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ON NONAUTONOMOUS DIFFERENTIAL-DIFFERENCE AKP, BKP AND CKP EQUATIONS

WEI FU AND FRANK W. NIJHOFF

Abstract. Based on the direct linearisation framework of the discrete Kadomtsev–Petviashvili-type equations present-
ed in [Proc. R. Soc. A, 473 (2017) 20160915], six novel nonautonomous differential-difference equations are established,
including three in the AKP class, two in the BKP class and one in the CKP class. In particular, one in the BKP class
and the one in the CKP class are both in (2+2)-dimensional form. All the six models are integrable in the sense of
having the same linear integral equation representations as those of their associated discrete Kadomtsev–Petviashvili-

type equations, which guarantees the existence of soliton-type solutions and the multi-dimensional consistency of these
new equations from the viewpoint of the direct linearisation.

1. Introduction

The study of discrete integrable systems has been becoming one of the most prominent branches in the theory of
integrable systems in the past two decades, resulting in the establishment of many novel concepts and theories in
modern mathematics, see e.g. [13]. There are several methods of constructing integrable discretisation of nonlinear
differential equations. Among those, a very effective one is to construct the Bäcklund transform (BT) and the super-
position formula of a partial differential equation (PDE), and consider them as the associated differential-difference
equation (D∆E) and partial difference equation (P∆E), respectively (see [21] and [28]). Compared with integrable
PDEs, the associated integrable P∆Es seem to possess a much richer structure, which reflects in the fact that the
discrete equations encode the information of the whole hierarchy of the corresponding continuous equations in an
implicit way.

Among the theory of discrete integrable systems, there are three important scalar P∆Es in three dimensions. The
first one is the discrete Kadomtsev–Petviashvili (KP) equation (often known as the Hirota equation or the Hirota–
Miwa (HM) equation)

(pi − pj)(Tnh
τ)(Tni

Tnj
τ) + (pj − ph)(Tni

τ)(Tnj
Tnh

τ) + (ph − pi)(Tnj
τ)(Tnh

Tni
τ) = 0, (1.1)

in which the dependent variable τ is a function of the discrete arguments nj and the lattice parameters pj for
j = 1, 2, · · · , the notation Tnj

stands for the forward shift operator with respect to the corresponding discrete argument
nj , and ph, pi and pj are distinct. This equation was introduced by Hirota [15] as a discrete analogue of the generalised
Toda equation, and here we adopt the form in (1.1) which possesses explicit discrete soliton solutions. Since equation
(1.1) is associated with the infinite-dimensional algebra A∞, here we also refer to it as the discrete AKP equation,
in order to distinguish it from the other two discrete KP-type equations below. The second one is the discrete BKP
equation (also referred to as the Miwa equation)

(ph − pi)(pi − pj)(pj − ph)τ(Tnh
Tni

Tnj
τ) + (ph + pi)(ph + pj)(pi − pj)(Tnh

τ)(Tni
Tnj

τ)

+ (pi + pj)(pi + ph)(pj − ph)(Tni
τ)(Tnh

Tnj
τ) + (pj + ph)(pj + pi)(ph − pi)(Tnj

τ)(Tnh
Tni

τ) = 0, (1.2)

which was introduced by Miwa in [23]. Although (1.2) has an additional term in comparison with (1.1), it is actually
a special reduction of the discrete AKP equation (algebraically its associated algebra B∞ is a sub-algebra of A∞).
The third model is the discrete CKP equation (also called the hyperdeterminant equation)

(A1 +A2 −A3 −A4)
2 = 4B1B2, (1.3)

where the expressions Ai and Bi are given by

A1 = (ph − pi)
2(pi − pj)

2(pj − ph)
2τ(Tnh

Tni
Tnj

τ), A2 = (ph + pi)
2(ph + pj)

2(pi − pj)
2(Tnh

τ)(Tni
Tnj

τ),

A3 = (pi + pj)
2(pi + ph)

2(pj − ph)
2(Tni

τ)(Tnh
Tnj

τ), A4 = (pj + ph)
2(pj + pi)

2(ph − pi)
2(Tnj

τ)(Tnh
Tni

τ),

B1 = (p2h − p2i )(p
2
j − p2h)

[

(pi + pj)
2(Tni

τ)(Tnj
τ)− (pi − pj)

2τ(Tni
Tnj

τ)
]

, and B2 = Tnh
B1,

respectively, which is also a reduced equation from the discrete AKP equation. Equation (1.3) appeared in Kashaev’s
paper [17] for the first time from the star-triangle transform in the Ising model, and it was later identified by Schief [32]
that such a model actually describes the superposition formula for the continuous KP equation of C∞-type. The form
in (1.3) that contains lattice parameters in the coefficients was given by the authors in [11] in order to construct its
soliton-type solution.

The discrete KP-type equations are not only remarkable in their own right in the integrable systems theory, since
these equations, as higher-dimensional models, can reduce to many lower-dimensional integrable discrete systems, such
as the famous discrete Korteweg–de Vries (KdV) and Boussinesq (BSQ) systems, see e.g. [4] and [27], but also play
crucial roles in other subjects in modern mathematics, especially in geometry. It was shown by Konopelchenko and
Schief that the discrete AKP, BKP and CKP equations are connected to fundamental theorems of plane geometry, i.e.

Key words and phrases. differential-difference, nonautonomous, (2+2)-dimensional, tau function, KP, direct linearisation.
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2 WEI FU AND FRANK W. NIJHOFF

Menelaus’ theorem [19], Reciprocal quadrangles [20] and Carnot’s theorem [32], respectively. Besides, Doliwa pointed
out that these models also arise in the multi-dimensional consistency (MDC) quadrilateral lattice theory in discrete
geometry [5–7]. Very recently, it was also revealed that the discrete KP-type equations are closely related to discrete
line complexes [2] and circle complexes [3].

In addition to P∆Es, there are also the so-called generating PDEs, where the terminology ‘generating’ follows from
the fact that it generates a whole continuous integrable hierarchy. From the perspective of integrable systems, the
key step of constructing generating PDEs is to take the lattice parameters in the associated P∆Es as independent
variables. This technique is actually a reflection of introducing Miwa’s coordinates, see [18]. To be more precise, the
derivative with respect to a lattice parameter is equivalent to the higher-order derivatives in terms of the continuous
flow variables, resulting in the higher-order symmetries in an integrable hierarchy. The first example was proposed
in [26] for the KdV class in the form of a nonautonomous fourth-order nonlinear equation, and it is integrable in sense
that it possesses soliton, Lax pair, Lagrangian structure, and Painlevé reduction, etc. More importantly, it was shown
in [34] that a proper generalisation of this equation incorporates the hyperbolic Ernst equation for a Weyl neutrino
field in general relativity. In spirit of this, a class of generating PDEs for the BSQ family, also as integrable nonlinear
models, were constructed in [35], and they represent the hyperbolic Ernst equations for a source-free Maxwell field
and a Weyl neutrino field, as a generalisation for the previous result of KdV.

It turns out that it is very difficult to derive closed-form equations for a scalar field that would be the analogues
of the generating PDEs for the KP-type hierarchies. However, as we will show in this paper, it is possible to derive
semi-discrete analogues (in form of D∆E) of these generating PDEs for the KP-type equations, which simultaneously
contain lattice variables and lattice parameters as independent variables. Such D∆Es, as nonautonomous semi-discrete
equations, are significant in integrable systems theory. In fact, on the two-dimensional (2D) level, these semi-discrete
equations appear in similarity reductions to discrete Painlevé equations [30], and also play roles of master symmetries
of 2D integrable difference equations, see e.g. [31, 37].

We aim to construct the associated nonautonomous D∆Es for the KP-type equations, based on the direct lineari-
sation (DL) framework for the KP-type equations given in [11]. The DL method was proposed by Fokas and Ablowitz
(see e.g. [8, 9]) to solve the initial value problems for the KdV and KP equations, as a generalisation of the well-
known Riemann–Hilbert problem (RHP) [1]. Subsequently, it was developed into a powerful tool to systematically
study integrable structures behind families of discrete and continuous nonlinear equations and their interrelations, see
e.g. [24,25,27–30]. The key idea in the DL is to associate a nonlinear equation with a linear integral equation, and by
introducing the infinite matrix structure, it allows us to observe the integrability and solution structures of a nonlinear
system simultaneously. Recently, the link between the linear integral equation and several affine Lie algebras is further
established. With the help of considering reductions on the measure of the linear integral equation, the DL scheme for
the discrete AKP, BKP and CKP equations was proposed [11]. This makes it possible to further study the associated
nonautonomous D∆Es for these KP-type equations from the general framework.

In this paper, we establish six nonautonomous D∆Es. They are

1

2
(pi − pj)

2Dpi
Dpj

τ · τ = ninj

[

(Tni
T−1

nj
τ)(T−1

ni
Tnj

τ)− τ2
]

, (1.4a)

(pi − pj)Dpj
(Tni

τ) · τ = nj

[

τ(Tni
τ)− (Tnj

τ)(Tni
T−1

nj
τ)
]

, (1.4b)

(pi − pj)Dpj
[τ(Tni

Tnj
τ)] · [(Tni

τ)(Tnj
τ)]

= nj(Tnj
τ)2(Tni

Tnj
τ)(Tni

T−1
nj

τ)− (nj + 1)τ(Tni
τ)2(T2

nj
τ) + τ(Tni

τ)(Tnj
τ)(Tni

Tnj
τ) (1.4c)

in the AKP class1,

2pipj(p
2
i − p2j )Dpi

Dpj
τ · τ

= ninj

[

(pi + qj)
4(Tni

T−1
nj

τ)(T−1
ni

Tnj
τ)− (pi − qj)

4(Tni
Tnj

τ)(T−1
ni

T−1
nj

τ)− 8pipj(p
2
i + p2j )τ

2
]

, (1.5a)

2pj(p
2
i − p2j )Dpj

(Tni
τ) · τ = nj

[

4pipjτ(Tni
τ) + (pi − pj)

2(T−1
nj

τ)(Tni
Tnj

τ)− (pi + pj)
2(Tnj

τ)(Tni
T−1

nj
τ)
]

(1.5b)

in the BKP class, and

pipj(p
2
i − p2j )

2Dpi
Dpj

τ · τ = ninj

[

(pi − pj)
2E

1
2F

1
2 + (pi + pj)

2G
1
2H

1
2 − 8pipj(p

2
i + p2j )τ

2
]

(1.6)

in the CKP class, where E, F , G and H are given by

E = (pi + pj)
2(T−1

ni
τ)(T−1

nj
τ)− (pi − pj)

2τ(T−1
ni

T−1
nj

τ), F = (pi + pj)
2(Tni

τ)(Tnj
τ)− (pi − pj)

2τ(Tni
Tnj

τ),

G = (pi − pj)
2(T−1

ni
τ)(Tnj

τ)− (pi + pj)
2τ(T−1

ni
Tnj

τ) and H = (pi − pj)
2(Tni

τ)(T−1
nj

τ)− (pi + pj)
2τ(Tni

T−1
nj

τ),

respectively, where the notation D· stands for Hirota’s bilinear derivative (see e.g. [16]) with respect to the correspond-
ing arguments pi and pj , which is defined by

Dxf · g = (∂x − ∂x′)f(x)g(x′)|x′=x,

for arbitrary differentiable functions f(x) and g(x).

1Here by class we mean a family of equations possess the same solution from the perspective of the DL, see also section 6 for more details.
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The tau functions for the above equations have their precise definitions in terms of infinite matrices and double
integral with regard to the spectral variables, which will be given in the sections of the derivations of these equations.
We note that an autonomous version of (1.5a) was given in [36] very recently, which plays the role of a higher-order
semi-discrete BKP equation (i.e. a symmetry) and was referred to as the (2+2)-dimensional Toda lattice. But here
equation (1.5a) is a nonautonomous equation having the lattice parameters as the continuous independent variables,
potentially acting as the master symmetry of the discrete BKP equation.

The paper is organised as follows. Section 2 concerns the formal structure of the direct linearisation approach. In
sections 3, 4 and 5, we provide derivations of (1.4a), (1.4b) and (1.4c) in the AKP class, (1.5a) and (1.5b)in the BKP
class, as well as (1.6) in the CKP class, respectively. The brief discussion on the integrability of the six D∆Es is made
in section 6.

2. Formal structure of the direct linearisation

In [11], the discrete AKP, BKP and CKP equations were studied within a single framework, given by the direct
linearising transform (DLT), which provides a dressing-type scheme for obtaining new solutions from given seed
solutions for those integrable equations. In contrast, what we mean by DL is a special case where the seed corresponds
to a ‘free’ solution (namely when the initial solution is trivial) in the DLT. The latter restriction is useful if we want
to derive new equations from some basic assumptions about the initial solutions.

We start with introducing some fundamental infinite matrices and vectors and their properties which are needed in
the DL framework. First we need a rank 1 projection matrix

O =

















. . .

0

1
0

. . .

















, (2.1)

where the ‘box’ denotes the location of the central element, namely the (0, 0)-entry of the matrix. This infinite matrix
has the property

(OU)i,j = δi,0U0,j and (UO)i,j = Ui,0δ0,j , with δi,j =

{

1, i = j,
0, i 6= j,

∀i, j ∈ Z,

for an arbitrary infinite matrix

U =



















...
...

...
· · · U−1,−1 U−1,0 U−1,1 · · ·

· · · U0,−1 U0,0 U0,1 · · ·

· · · U1,−1 U1,0 U1,1 · · ·
...

...
...



















,

where the operation (·)i,j denotes taking the (i, j)-entry.
Next, we introduce two infinite matrices

Λ =



















. . .
. . .

0 1

0 1

0
. . .

. . .



















and tΛ =



















. . .

. . . 0

1 0
1 0

. . .
. . .



















. (2.2)

The matrices Λ and tΛ are the transpose of each other, and have properties

(ΛU)i,j = Ui+1,j and (U tΛ)i,j = Ui,j+1,

namely the multiplications by Λ and tΛ raise the row index and the column index of U , respectively. For this reason,
we refer to them as index-raising matrices. We also introduce the infinite-dimensional vectors

ck = (· · · , k−1, 1, k, · · · )T and t
ck′ = (· · · , k′−1, 1, k′, · · · ), (2.3)

which obey the following identities:

Λ ck = k ck,
t
ck′

tΛ = k′tck′ .

In the sections below, we also need the notions of trace and determinant for an infinite matrix. We give the formal
definition of a trace of an arbitrary infinite matrix U as follows:

trU =
∑

i∈Z

Ui,i. (2.4)
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Notice that this is a formal definition, since the infinite summation with respect to i over the integer ring may lead to
divergence. In order to avoid this issue, in this paper we only deal with the trace of a matrix involving the projection
matrix O, in which case the trace is always convergent. For example, we have

tr(OU) = tr(UO) = U0,0 = (U)0,0.

In the convergent case, the trace also satisfies tr(UV ) = tr(V U) for arbitrary infinite matrices U and V . The
determinant of an infinite matrix is defined through

ln(detU) = tr(lnU). (2.5)

Again, this is a formal definition which could result in divergence problem. But if we restrict ourselves to the infinite
matrix 1 + U , where 1 is the identity infinite matrix and U is an infinite matrix involving the projection matrix O,
the determinant is well-defined, since the right hand side of (2.5), namely

tr [ln(1 +U)] = tr

[

∞
∑

i=1

(−1)i−1

i
U

i

]

=

∞
∑

i=1

(−1)i−1

i
tr
(

U
i
)

,

has terms of convergent traces. We have the well-known Weinstein–Aronszajn formulas for the determinant. For
instance, the following identities hold:

det(1 +UOV ) = 1 + (V U)0,0, det(1 +U(OΛ− tΛO)V ) = det

(

1 + (ΛV U)0,0 −(ΛV tΛ)0,0
(V U)0,0 1− (V U tΛ)0,0

)

.

which are the cases of rank 1 and rank 2.
We provide the formal structure of the DL framework. The starting point is a linear integral equation

uk +

∫∫

D

dζ(l, l′)ρkΩk,l′σl′ul = ρkck, (2.6)

in which the wave function uk is an infinite-dimensional column vector having its i-th component u
(i)
k (for i ∈ Z) being

a function of the lattice variables nj and the lattice parameters pj for j = 1, 2, · · · as well as the spectral variable
k, Ωk,l′ is the kernel of the linear integral equation, depending on the spectral variables k and l′, dζ and D are the
measure and the domain for integration, and ρk and σl′ are the so-called plane wave factors depending on the discrete
variables nj and lattice parameters pj as well as their respective spectral variables k and l′. Furthermore, to derive
equations in given choice of independent variables (which could be either the discrete variables nj or the continuous
variables pj) we assume that the measure is independent of these chosen variables.

We present the infinite matrix representation of (2.6). We first introduce the infinite matrix Ω defined through

Ωk,k′ = t
ck′Ω ck. (2.7)

Following from the properties of the index-raising matrices and the projection matrix listed above, we can observe
that Ω is actually an infinite matrix composed of Λ, tΛ and O, which relies on the precise expression of Ωk,k′ , namely
it is an infinite matrix representation of the Cauchy kernel of the linear integral equation (2.6). If we replace Ωk,l′

with the help of (2.7), the linear integral equation is reformulated as

uk = (1−UΩ)ckρk, (2.8)

where the infinite matrix U is given by

U
.
=

∫∫

D

dζ(k, k′)uk
t
ck′σk′ . (2.9)

Next, we consider the infinite matrix representation of the plane wave factors and introduce an infinite matrix

C
.
=

∫∫

D

dζ(k, k′)ρkck
t
ck′σk′ . (2.10)

The key characteristic of C is the product of the two plane wave factors, i.e. ρkσk′ , which we normally refer to as the
so-called effective plane wave factor. By acting the operation

∫∫

D
dζ(k, k′) · tck′σk′ on equation (2.10), we obtain

U = (1−UΩ)C, or equivalently U = C(1 +ΩC)−1. (2.11)

The idea of the DL approach is to associate a nonlinear equation with a linear integral equation in the form of
(2.6). Once the plane wave factors, the Cauchy kernel and the measure are given, the corresponding class of nonlinear
integrable systems is fully determined. To be more precise, for a certain class of nonlinear integrable equations, the
infinite matrix C describes the linear dispersion, the infinite matrix Ω together with the measure governs the nonlinear
structure of the corresponding integrable models, and uk and U are corresponding to the wave function in the Lax
pair and the nonlinear potential, respectively.
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3. Derivation of (1.4a), (1.4b) and (1.4c)

In the AKP class, the discrete plane wave factors ρk and σk′ are given by

ρk =
∞
∏

i=1

(pi + k)ni and σk′ =

∞
∏

i=1

(pi − k′)−ni , (3.1)

respectively. Substituting these into the infinite matrix C defined by (2.10) and considering the evolutions with regard
to the discrete variables and lattice parameters, we obtain dynamical evolutions as follows:

(Tnj
C)(pj −

tΛ) = (pj +Λ)C, (3.2a)

∂pj
C = nj

(

1

pj +Λ
C −C

1

pj − tΛ

)

, (3.2b)

(T−1
a TbC)

b− tΛ

a− tΛ
=

b+Λ

a+Λ
C. (3.2c)

Below we provide the derivation of (3.2b). By differentiating ρkσk′ with respect to pj , we have

∂pj
ρkσk′ = ∂pj

∞
∏

i=1

(

pi + k

pi − k′

)ni

= nj

(

1

pj + k
−

1

pj − k′

) ∞
∏

i=1

(

pi + k

pi − k′

)ni

= nj

(

1

pj + k
−

1

pj − k′

)

ρkσk′ ,

and thus, the same operation on C gives rise to

∂pj
C =

∫∫

D

dζ(k, k′)ck∂pj
(ρkσk′)tck′ =

∫∫

D

dζ(k, k′)ck∂pj
(ρkσk′)tck′

= nj

(∫∫

D

dζ(k, k′)
1

pj + k
ckρkσk′

t
ck′ −

∫∫

D

dζ(k, k′)ckρkσk′

t
ck′

1

pj − k′

)

= nj

(

1

pj +Λ
C −C

1

pj − tΛ

)

,

where in the last step we have made use of the property of the operation of the index-raising matrices on ck and tck′

given in section 2. The other two equations are derived similarly.
The Cauchy kernel in the linear integral equation for the discrete AKP equation takes the form of

Ωk,k′ =
1

k + k′
, (3.3)

and in this case we have no further requirement for the measure dζ(k, k′) and the domain D, namely they are arbitrary.
According to (2.7), we can observe that in this case Ω = −

∑

∞

i=0(−
tΛ)−i−1OΛi; in other words, it satisfies

ΩΛ+ tΛΩ = O. (3.4)

Equation (3.4) can also be written in other forms. Here we reformulate it in the following forms whose left hand sides
are compatible with (3.2):

Ω(pj +Λ) + (pj −
tΛ)Ω = O, (3.5a)

Ω
1

pj +Λ
−

1

pj − tΛ
Ω =

1

−pj + tΛ
O

1

pj +Λ
, (3.5b)

Ω
b+Λ

a+Λ
−

b− tΛ

a− tΛ
Ω = −(a− b)

1

−a+ tΛ
O

1

a+Λ
. (3.5c)

Equations (3.5) together with (3.2) will provide the dynamical evolutions of the infinite matrix U as follows:

(Tnj
U)(pj −

tΛ) = (pj +Λ)U − (Tnj
U)OU , (3.6a)

∂pj
U = nj

(

1

pj +Λ
U −U

1

pj − tΛ
−U

1

−pj + tΛ
O

1

pj +Λ
U

)

, (3.6b)

(

TaT
−1
b U

) b− tΛ

a− tΛ
=

a+Λ

b+Λ
U + (a− b)(T−1

a TbU)
1

−a+ tΛ
O

1

a+Λ
U . (3.6c)

Again we only give the derivation of (3.6b) below and skip that of the other two, as the procedure is similar. Notice
that the infinite matrix U obeys (2.11) in the formal structure of the DL. Calculating the derivative of U with respect
to pj , we obtain

∂pj
U = −(∂pj

U)ΩC + (1−UΩ)(∂pj
C),

which can equivalently be rewritten as

(∂pj
U)(1 +ΩC) = nj(1−UΩ)

(

1

pj +Λ
C −C

1

pj − tΛ

)

= nj

[

1

pj +Λ
C −U

1

pj − tΛ
−UΩ

1

pj +Λ
C

]

= nj

[

1

pj +Λ
C −U

1

pj − tΛ
(1 +ΩC)−U

1

−pj + tΛ
O

1

pj +Λ
C

]

,



6 WEI FU AND FRANK W. NIJHOFF

where in the first and third equalities we have used (3.2b) and (3.5b), respectively. Multiplying the above equation
by (1 +ΩC)−1 immediately gives rise to (3.6b).

Next, we introduce the tau function in this class, which is defined as

τ
.
= det(1 +ΩC), (3.7)

where 1 denotes the infinite unit matrix. As we have mentioned in section 2, the determinant of an infinite matrix
should be understood as the formal expansion of exp{tr[ln(1 +ΩC)]}. Since Ω = −

∑

∞

i=0(−
tΛ)−i−1OΛi involves O

in every term, the trace action is always convergent. For convenience, we introduce quantities

u
.
= (U)0,0, Va

.
= 1−

(

U
1

a+ tΛ

)

0,0

, Wa
.
= 1−

(

1

a+Λ
U

)

0,0

and Sa,b
.
=

(

1

a+Λ
U

1

b+ tΛ

)

0,0

.

The tau function satisfies the dynamical evolutions with respect to the discrete variables and the lattices parameters
as follows:

Tnj
τ

τ
= 1−

(

U
1

−pj + tΛ

)

0,0

= V−pj
,

T−1
nj

τ

τ
= 1−

(

1

pj +Λ
U

)

0,0

= Wpj
, (3.8a)

∂pj
ln τ = njSpj ,−pj

, (3.8b)

T−1
a Tbτ

τ
= 1− (a− b)

(

1

a+Λ
U

1

−b+ tΛ

)

0,0

= 1− (a− b)Sa,−b, (3.8c)

(pi − pj)
τ(Tni

Tnj
τ)

(Tni
τ)(Tnj

τ)
= pi − pj +Tnj

u− Tni
u. (3.8d)

These equations are proven through direct computation in terms of infinite matrices. For instance, calculating the
derivative of ln τ with respect to pj yields

∂pj
ln τ = ∂pj

ln[det(1 +ΩC)] = ∂pj
tr[ln(1 +ΩC)] = tr[∂pj

ln(1 +ΩC)] = tr[(1 +ΩC)−1Ω(∂pj
C)]

= nj tr

[

(1 +ΩC)−1Ω

(

1

pj +Λ
C −C

1

pj − tΛ

)]

= nj tr

[

C(1 +ΩC)−1

(

Ω
1

pj +Λ
−

1

pj − tΛ
Ω

)]

.

where in the last step the property of the cyclic permutation of the trace operation is used. With the help of (2.11)
and (3.5b), this equation is reformulated as

∂pj
ln τ = nj tr

(

U
1

−pj + tΛ
O

1

pj +Λ

)

= nj tr

(

O
1

pj +Λ
U

1

−pj + tΛ

)

= nj

(

1

pj +Λ
U

1

−pj + tΛ

)

0,0

,

namely ∂pj
ln τ = njSpj ,−pj

. To prove Equations (3.8a) and (3.8c), one needs to use (3.2a) and (3.5a) and (3.2c) and
(3.5c), respectively. Since the idea of the proofs is similar to that of (3.8a), we skip them here. While equation (3.8d)
is proven based on (3.8a) and (3.6), and it is a widely known relation which describes bilinear transformation for the
discrete KP equation (see e.g. [11]).

Equations listed in (3.6) are the key formulas in the DL scheme to construct closed-form integrable equations, and
they together with (3.8) can produce the bilinear equations in the AKP class. In [11], the well-known HM equation,
i.e. equation (1.1), is derived from (3.6a) and (3.8a). Here we start from the dynamical relations in terms of pj to
construct the (2+2)-dimensional nonautonomous D∆E in this class. Considering (a+Λ)−1(3.6b)(b+ tΛ)−1 and taking
the (0, 0)-entry, we have the following equation for the quantity Sa,b:

∂pj
Sa,b = nj

[(

1

pj − a
−

1

pj + b

)

Sa,b −
1

pj − a
Spj ,b +

1

pj + b
Sa,−pj

− Sa,−pj
Spj ,b

]

.

By setting a = pi and b = −pi, we reach to

∂pj
Spi,−pi

=
nj

(pi − pj)2
[(

1− (pj − pi)Spj ,−pi

) (

1− (pi − pj)Spi,−pj

)

− 1
]

,

which only involves the S-variable. If we replace all the S-variables in this equation by the tau function via (3.8) and
notice the identity

∂pi
∂pj

ln τ =
Dpi

Dpj
τ · τ

2τ2

for Hirota’s bilinear operator D·, the bilinear equation (1.4a) arises. This equation takes the form of a nonautonomous
version of the 2D Toda equation, if we think of the discrete shift operations Tni

T−1
nj

and T−1
ni

Tnj
as the forward and

backward shifts along skew direction on the lattice. The difference is that here the lattice parameters pi and pj act
the independent variables; while in the two-dimensional Toda lattice (2DTL), the bilinear derivatives are with respect
to the continuous flow variables x1 and x−1 (cf. [10]), which leads to an autonomous equation.

From the scheme, we can also construct two more nonautonomous semi-discrete equations of τ . Taking [(3.6b)(a+
tΛ)−1]0,0, one obtains

∂pj
Va = −nj

[

V−pj
Spj ,a +

1

a+ pj
(Va − V−pj

)

]

,
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and its a = −pi case gives rise to

∂pj
V−pi

=
nj

pi − pj

[

V−pi
− V−pj

(

1− (pj − pi)Spj ,−pi

)]

.

Substituting the V - and S-variables with the tau function with the help of (3.8), we are able to construct the bilinear
equation (1.4b).

Moreover, if we consider the equation for ∂pj
u by evaluating the (0, 0)-entry of (3.6b), the following equation shows

up:

∂pj
u = nj(1− V−pj

Wpj
) = nj

[

1−
(Tnj

τ)(T−1
nj

τ)

τ2

]

,

where formula (3.8) is used for the second equality, and therefore, we obtain from (3.8d) that

∂pj

[

(pi − pj)
τ(Tni

Tnj
τ)

(Tni
τ)(Tnj

τ)

]

= ∂pj
(pi − pj +Tnj

u− Tni
u) = −1 + Tnj

(∂pj
u)− Tni

(∂pj
u).

Finally, by substituting u with τ , a closed-form quartic equation of τ is constructed, which takes the form of equation
(1.4c).

4. Derivation of (1.5a) and (1.5b)

We select the following plane wave factors for the BKP class:

ρk =

∞
∏

i=1

(

pi + k

pi − k

)ni

, σk′ = ρk′ =

∞
∏

i=1

(

pi + k′

pi − k′

)ni

, (4.1)

which should be understood as discrete odd flows, compared with (3.1) in the AKP case. In this case, it is observed
that the infinite matrix C defined in (2.10) evolves with regard to the discrete variables and the lattice parameters in
the following way:

(Tnj
C)

pj −
tΛ

pj + tΛ
=

pj +Λ

pj −Λ
C, (4.2a)

∂pj
C = nj

[(

1

pj +Λ
−

1

pj −Λ

)

C +C

(

1

pj + tΛ
−

1

pj − tΛ

)]

. (4.2b)

The derivation of these formulas is straightforward, as they follow from the formal definition of C, namely (2.10).
The Cauchy kernel in the BKP case takes the form of

Ωk,k′ =
1

2

k − k′

k + k′
, (4.3)

which implies that the corresponding Ω satisfies

ΩΛ+ tΛΩ =
1

2
(ΩΛ− tΛO). (4.4)

For the purpose of looking for compatible relations of Ω with equations listed in (4.2), we reformulate (4.4) as

Ω
pj +Λ

pj −Λ
−

pj −
tΛ

pj + tΛ
Ω = pj

1

pj + tΛ
(OΛ− tΛO)

1

pj −Λ
(4.5a)

and

Ω

(

1

pj +Λ
−

1

pj −Λ

)

+

(

1

pj + tΛ
−

1

pj − tΛ

)

Ω

= −
1

2

1

pj − tΛ
(OΛ− tΛO)

1

pj +Λ
−

1

2

1

pj + tΛ
(OΛ− tΛO)

1

pj −Λ
, (4.5b)

respectively.
Equations (4.2) and (4.5) are the fundamental relations to construct the dynamical evolutions of the infinite matrix

U . By considering Tnj
U and ∂pj

U in (2.11), some straightforward calculation yields the following equations:

(Tnj
U)

pj −
tΛ

pj + tΛ
=

pj +Λ

pj −Λ
U − pj(Tnj

U)
1

pj + tΛ
(OΛ− tΛO)

1

pj −Λ
U , (4.6a)

∂pj
U = nj

[(

1

pj +Λ
−

1

pj −Λ

)

U +U

(

1

pj + tΛ
−

1

pj − tΛ

)

+
1

2
U

1

pj − tΛ
(OΛ− tΛO)

1

pj +Λ
U +

1

2
U

1

pj + tΛ
(OΛ− tΛO)

1

pj −Λ
U

]

, (4.6b)

with the help of (4.2) and (4.5).
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Besides the different kernel and plane wave factors, we also have to impose certain restrictions on the integration
measure and the integration domain for the BKP equation. We require that the integration domain D is symmetric
in terms of the spectral variables k and k′, and then the measure dζ(k, k′) is antisymmetric, i.e.

dζ(k′, k) = −dζ(k, k′). (4.7)

These will together result in

t
C =

∫∫

D

dζ(k, k′)ρkck′

t
ckρk′ = −

∫∫

D

dζ(k′, k)ρk′ck′

t
ckρk = −C;

in other words, we have an antisymmetric infinite matrix C in the discrete BKP. Notice that the kernel given in (4.3)
is also antisymmetric, or equivalently tΩ = −Ω. We can deduce from (2.11) that in this case the infinite matrix U

obeys the antisymmetry property

t
U = −U . (4.8)

Next, we present the dynamical evolutions of the tau function. For convenience we introduce quantities

Va
.
= 1−

(

U
a

a− tΛ

)

0,0

, Wa
.
= 1 +

(

a

a−Λ
U

)

0,0

and Sa,b
.
=

(

a

a−Λ
U

b

b− tΛ

)

0,0

.

Due to the antisymmetry property of the infinite matrix U , it is obvious to see that

Va = Wa and Sa,b = −Sb,a.

We define the tau function in this class by

τ2 = det(1 +ΩC), (4.9)

since the antisymmetry of O and C will eventually make the above determinant a perfect square, namely the tau
function itself is corresponding to a Pfaffian. We now consider the evolution of the tau function with respect to nj ,
and this gives us

Tnj
τ2 = det

[

1 +Ω(Tnj
C)
]

= det

[

1 +ΩC + pj
1

pj − tΛ
(OΛ− tΛO)

1

pj −Λ
C

]

= τ2 det

[

1 + p( Λ

p−Λ
U

1
p−tΛ

)0,0 −p( Λ

p−Λ
U

t
Λ

p−tΛ
)0,0

p( 1
p−Λ

U
1

p−tΛ
)0,0 1− p( 1

p−Λ
U

t
Λ

p−tΛ
)0,0

]

= τ2V 2
pj
,

where the rank 2 Weinstein–Aronszajn formula and equation (4.8) are used in the third and fourth equalities, re-
spectively. Similarly, acting the backward shift on τ gives us T−1

nj
τ2/τ = V 2

−pj
. In order to simplify this formula, we

evaluate [(4.6a)]0,0, which gives us Vpj
(Tnj

V−pj
) = 1. And thus, without loss of generality, we have

Tnj
τ

τ
= Vpj

and
T−1

nj
τ

τ
= V−pj

. (4.10a)

Next, we calculate [ pi

pi−Λ
(4.6a)]0,0. The following equation is obtained:

1 + 2Vpj
(Tnj

S−pi,−pj
) =

pi − pj
pi + pj

(Vpj
− V−pi

) + Vpj
(Tnj

V−pi
).

This equation provides a way to express the S-variable by the V -variables, and consequently, the S-variable can be
expressed by the tau function by making use of (4.10), and the formula is

S−pi,−pj
=

1

2

[

T−1
ni

τ − T−1
nj

τ

τ
+

pi − pj
pi + pj

(

1−
T−1

ni
T−1

nj
τ

τ

)]

. (4.10b)

The expressions Spi,−pj
, S−pi,pj

and Spi,pj
in terms of the tau function can also be derived from the above equation,

with the help of (pi,Tni
) ↔ (−pi,T

−1
ni

). Therefore, we have obtained the dynamical relations of τ in terms of Sa,b for
arbitrary a+ b 6= 0. Furthermore, following the same idea of deriving (3.8b), we also have

2pj∂pj
ln τ = nj(Vpj

− V−pj
− 2Spj ,−pj

) (4.10c)

for BKP. Equations listed in (4.10) establish the relations between the dynamics of the tau function and the V - and
S-variables.

To construct equation (1.5a) in the DL framework, we compute [ a
a−Λ

(4.6b)]0,0 and [ a
a−Λ

(4.6b) b
b−tΛ

]0,0, which gives
rise to

pj∂pj
Va = nj

[

Va

(

2apj
a2 − p2j

−
1

2
Vpj

+
1

2
V−pj

)

+ Vpj

(

1

2

pj + a

pj − a
+ Sa,−pj

)

− V−pj

(

1

2

pj − a

pj + a
+ Sa,pj

)

]

, (4.11a)
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and

pj∂pj
Sa,b = nj

[

1

2
Spj ,b

(

pj + a

pj − a
−Wa

)

+
1

2
S−pj ,b

(

a− pj
a+ pj

+Wa

)

+
1

2
Sa,pj

(

pj + b

pj − b
− Vb

)

+
1

2
Sa,−pj

(

b− pj
b+ pj

+ Vb

)

+Sa,b

(

2apj
a2 − p2j

+
2bpj

b2 − p2j

)

− Sa,pj
S−pj ,b + Sa,−pj

Spj ,b

]

, (4.11b)

respectively. These two equations allow us to derive the closed-form equations in terms of the tau function. Notice
that the logarithm derivative of τ with respect to pj satisfies (4.10c), and hence we have

pipj∂pi
∂pi

ln τ = pj∂pj
(pi∂pi

ln τ) = pj∂pj
[ni(Vpi

− V−pi
− 2Spi,pi

)] = ni

[

pj(∂pj
Vpi

)− pj(∂pj
V−pi

)− 2pj(∂pj
Spi,pi

)
]

,

in which the right hand side only involves the derivatives of the V - and S-variables with respect to pj , and they can
be further replaced by terms of V - and S-variables without derivatives with the help of (4.11a) and (4.11a) for special
a and b. Finally, equations (4.10a) and (4.10b) help us to express every term on the right hand side of the above
equation by the tau function. As a result, we derive (1.5a).

We can also derive an analogue of (1.4b) in the BKP class, from the DL scheme in this section. Setting a = pi in
(4.11a) yields

pj∂pj
Vpi

= nj

[

Vpi

(

2pipj
p2i − p2j

−
1

2
Vpj

+
1

2
V−pj

)

+ Vpj

(

1

2

pj + pi
pj − pi

+ Spi,−pj

)

− V−pj

(

1

2

pj − pi
pj + pi

+ Spi,pj

)

]

.

Substituting V and S according to (4.10), we obtain (1.5b).
An interesting observation is that the right sides of (1.5a) and (1.5b) take the forms of Hirota’s discrete-time Toda

equation (a 5-point equation) [14] and the bilinear discrete KdV equation (a 6-point equation), respectively (see also
chapter 8 of [13]), though the parametrisation here is entirely different.

5. Derivation of (1.6)

We choose the same plane wave factors as those of BKP in the CKP class, namely

ρk =

∞
∏

i=1

(

pi + k

pi − k

)ni

and σk′ = ρk′ =

∞
∏

i=1

(

pi + k′

pi − k′

)ni

, (5.1)

and these provide the same dynamical relations for the infinite matrix C as follows:

(Tnj
C)

pj −
tΛ

pj + tΛ
=

pj +Λ

pj −Λ
C, (5.2a)

∂pj
C = nj

[(

1

pj +Λ
−

1

pj −Λ

)

C +C

(

1

pj + tΛ
−

1

pj − tΛ

)]

, (5.2b)

which describe the linear dispersion of the discrete CKP equation.
We select the Cauchy kernel

Ωk,k′ =
1

k + k′
(5.3)

for the CKP class, which is the same as that in the AKP case, and therefore we still have the fundamental relation
for Ω given by

ΩΛ+ tΛΩ = O. (5.4)

Since the evolution of the infinite matrix C is governed by (5.2), we reformulate (5.4) and present the following
equations:

Ω
pj +Λ

pj −Λ
−

pj −
tΛ

pj + tΛ
Ω = 2pj

1

pj + tΛ
O

1

pj −Λ
, (5.5a)

Ω

(

1

pj +Λ
−

1

pj −Λ

)

+

(

1

pj + tΛ
−

1

pj − tΛ

)

Ω = −
1

pj − tΛ
O

1

pj +Λ
−

1

pj + tΛ
O

1

pj −Λ
, (5.5b)

in order to derive the dynamical relations of U below.
Now we construct the dynamical evolutions of the infinite matrix U . Acting the shift operator Tnj

on equation
(2.11) and taking (5.2a), we have

Tnj
U =

[

1− (Tnj
U)Ω

]

(Tnj
C) =

[

1− (Tnj
U)Ω

] pj +Λ

pj −Λ
C

pj +
tΛ

pj − tΛ
.

Notice that the infinite matrix Ω obeys (5.5a). We can rewrite the above equation as

(Tnj
U)

pj −
tΛ

pj + tΛ
=

pj +Λ

pj −Λ
C − (Tnj

U)Ω
pj +Λ

pj −Λ
C =

pj +Λ

pj −Λ
C − (Tnj

U)

(

2pj
1

pj + tΛ
O

1

pj −Λ
+

pj −
tΛ

pj + tΛ
Ω

)

C,
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and this can be further simplified as

(Tnj
U)

pj −
tΛ

pj + tΛ
=

pj +Λ

pj −Λ
U − 2pj(Tnj

U)
1

pj + tΛ
O

1

pj −Λ
U . (5.6a)

Equation (5.6a) is the first dynamical relation we need and it describes how U evolves along the lattice directions nj .
The other dynamical relation we need is the one evolving with regard to pj , and the derivation is very similar to those
of (3.6b) and (4.6b), which reads

∂pj
U = nj

[(

1

pj +Λ
−

1

pj −Λ

)

U +U

(

1

pj + tΛ
−

1

pj − tΛ

)

+U
1

pj − tΛ
O

1

pj +Λ
U +U

1

pj + tΛ
O

1

pj −Λ
U

]

.

(5.6b)

As is similar to the BKP case, we also need to impose a certain constraint on the spectral variables k and k′. This
is realised by setting the integration domain D symmetric and simultaneously requiring integration measure satisfying

dζ(k′, k) = dζ(k, k′). (5.7)

Such a reduction results in a symmetric infinite matrix C because

t
C =

∫∫

D

dζ(k, k′)ρkck′

t
ckρk′ =

∫∫

D

dζ(k′, k)ρk′ck′

t
ckρk = C.

At the same time, we observe that the kernel (5.3) is symmetric in terms of k and k′, which implies that tΩ = Ω. The
symmetry properties of C and Ω together guarantee that U from (2.11) satisfies

t
U = U , (5.8)

i.e. it is a symmetric infinite matrix.
During the derivation of (1.6) below, for convenience we introduce variables

Va
.
= 1−

(

U
1

a+ tΛ

)

0,0

, Wa
.
= 1−

(

1

a+Λ
U

)

0,0

and Sa,b
.
=

(

1

a+Λ
U

1

b+ tΛ

)

0,0

, (5.9)

which satisfy

Va = Wa and Sa,b = Sb,a, (5.10)

respectively, due to the symmetry condition (5.8). We define the tau function in the CKP class as

τ = det(1 +ΩC), (5.11)

and after certain straightforward but relatively complex calculation based on (5.6a), we can derive

Tnj
τ

τ
= 1 + 2pjS−pj ,−pj

and
T−1

nj
τ

τ
= 1− 2pjSpj ,pj

, (5.12a)

as well as

[

1− (pi + pj)Spi,pj

]2
=

(pi + pj)
2(T−1

ni
τ)(T−1

nj
τ)− (pi − pj)

2τ(T−1
ni

T−1
nj

τ)

4pipjτ2
. (5.12b)

Similar to the BKP case, the S−pi,pj
, Spi,−pj

and S−pi,−pj
analogues of (5.12b) follow from the interchange relation

(pi,Tni
) ↔ (−pi,T

−1
nj

. Moreover, the dynamics of the tau function with respect to the lattice parameter pj is derived

by carrying the same calculation in the derivation of (3.8b), which establishes the link between τ and S and takes the
form of

∂pj
ln τ = 2njSpj ,−pj

. (5.12c)

Notice from (5.12) that the tau function is connected with the S-variable. We therefore multiply (5.6b) by (a+Λ)−1

from the left and (b + tΛ)−1 from the right simultaneously and take the (0, 0)-entry, and as a result, an equation for
Sa,b arises in the form of

∂pj
Sa,b = nj

[

1

pj − a
(Sa,b − Spj ,b) +

1

pj + a
(S−pj ,b − Sa,b)

+
1

b− pj
(Sa,pj

− Sa,b) +
1

pj + b
(Sa,−pj

− Sa,b)− Sa,−pj
Spj ,b − Sa,pj

S−pj ,b

]

.

By setting a = pi and b = −pi, it is rewritten as

∂pj
Spi,−pi

=
nj

(pi + pj)2
[

(1− (pi + pj)Spi,pj
)(1 + (pi + pj)S−pi,−pj

)− 1
]

+
nj

(pi − pj)2
[

(1− (pi − pj)Spi,−pj
)(1− (pj − pi)S−pi,pj

)− 1
]

.

It is then possible to replace the S-variable by τ through (5.12a) and (5.12b) in the above equation. As a result,
it leads to the nonautonomous differential-difference CKP equation (1.6). We note that this equation is still in the
form of the (2+2)-dimensional Toda-type, but here the bilinearity is broken (though the equation is still quadratic)
compared with (1.4a) and (1.5a) since the square root operation is involved. This is not surprising as we have seen
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the discrete CKP equation (1.3) is a quartic equation. Equation (1.6) can alternatively be written as an eighth-power
equation







[

pipj(p
2
i − p2j )

2

ninj

Dpi
Dpj

τ · τ + 8pipj(p
2
i + p2j )τ

2

]2

− (pi − pj)
4EF − (pi + pj)

4GH







2

= 4(p2i − p2j )
4EFGH

by taking square twice in order to eliminate the square root in the expression, where E, F , G and G are already given
in section 1 below (1.3).

6. Remarks on soliton solutions, multi-dimensional consistency and higher-order symmetries

We have shown how the six nonautonomous D∆Es are derived from the DL scheme, by associating each equation
with a certain linear integral equation in the form of (2.6). From the viewpoint of the DL approach, this guarantees
the integrability of the resulting nonlinear D∆Es, as long as their respective linear integral equations are solvable.
Here by integrability we mean the existence of an exact solution possessing an infinite number of free parameters (e.g.
soliton-type solution), while the initial boundary value problem is not discussed. Below we present soliton solutions
of these D∆Es, by performing a very special reduction on the measure in the respective linear integral equations.

We start with the formal tau functions (3.7), (4.9) and (5.11) in order to construct soliton-type solutions, instead
of the linear integral equation (2.6), since the tau functions defined as such already contain the key ingredients of the
linear integral equation, namely the integration domain and measure, the plane wave factors as well as the Cauchy
kernel. The procedure is exactly the same as that given in [11]. Hence, we only provide a short guide and directly list
the results below. For equations (1.4a), (1.4b) and (1.4c), we take the measure

dζ(k, k′) =

N
∑

i=1

N ′

∑

j=1

Ai,j

(2πi)2
1

k − ki

1

k′ − k′j
dkdk′ with i being the imaginary unit, (6.1)

which results in the determinant solution (i.e. soliton solution)

τ = det(1 +AM), (6.2)

where 1 denotes the N ×N unit matrix, A = (Ai,j)N×N ′ is an arbitrary matrix and the entries of M = (Mj,i)N ′×N

are given by

Mj,i =
ρki

σk′

j

ki + k′j
, with ρ and σ given by (3.1).

Here N and N ′ are arbitrary positive integers. Similarly, for equations (1.5a) and (1.5b) we take a special measure

dζ(k, k′) =

2N
∑

i,j=1

Ai,j

(2πi)2
1

k − ki

1

k′ − k′j
dkdk′, Ai,j = −Aj,i, (6.3)

which obeys the antisymmetry condition in (4.7). In this case, the tau function is determined by

τ2 = det(1 +AM), (6.4)

where A = (Ai,j)2N×2N is an antisymmetric matrix and the Cauchy matrix M = (Mj,i)2N×2N has its (j, i)-entry

Mj,i = ρki

1

2

ki − k′j
ki + k′j

σk′

j
, in which ρ and σ are defined by (4.1).

For the CKP class, we consider the following measure reduction:

dζ(k, k′) =

N
∑

i,j=1

Ai,j

(2πi)2
1

k − ki

1

k′ − k′j
dkdk′, Ai,j = Aj,i, (6.5)

where we have respected the condition in (5.7). Then the formal tau function (5.11) turns out to be

τ = det(1 +AM), (6.6)

in which A = (Ai,j)N×N is a symmetric matrix and the (i, j)-entry of M = (Mj,i)N,N is defined as

Mj,i =
ρki

σk′

j

ki + k′j
, where ρ and σ are defined as (5.1).

The DL also provides a perspective to understand the MDC property of the six D∆Es, from their respective solution
structures. We focus on the formal tau functions (3.7), (4.9) and (5.11), since the soliton-type expressions (6.2), (6.4)
and (6.6) are the natural consequences arising from the measure reductions (6.1), (6.3) and (6.5), respectively. We
take equation (1.5a) as an example. The formal solution (4.9) relies on its flow variables pi, pj , ni and nj through the
infinite matrix C, whose dynamics are completely determined by the plane wave factor ρkσk′ given in (4.1). Observing
that all independent variables are on the same footing2 in (4.1), we conclude that D∆Es in the form of (1.5a) with
regard to different lattice parameters and variables share the same nontrivial solution (4.9); in other words, these

2This is also the reason why we adopt the notations pj and nj for j = 1, 2, · · · rather than select fixed indices from the beginning.
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equations are compatible with each other. This is the MDC property that we normally adopt in the theory of discrete
integrable systems, and here it is applied to the differential-difference case.

Furthermore, the derivation of (1.4a), (1.4b) and (1.4c) shows that the three equations have the same tau function
(3.7) as the common solution, and such a tau function simultaneously (cf. [11]) serves a solution of (1.1). This implies
that these four equations are multi-dimensionally consistent, within the DL scheme; in other words, equations (1.4a),
(1.4b), (1.4c) and (1.1) should be treated as compatible flows in the AKP class. Similarly, equations (1.5a), (1.5b)
and (1.2) are also multi-dimensionally consistent with each other; while equation (1.6) is compatible with (1.3), from
the same viewpoint. This is also the MDC property, namely equations in different forms can still be consistent with
each other. As a remark, we would like to note that here the MDC is only verified on the solutions generated by the
DL framework. The verification of the consistency on the level of equations still remains future work. We believe the
assertion is correct, as the solutions following from the DL already possess an infinite number of degrees of freedom.

With the help of the solution structures of the AKP, BKP and CKP classes discussed above, we are now allowed
to explain how the higher-order symmetries in the continuous KP-type hierarchies are generated from the lattice
parameters. The idea to realise this is to compare the effective plane wave factors in each discrete KP class with its
corresponding continuous analogues (which are given in [12]). In the AKP class, we require

ρkσk′ =

∞
∏

i=1

(

pi + k

pi − k′

)ni

= exp







∞
∑

j=1

(

kj − (−k′)j
) (−1)j−1

j

∞
∑

i=1

ni

pji







= exp







∞
∑

j=1

(

kj − (−k′)j
)

xj







.

Therefore, the relationship between the continuous variables xj and the lattice parameters pi is given by

xj =
(−1)j−1

j

∞
∑

i=1

ni

pji
for j = 1, 2, · · · , which results in ∂pi

=

∞
∑

j=1

(−1)j
ni

pj+1
i

∂xj
. (6.7)

Likewise, as the form of the plane wave factor is different, we require in the BKP and CKP classes

ρkσk′ =

∞
∏

i=1

(

pi + k

pi − k

pi + k′

pi − k′

)ni

= exp







∞
∑

j=0

(

k2j+1 + k′2j+1
) 2

2j + 1

∞
∑

i=1

ni

p2j+1
i







= exp







∞
∑

j=0

(

k2j+1 + k′2j+1
)

x2j+1







,

and subsequently we obtain

x2j+1 =
2

2j + 1

∞
∑

i=1

ni

p2j+1
i

for j = 0, 1, 2, · · · , which leads to ∂pi
= −2

∞
∑

j=0

ni

p2j+2
i

∂x2j+1
. (6.8)

The transformations between the derivatives of lattice parameters pi and continuous flow variables xj listed in (6.7)
and (6.8) provide a way of generating all the higher-order symmetries of the continuous KP-type from the lattice
parameters. They are the counterparts of the result in the generating PDE of the discrete KdV equation given in [26]
on the KP level, though the generating PDEs for the discrete KP-type equations are not yet clear so far.

7. Conclusions

Based on the DL framework for the discrete AKP, BKP and CKP equations, we introduce a new perspective
to construct integrable nonlinear equations, by thinking of the lattice parameters as the independent variables and
treating them together with the discrete variables equally. As a result, six novel nonautonomous differential-equations
are proposed, including two (2+2)-dimensional nonautonomous D∆Es, namely (1.5a) and (1.6) from BKP and CKP
classes, respectively, as well as four (2+1)-dimensional nonautonomous semi-discrete equations, i.e. (1.4a), (1.4b) and
(1.4c) from the AKP class and (1.5b) from the BKP class.

It was already shown that nonautonomous D∆Es often play the role of master symmetries for lower-dimensional
discrete integrable systems [33], while the master symmetry theory for higher-dimensional lattice equations is not yet
clear. These new equations potentially provide us with an insight into understanding master symmetries of three-
dimensional (3D) integrable discrete models. Furthermore, it seems that (2+2)-dimensional nonautonomous integrable
models of Toda-type, such as equations (1.5a) and (1.6), have never appeared in the literature so far, to be best of the
authors’ knowledge. Their geometric interpretation still needs to be discovered.

In addition to symmetries and master symmetries, we also note that the integrability of discrete KP-type equations
was also proven from the perspective of conservations laws. In [22], conservation laws for the discrete AKP and BKP
equations were constructed, while it remains a problem for the discrete CKP equation.

The ultimate goal is to find closed-form generating PDEs for higher-dimensional integrable hierarchies and their
integrability structures. This also remains an open problem for future study.
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