σ 2
2m1 + σ 2

1m2

σ 2
1 + σ 2

2

,
1

σ 2
3

=
1

σ 2
1

+
1

σ 2
2

(15)

and
∫

N (x,m1, σ
2
1 )N (y, αx, σ 2

2 )dx ∝ N (y, αm1, ασ 2
1 + σ 2

2 )

(16)

According to (10), we know that µ−→
Yi→f

follows a normal

distribution. For the message µ
f→

−→
Yi
, we denote µ−→

Yj→f
as

N (
−→
Yi ,m, σ 2). Hence the message µ

f→
−→
Yi

can be expressed

as

µ
f→

−→
Yi

=

∫

N (
−→
Yi ,

−→
Yj ,

−→
I )N (

−→
Yi ,m, σ 2)d

−→
Yi ∝N (

−→
Yj ,m, σ 2+

−→
I ),

(17)

which also follows a normal distribution. This suggests that,

messages can be represented by the mean value and vari-

ance of the normal distribution, making the message passing

process efficient.

Flooding Algorithm for Message Passing: The existence

of circles in the social network makes the structure of factor

graphs complex. Nevertheless, we expect the message pass-

ing algorithm to traverse over such structures. To this end,

we need a strategy to pass messages efficiently in the factor

graph.

As introduced above, the two messages corresponding

to f (
−→
Yi |

−→
Xi ) are fixed. For the factor graph node f (

−→
Yi |

−→
Yj ),

we first initialize its messages with random values, and

update the messages until convergence or when the algorithm

reaches its pre-defined number of iterations. Basically, for

each iteration, we compute messages based on the previous

update and use this information to update all messages at the

same time. We can then use the updated messages to compute

the marginal functions of Y using (11). An iterative procedure

is proposed for UIP in Algorithm 1.

IV. EXPERIMENTS AND RESULT ANALYSIS

We perform experiments to evaluate the performance of our

user interest propagation (UIP) algorithm. To apply UIP in

recommender systems, we perform additional experiments by

combining our proposed UIP algorithm with the basic matrix

factorization (MF), andmake predictions on ratings. In partic-

ular, we show that our proposed method is robust in sparsity,

outperforming baseline methods. Experiments are performed

on benchmark datasets CiaoDVD [5], FilmTrust [6] and

Douban [21].

A. DATASETS

The benchamak datasets CiaoDVD, FilmTrust and Douban

are ideal for evaluation because it offers generated con-

tents of users and provides a network of users. We pre-

process to make the datasets applicable to our proposed
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Algorithm 1 User Interest Propagation (UIP) Algorithm

Require: Users observed interests X ∈ R
n×k , following

relationshipsE ∈ R
m×2, threshold for stopping criteria ǫ,

max number of iterations K .

Ensure: True interest matrix Y ∈ R
n×k

1: Initialize true interest by (2), i.e. Y old ∼ N (X , I )

2: Initialize the message matrix Mold ∈ R
m×8×k , where

Mold
ij ∈ R

8×k are messages corresponding to eij
3: for 1:K do

4: for each eij ∈ E do

5: Compute messages corresponding to f (
−→
Y old
i |

−→
X i)

using (8) and (9).

6: Compute messages corresponding to f (
−→
Y old
i |

−→
Y old
j )

using (10) - (13).

7: Update messages w.r.t eij and obtain M
new
ij ∈ R

8×k

8: end for

9: for each ui ∈ N do

10: Compute and update true interest
−→
Y new
i usingMnew

by (11).

11: end for

12: if ||Y new − Y old||2 < ǫ then

13: break

14: end if

15: Mold = Mnew

16: Y old = Y new

17: end for

18: Y = Y new

19: return Y

algorithm. We perform interest prediction experiments on the

CiaoDVD dataset since it is relatively larger than FilmTrust,

and computationally less expensive than Douban. Each item

in the CiaoDVD dataset belongs to one of 17 categories.

For this dataset, we count the number of movies of each

category rated by a user, and we take the 17-dimensional

normalized vector as the users observed interests. In all

three datasets, we limit ourselves to users with trust rela-

tionship with other users, and have ratings on not less than

5 items. The statistics of all datasets after preprocessing is

shown in Table 1. The datasets are available for download at

https://www.librec.net/datasets.html.

TABLE 1. Statistics of CiaoDVD, FilmTrust and Douban dataset.

B. INTERESTS PREDICTION EXPERIMENT

We seek to discover users true interests given their observed

interests and relationships within networks. In situations

where users have no records such as ratings in a recom-

mender system or texts in social networks, their interest

cannot be directly inferred. This is similar to the cold start

problem in recommender systems. Hence in this experiment,

we randomly select 10% of users in CiaoDVD and mask

their observed interests and set their observed interests to

( 1
17

, 1
17

, · · · , 1
17
) ∈ R

17 based on the 17 item categories of

CiaoDVD. We then run our UIP algorithm on the dataset and

try to infer the masked interests of the chosen users.

For a comparative analysis, we evaluate Neighbor

Average (NA) on the same dataset. NA models the interests

of ui by taking the average value of the interests of the users

he follows. NA is widely used in user profiling tasks such as

inferring a user’s age or sex in social networks. One obvious

drawback of NA is its inability to infer the interests of ui,

when ui does not follow any user. For NA, we also record

the proportion of users whose interests cannot be inferred

because they do not follow any one.

The evaluation metric we use is the Spearman’s correla-

tion coefficient between the masked observed interests and

the inferred interests. Spearman’s correlation coefficient is

a measure of rank correlation which indicates the mono-

tonic relationship between two variables. The correlation is

between −1 and 1. A high correlation value indicates that

two variables have a similar rank. Spearman’s correlation rs
of vectors X and Y is calculated as

rs =
cov(rgX , rgY )

σrgX σrgY
(18)

where rgX and rgY are ranks of X and Y respectively.

cov(rgX , rgY ) is the covariance of the rank variables and σrgX
and σrgY are the standard deviations of the rank variables.

We sample data and conduct the experiment five times using

different random seeds. We compute the performance as the

average of the results obtained from the five experiments for

both UIP and NA. The results are shown in Table 2.

TABLE 2. Results of interests prediction experiment on CiaoDVD.

Fron the results shown in the table, we observe that the

correlation between themasked interests and the interests pre-

dicted by UIP is higher than those predicted by NA. We also

find that, NA fails in predicting the interests of about 50% of

the users. Given these results, it is reasonable to say that UIP

outperforms NA. This particular experiment demonstrates

that UIP is capable of leveraging only relationships between

users to reveal the interest of users.

C. TOP3 INTERESTS PREDICTION EXPERIMENT

In some cases, we do not care much about the whole rank

of user interests for the different categories, but have more

interest in the several categories that users are most interested

in. We define Top k interests of a user as the k categories that

a user is most interested in. Following similar protocols as
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the first experiment, we again mask 10% of users observed

interests for the CiaoDVD, and set their observed interests to

( 1
17

, 1
17

, · · · , 1
17
) ∈ R

17. Then, we run UIP on this dataset and

record the Top3 dimensions, representing the categories that

a user is most interested in.

For comparison, we choose Majority Count (MC) which

is a voting process [13]. MC is widely used in user pro-

filing tasks. In our experiment, we count the interests of

the users that ui trusts, and take the 3 most frequent

ones as the Top3 interests of ui. For evaluation purposes,

we compute the average rank Rankavg of the predicted inter-

ests in the masked interest ranked list. The smaller the

rank, the better the predicting performance of the model.

If the Top3 interests is perfectly predicted, the rank will be

(1+2+3)/3 = 2. We perform this experiment five times and

take the average score. The results of this experiment is shown

in Table 3.We find thatMC performs poorly compared to UIP

in all 5 runs, suggesting that MC cannot effectively predict

the interest of users who have no trusts. More specifically,

we observe that MC fails to make predictions on about 50%

of users because these users do not trust any other user, which

is a great disadvantage.

TABLE 3. Results of Top3 interest prediction experiment.

D. TOP1 INTEREST RECOVERY EXPERIMENT

Based on the number of item categories of CiaoDVD, in this

task we set the Top1 interest of 10% users in CiaoDVD

to 1
17
, and normalize the interest vector. We then run the UIP

algorithm and record the rank of the original Top1 interest in

the new ranked list. We record the proportion of cases that the

original Top1 interest falls in Top3, Top5, and Top10 in the

inferred interests. The results are shown in Table 4.

TABLE 4. Results of Top1 interest recovery experiment.

On average, about 50% original Top1 interest can be

recovered in Top3, about 70% can be recovered in Top5,

and almost all Top1 interest can be recovered in Top10 for

the 17 categories. The results show that UIP is effective at

unveiling the interest that users do not show explicitly.

E. APPLYING UIP TO RECOMMENDER SYSTEM

Matrix Factorization (MF) have been explored as one of

the most effective tools for collaborative filtering in recom-

mender systems. Let R =
[

Ru,i
]

n×m
be a rating matrix,

where the entry Ru,i denotes the rating of user u on item i.

Ru,i usually takes an integer value from [0, 5]. Following

the works of [12], we normalize the ratings to the interval

[0, 1] to bound the range of predictions. The task is to predict

the unknown rating Ru,i using R. MF solves this by learning

the latent user features Uu and latent item features Vi for

u and i, such that the predicted rating R∗
u,i approximates

UT
u Vi. Formally, let U ∈ R

k×n and V ∈ R
k×m be the

respective latent feature matrices for users and items, with

k-dimensional column vectorsUu and Vi for user u and item i.

MF models the posterior probability over the user and item

latent feature variables as

p(U ,V |R, σ 2
R, σ 2

U , σ 2
V )

∝ p(R|U ,V , σ 2
R)p(U |σ 2

U )p(V |σ 2
V )

=

n
∏

u=1

m
∏

i=1

[

N

(

Ru,i|g(U
T
u Vi), σ

2
R

)]Iu,i
×

n
∏

u=1

N

(

Uu|0, σ
2
U I

)

×

m
∏

i=1

N

(

Vi|0, σ
2
V I

)

(19)

where Iu,i is an indicator which takes the value 1 if user u

rated the item i, or 0 if otherwise. The function g(x) is the

logistic function g(x) = 1/1 + e−x to bound the rating

predictions between [0, 1]. Given (19), we can learn the users’

latent features U and item latent features V purely based

on R through minimizing a sum-of-squares error objective

function [23]. Thus,Uu can be interpreted as the learned latent

features representing the observed interest of user u which

does not consider social influence.

It is well noted in the literature that the interest of a user

is also influenced by the interest of his neighbors in a social

network [12]. To incorporate social influence, we integrate

the UIP with MF to develop an MF-UIP algorithm which

is composed of an MF step and a UIP step. The MF step

estimates the user latent features U and V based on R by

means of (19). The UIP step takes advantage of U and the

following relationships E in the social network to estimate

the user latent features Û representing the true interests of

users. Formally, for each user node u ∈ N , let Nu be its set

of neighbors. Each node u is characterized by Uu. At each

round t = 1, 2, . . . ,K of the UIP step, every neighbor v ∈ Nu
computes a messageM t+1

uv and propagates this message to u.

Upon receiving all the messages from the neighbors Nu,

the UIP step updates the features of u to construct the latent

feature vector Ûu of the true interest of u according to (11).

Suppose Ûu is the latent feature vector upon convergence or

at the last layer K of the UIP step. Now, MF-UIP estimates

the rating Ru,i as the inner product of Ûu and Vi as:

R̂u,i = ÛT
u Vi (20)

1) EXPERIMENTAL SETUP

We perform experiments to demonstrate the effectiveness of

MF-UIP on rating predictions. To evaluate the performance

of MF-UIP, we consider the baseline methods MF, PMF [23],
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MF-SR [21], SocialMF [12], and NeuralMF [11]. The eval-

uation metric we use in the rating prediction experiment is

the Root Mean Square Error (RMSE) and the Mean Absolute

Error (MAE). We perform each experiment five times using

different random seeds and take the average RMSE or MAE.

For evaluation purposes, we randomly select 80% of the

ratings of the dataset as training data, leaving out 20% for

testing. The dimensionality k of the latent features is set to 10

by default. In all experiments, we set the paramaters λU =

λV = 0.001. For SocialMF, the parameter λT introduced

in [12] controls the influence of the social network. We set

λT = 0.01 for FilmTrust, and λT = 0.001 for CiaoDVD and

Douban. ForMF-SR, the parameter β introduced in [21] is set

to β = 0.001 for all experiments. For NeuralMF, we choose

the Adam optimizer [14], and one neural collaborative filter-

ing layer. The remaining parameters for NeuralMF on the

baseline datasets are shown in Table 5. Parameters are set

empirically, and manually tuned without fine-tuning.

TABLE 5. Experimental settings of NeuralMF on the baseline datasets.

2) EXPERIMENTAL RESULTS FOR RATING PREDICTION

The overall performance of the rating prediction experi-

ment on the datasets are shown in Table 6. A preferred

model should have a low score for either RMSE or MAE.

We find that all models that incorporate social influence

(i.e. MF-SR, SocialMF, MF-UIP) outperform the MF-based

methods (i.e. MF, PMF), suggesting that users do not always

express their interests explicitly, but their interest can also be

inferred from their neighbors in the social network. Although

MF-SR and SocialMF outperforms the MF-based methods,

TABLE 6. Performance comparisons on rating prediction.

they are deficient in generalization since their loss function

combines both the trust and rating information, and hence the

poor performance when compared to MF-UIP.

We also find that the deep learning based method

NeuralMF outperforms the methods MF, PMF, MF-SR,

but only outperforms SocialMF on the CiaoDVD dataset.

We infer from the results that NeuralMF effectively learns

the relationship between users and items when compared to

MF, however as it ignores the relationships among users it

fails to outperform SocialMF. It can be noted that NeuralMF

takes advantage of learning higher order interactions between

users and item features to show competitive performancewith

SocialMF. Although MF underperforms when compared to

NeuralMF, the performance of our proposed model MF-UIP

shows much better performance when compared to Neu-

ralMF on all datasets. The results suggest that UIP effectively

extracts relevant information from the relationship among

users to enhance the user latent features modeled by MF.

Since MF-UIP integrates both MF and UIP, we believe inte-

grating NeuralMF with UIP may boost model performance,

but will require the learning of additional trainable parame-

ters. Thus, we can regard UIP as an enhancer of user features

for MF-based methods exploiting social networks.

3) IMPACT OF THE DIMENSIONALITY k

We analyze the impact of the dimensionality k of users and

items for the models under comparison. We perform this

study on the FilmTrust dataset. Here, we consider the dimen-

sion k = 15. We exclude the NeuralMF in this experiment

since a model based on neural networks will usually need a

relatively larger dimension to capture high-order interactions

between the features of users and items. As shown in Table 5,

the dimensionality k is set to 40 for NeuralMF to achieve its

best result on the FilmTrust dataset. Table 7 shows the results

on the impact of k . A quick glance at the performance shows

thatMF-UIP outperforms the baselinemethods on the RMSE.

Although MF-SR and SocialMF both aim to exploit social

networks to boost performance, they fail to outperform PMF

for this setting. This behaviour suggest that it is difficult to

jointly learn user and item features while taking knowledge

from the social network. MF-UIP simplifies this problem

by incorporating social network knowledge into the learned

user features independently, and assumes that the learned

features of items by MF is sufficient for the recommen-

dation task. Our result suggest that this approach is much

effective.

TABLE 7. Performance comparisons on FilmTrust dataset. The
dimensionality k of latent features is set to 15.
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4) VALIDATION IN SPARSITY OF OBSERVED RATINGS

We perform sparsity experiments on the rating matrix R

to demonstrate the robustness of our model. Note that the

increase in sparsity of R does not affect the relationship

among users. Thus, we implicitly demonstrate the model’s

ability to leverage information from social relationships.

Table 8 shows the prediction results on the training set

proportions 60% and 40%. As expected, as sparsity of R

increases the model performance deteriorates. Unfortunately,

MF-SR fails to perform as we increase sparsity, showing its

heavy dependency on R. Interestingly, we find that NeuralMF

performs poorly when compared to the baseline models.

It turns out NeuralMF overfits the small proportion of training

data, and does not have access to information of social rela-

tionships among users to improve performance, explaining its

poor performance in sparse settings. Meanwhile, we find that

SocialMF and MF-UIP remains robust. But MF-UIP outper-

forms SocialMF in a very sparseR as seen on the 40% training

data, suggesting that MF-UIP can effectively leverage infor-

mation from social relationships for model performance.

TABLE 8. Performance comparisons in sparsity of observed ratings on
FilmTrust.

5) COMPUTATIONAL COMPLEXITY OF UIP

Accurate rating predictions need large training sets which

could be a problem for computational expensive models.

Given that propagation based models are usually computa-

tional expensive, we investigate the computational complex-

ity of UIP. In the model section, it can be noted that all

computations take place at each factor node in the factor

graph. Specifically, we compute eight types of messages

(two messages are fixed; see (8) and (9)) on each local

structure of the factor graph for the following relationship

consisting of two users ui and uj. Computing these messages

takes account of the sets of factor nodes associated with ui
and uj. Thus, the computational complexity on a following

relationship is proportional to the total number of factor nodes

associated with ui and uj in the factor graph. On the largest

dataset, Douban, which has 2733 users and a trust average of

23.58, the time taken for UIP to reach convergence on a CPU

with a 2.6GHz processor is 4.76min.

V. CONCLUSION AND FUTURE WORK

We introduced a User Interest Propagation (UIP) algorithm

for user interest prediction which is based on the factor graph

and sum-product algorithm. Unlike most previous methods

which rely on only user generated content, our method moves

a step further by taking account of relationships between

users on an online social network to propagate relevant inter-

ests to users. Our method is naturally designed to integrate a

basic matrix factorization (MF) to form a new rating predic-

tion method, MF-UIP, for recommender systems. Generally

as sparsity affects most rating prediction methods, MF-UIP

is robust and outperforms several methods, including the

deep learning method NeuralMF. Aside applying UIP for

recommender systems, the method we develop here can be

applied strategically in other network-related applications

such as social search, link prediction and community detec-

tion. We intend to explore its application in these fields.
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