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Abstract

The idea of using multi-task learning ap-

proaches to address the joint extraction of en-

tity and relation is motivated by the related-

ness between the entity recognition task and

the relation classification task. Existing meth-

ods using multi-task learning techniques to ad-

dress the problem learn interactions among the

two tasks through a shared network, where

the shared information is passed into the task-

specific networks for prediction. However,

such an approach hinders the model from

learning explicit interactions between the two

tasks to improve the performance on the indi-

vidual tasks. As a solution, we design a multi-

task learning model which we refer to as re-

current interaction network which allows the

learning of interactions dynamically, to effec-

tively model task-specific features for classi-

fication. Empirical studies on two real-world

datasets confirm the superiority of the pro-

posed model.

1 Introduction

The extraction of entities and relations from tex-

tual data comprises of two sub-tasks: entity recog-

nition (ER) and relation classification (RC). The

ER task aims at extracting all entities in a given

text. The RC task aims at classifying the re-

lation between any pair of entities in the text.

In practice, both tasks are required to be solved

jointly, and have been observed to contribute sig-

nificantly in extracting structured knowledge from

unstructured text for several applications, includ-

ing knowledge base construction (Komninos and

Manandhar, 2017; Deng et al., 2019; Nathani et al.,

2019). For instance, consider the sentence John

was born in Sheffield, a city in the north of Eng-

land. The goal of a joint entity and relation ex-

traction task is to identify all the factual rela-

tional triples (or relational facts) (Sheffield,

∗Corresponding author

birth place of, John) and (England,

contains, Sheffield).
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(a) Flat Structure (b) Graph Structure

Figure 1: Two topological structures for multi-task

learning. Here, A and B are related tasks, and S is

the shared information of the two tasks. The directed

edges define the information flow.

The simplest approach to solve this joint task

is to utilize a pipeline-based approach by firstly

extracting all entities in the sentence and then clas-

sifying the relation between all entity pairs (Ze-

lenko et al., 2003; Zhou et al., 2005; Chan and

Roth, 2011). However, pipeline-based approaches

disregard the correlation between ER and RC tasks,

leading to error propagation in these methods.

Recently, researchers have exploited multi-task

learning (MTL) (Collobert and Weston, 2008) tech-

niques to capture the correlation between the ER

and RC tasks, and have successfully improved the

performance of the individual tasks (Miwa and

Bansal, 2016; Fu et al., 2019; Zeng et al., 2019a).

These methods have a flat structure (Liu et al.,

2019a). Figure 1(a) shows a flat structure for multi-

task learning. Methods using a flat structure learn

interactions between tasks through a shared net-

work, and extract a shared common representation

which is exploited by task-specific networks inde-

pendently. We refer to MTL methods utilizing a

flat structure as conventional MTL methods. A

conventional MTL method is effective to an extent

because they help to improve generalization per-

formance on all the tasks. However, it is based on

the strong assumption that the shared network is

sufficient to capture the correlations between the

tasks.
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Even so, identifying the relational facts in sen-

tences is a difficult problem. Reason being that

several relational facts may overlap in a sen-

tence (Zhang et al., 2018). Although a conventional

MTL method may learn task-specific features and

has been successfully applied in a wide variety

of scenarios (Zhang and Wang, 2016; Wu et al.,

2016; Goo et al., 2018; Han et al., 2019; Li et al.,

2019; Nishino et al., 2019; Liu et al., 2019b; Hu

et al., 2019), its flat structure restricts the model

to effectively learn the correlations between tasks.

For example in Figure 1(a), the model cannot ex-

plicitly learn correlations between the two tasks.

Without modeling explicit interactions, as shown

in a sequence learning task (Liu et al., 2019a), the

existing MTL-based methods (Miwa and Bansal,

2016; Fu et al., 2019; Zeng et al., 2019a) cannot

effectively capture the correlation between the ER

and the RC tasks.

In this paper, we overcome the aforementioned

limitation of previous MTL-based methods by

proposing a recurrent interaction network (RIN)

to effectively capture the correlations between the

ER and RC tasks. RIN has a multi-task learning

architecture which allows interactions between the

ER and RC tasks to be learned explicitly, with the

aim to improve the performance on the individ-

ual tasks. More specifically, RIN has a recurrent

structure comprising of multiple interaction layers,

allowing the model to progressively learn complex

interactions while refining predictions for ER and

RC. The RIN structure is an example of a multi-

task learning network with a graph structure (Liu

et al., 2019a). We show the graph structure in

Figure 1(b). As shown by our experiment, the pro-

posed model progressively provides discriminating

features which is an essential requirement for the

individual task for classification. Empirical stud-

ies on NYT and WebNLG datasets achieve new

state-of-the-art performances and confirm the ef-

fectiveness of the proposed RIN model.

2 Related Work

Previous neural methods proposed for jointly ex-

tracting entities and relations can generally be cat-

egorized into three classes. The first class models

the joint extraction task as a sequence labeling prob-

lem (Zheng et al., 2017; Dai et al., 2019; Takanobu

et al., 2019; Yu et al., 2019). Among the proposed

works, (Zheng et al., 2017) was the first to intro-

duce a tagging strategy to address the problem,

transferring the joint extraction task to a sequence

labelling problem. However, this method has the

fundamental weakness of addressing the overlap-

ping problem of relational facts in the text. To meet

it, (Dai et al., 2019) proposed a position-attentive

tagging scheme to solve the overlapping problem.

Meanwhile, (Takanobu et al., 2019; Yu et al., 2019)

approach the problem by decomposing the joint ex-

traction task into two sequence labeling sub-tasks,

to address the joint entity and relation extraction

problem.

The second class of works use a sequence-to-

sequence (seq2seq) approach to address the prob-

lem (Zeng et al., 2018, 2019b). (Zeng et al., 2018)

employs a seq2seq model to directly extract rela-

tional facts from the sentence by decoding the first

entity, second entity, and relation in that order. But,

their approach is limited to extracting a predefined

number of relational facts from the text. In extract-

ing relational triples, the order of extraction is key

to identify the relational facts. As such, (Zeng et al.,

2019b) proposed a seq2seq approach which utilizes

a reinforcement learning model to learn the order of

extracting the relational triples. Although effective,

the proposed seq2seq models (Zeng et al., 2018,

2019b) only decode a single word for an entity.

The third class design a multi-task learning

model to extract relational facts. Only few works

using this approach have been proposed (Miwa and

Bansal, 2016; Fu et al., 2019; Zeng et al., 2019a).

(Miwa and Bansal, 2016) is one of the first works

to extract relational facts using an MTL framework.

(Zeng et al., 2019a) proposed an MTL model which

comprises of an ER model to extract entities with

multi-tokens, and a seq2seq model to extract rela-

tional facts. Their approach solves the entity ex-

traction problem faced by models which are solely

seq2seq based. (Fu et al., 2019) exploited a bidi-

rectional recurrent neural network and graph con-

volutional network to extract common features of

the ER and RC tasks, which are further fed into

two independent classifiers for ER and RC pre-

dictions. Despite the substantial efforts and great

successes in the design of these MTL-based meth-

ods, these methods follow the conventional MTL

approach (Collobert and Weston, 2008). Thus, they

only capture implicit interactions by means of the

shared network of the ER and RC tasks.

Modelling explicit interactions between multiple

tasks in an MTL architecture has been explored to

improve predictions in several domains (He et al.,



2019; Zhao et al., 2019; Dankers et al., 2019; Lan

et al., 2017; Liu et al., 2019a, 2016). As mentioned

in Section 1, it is difficult to effectively learn the

correlations between the ER and the RC tasks. To

this end, we follow some of the ideas from other

domains to dynamically learn the interactions be-

tween the two tasks, refining the classifiers of the

tasks. To the best of our knowledge, this is the

first work to model explicit interactions in a multi-

task learning architecture for the joint extraction of

entities and relations in text.

3 Problem Statement

In this section, we formally describe the joint entity

and relation extraction problem. For a set T =
{t1, · · · , tl} of pre-defined l relation types, and a

given sentence s = {w1, w2, · · · , wn} of n words,

the problem is to extract all relational facts for the

given sentence. In this paper, a single relational

triple is of the form 〈wi, t, wj〉, where wi, wj ∈ s

are entity words or heads of multi-token entities,

and wi 6= wj , and the relation t ∈ T . The goal is to

predict the probability yt(i,j) that the relational triple

〈wi, t, wj〉 is factual given the word pair (wi, wj).
Besides, the entity recognition task can identify the

head and tail words of multi-token entities for the

extracted relational triple.

4 Model

In this section, we describe the recurrent interaction

network (RIN) for extracting relational facts in text.

The RIN model is composed of an entity recogni-

tion (ER) module and a relation classification (RC)

module. We start by presenting an overview of the

RIN model, showing the interaction between the

ER and RC tasks. Next, we elaborate the ER and

RC modules and define the training objective. The

framework of RIN is shown in Figure 2.

4.1 Recurrent Interaction Network

The RIN model we propose uses a bidirectional

LSTM network to learn correlations between the

ER and the RC tasks, and derives shared features

for the two tasks. We denote H as the output of

shared features, where H = {h1, h2, . . . , hn} cor-

responds to the representations of words in sen-

tence s. A straightforward strategy for the joint

ER and RC task is to pass H into independent ER

or RC modules for predictions. Denote Ce as the

ER module to identify and extract entities in the

text, and Cr as the RC module to classify relational

triples in the text. Formally, Ye and Yr, the set of

predictions of the entities and relational triples are

formulated as:

Yr = Cr(H)

Ye = Ce(H)
(1)

where Ye =: {yi|hi ∈ H}, Yr =: {y(i,j)|hi, hj ∈
H}, yi is a probability distribution over BIOES

labels (Fu et al., 2019), and y(i,j) is a probability

distribution over the relation types t ∈ T . This

structure is basically a conventional MTL method,

where interactions are learned implicitly, impeding

dynamic learning of intrinsic correlations between

the two tasks.

To enhance the interaction between the two tasks,

we dynamically learn the explicit interactions be-

tween the ER and RC tasks. Each layer of the RIN

model is an interaction layer comprising of two sep-

arate gated recurrent units (GRUs), accounting for

the ER task and the RC task. The GRU networks

are designed to model task-specific features at the

k-th layer, taking into account the previous shared

features H(k−1) and the previous predictions Y k−1
e

and Y k−1
r . Meanwhile, the shared features H(k)

generated at the k-th layer is a sum of the previ-

ous task-specific features and the previous shared

features H(k−1). Such a mechanism ensures that

we retain the learned correlations as learning pro-

gresses along the network.

Let GRUr and GRUe denote the GRU networks

for the relation classification and entity recogni-

tion modules in the interaction layer. Denote Hk
r

and Hk
e the task-specific features modeled by the

respective GRUr and GRUe networks at the k-th

layer. Formally, the outputs Hk
r and Hk

e and shared

features Hk at the k-th interaction layer is com-

puted as follows:

Hk
r = GRUr

(

Y k−1
r , Hk−1|θGRUr

)

Hk
e = GRUe

(

Y k−1
e , Hk−1|θGRUe

)

Hk = Hk
r +Hk

e +Hk−1

(2)

where θGRUr
and θGRUe

are parameters for the

GRUr and GRUe networks respectively. To take

advantage of the previous learned explicit inter-

actions in this network, we allow the network to

have a minimum of two layers, i.e, k = 2, 3 . . .K.

Hence, for the ER task and RC tasks, the outputs

at the k-th layer is formulated as:

Y k
r = Cr(H

k
r )

Y k
e = Ce(H

k
e )

(3)
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Figure 2: (a) The framework of RIN. (b) The entitiy recognition module. (c) The relation classification module.

In (b) and (c), we use a toy example of shared features H = {h1, h2, h3} to demonstrate the entity prediction

for word wi and relation prediction for all pairs (w1, w1), (w1, w2), (w1, w3). +, ⊕, ∗, φ, and σ denote a sum-

mation operator, a concatenation operator, a matrix multiplication, relu activation function and sigmoid function

respectively.

4.1.1 The GRU network

In the RIN model, we proposed the GRUr and

GRUe networks for the relation classification and

entity recognition modules. Formally, for a single

word w, the GRUe network takes the output y ∈ Ye
and the shared word representation h ∈ H as inputs

and computes the ER task feature vector he ∈ He.

Formally, this can be formulated as:

z = σ (Wz(h ⊕ y))

u = σ (Wu(h ⊕ y))

ȟ = tanh (Wo((u ∗ h) ⊕ y))

he = (1− z) ∗ h+ z ∗ ȟ

(4)

where ⊕ is a concatenation operator, Wz,Wu,Wo

are learnable parameters of the GRU network.

GRUr follows the same architecture as GRUe to

compute the RC task feature vector hr ∈ Hr for

word w. However, for a given word wi, it considers

hi ∈ H and the vector yi, where yi is modeled

from the set of relation predictions for all word

pairs containing wi. We can define this set as

Yr(wi) =: {y(i,j) ∈ Yr|wj ∈ s}.

yi = maxpool (Yr(wi)) , (5)

where the function maxpool(·) is a maxpool op-

eration along the dimension.

4.2 Entity Recognition (ER)

The ER module Ce attempts to recognize all en-

tities in the text based on the features He. As an

entity may consist of multiple words, we formalize

the ER task as tagging each word with an entity la-

bel, taking values from (Begin, Inside, End, Single,

Out) using the BIOES tagging scheme (Fu et al.,

2019). Specifically, the ER module classifies each

word to one of the five label clusters. The probabil-

ity distribution y of word w over these five clusters

is calculated based on the ER task feature vector

he as follows:

y = softmax(Wehe + be), (6)

where θER = {We, be} are learnable model param-

eters.

4.3 Relation Classification (RC)

The RC module Cr makes an attempt to identify

and extract relational facts from the sentence. Fol-

lowing (Fu et al., 2019), we classify all relations

between pairs of words in the sentence based on

the features Hr. Thus, the relation classification

task is interpreted as a binary classification prob-

lem, where we identify the truth value of a rela-

tional triple 〈wi, t, wj〉 by classifying the word pair

(wi, wj). The task can be regarded as learning the

probability distribution y(i,j) for each word pair

(wi, wj). The value y(i,j) is a probability distribu-

tion over the relation types t ∈ T . Thus, y(i,j) is

a vector with size l, where each dimension is a

probability yt(i,j) of the relational triple 〈wi, t, wj〉
to be factual. We compute y(i,j) for each word pair

(wi, wj) by performing the following steps:

m = φ (Wm(hi ⊕ hj))

y(i,j) = σ (Wrm+ br)
(7)

where hi, hj ∈ Hr are the RC task feature vectors

for wi, wj ∈ s, ⊕ is a concatenation operation,

φ(·) is the ReLU activation function, σ(·) is the

sigmoid activation function. θRC = {Wm,Wr, br}
are learnable model parameters. Instead of using

a softmax function for classification, as used in

(Fu et al., 2019), we find that the sigmoid function

offers a natural way of identifying multiple rela-

tions that may exist between word pairs, solving

the overlapping problem more efficiently.



4.4 Training Objective

The RIN model ultimately outputs task-specific rep-

resentations, which are fed into their corresponding

ER module and the RC module for predictions. As

such, the training objective of RIN is comprised

of two parts: the loss function for RC Lr and the

loss function for ER Le. The losses Le and Lr are

defined as

Le(w) = CrossEntropy (ȳ, y)

Lr(〈wi, t, wj〉) = CrossEntropy
(

ȳt(i,j), y
t
(i,j)

)

(8)

where ȳ and ȳt(i,j) are the respective ground truth

values of word w and relational triple 〈wi, t, wj〉,
and y and yt(i,j) are the predictions from the ER

module (Ce) and the RC module (Cr) at the K-th

layer (i.e. the last layer) of RIN.

The total loss L over all words and relational

triples for all sentences is then calculated as follows.

L=
∑

s





∑

w∈s

Le(w) +
∑

wi,wj∈s,t∈T

Lr(〈wi, t, wj〉)



 (9)

With gradient based algorithm, we seek to mini-

mize the total loss L over all model parameters

Θ = {θGRUr
, θGRUe

, θRC, θER, θH} (θH is the pa-

rameters for the BiLSTM network) to achieve good

performance for both the ER and RC tasks.

5 Experiment

We conduct experiments to evaluate RIN on two

public datasets NYT (Riedel et al., 2010) and

WebNLG (Gardent et al., 2017). The NYT dataset

consists of 1.18M sentences with 24 predefined

relation types. The WebNLG dataset was created

by Natural Language Generation (NLG) tasks, and

adapted by (Zeng et al., 2018) for a relational triple

extraction task. We directly use the preprocessed

datasets released by (Zeng et al., 2018) 1. It is

worth mentioning that only the tail word of an en-

tity is marked in the preprocessed dataset released

by (Zeng et al., 2018). To properly distinguish

entities, we take a further step of tagging entities

with the conventional BIOES tagging scheme as

the one used in (Fu et al., 2019). We report Preci-

sion (Prec), Recall (Rec) and micro-F1 (F1) scores

on our model and other recent models (Zeng et al.,

2018, 2019b; Zheng et al., 2017; Fu et al., 2019;

1https://github.com/xiangrongzeng/copy re

Zeng et al., 2019a) for the Partial Match task and

the Exact Match task. For our proposed method, we

report the mean results over five runs using differ-

ent random seeds, along with its standard deviation

to show the stability of our results. The statistics

of datasets are summarized in Table 2. Additional

experiments on older datasets NYT10 (Riedel et al.,

2010) and NYT11 (Hoffmann et al., 2011) are also

performed, and the results are available in the sup-

plementary file. Our results on these datasets show

satisfactory performance, generally outperforming

previous models on the NYT10 and NYT11.

5.1 Partial Match and Exact Match

Both NYT and WebLG datasets support evaluation

for the Partial Match task and the Exact Match task.

The Partial Match task only requires the relation

and the heads of both subject and object entities

of the extracted relational triple to be correct. For

the Exact Match as recently adopted by (Zheng

et al., 2017; Fu et al., 2019; Zeng et al., 2019a),

the extracted relational triple is considered to be

correct if the relation and the heads and tails of the

subject and object entities are all correct. Thus, the

extracted relational triple completely matches the

gold relational triple.

5.2 Implementation Details

For a fair comparison with previous recent

works (Zeng et al., 2018), we use the 100-

dimensional Glove embedding (Pennington et al.,

2014) to represent the word embeddings 2. Part-

of-speech (POS) tags are assigned to words using

Stanford POS tagger 3. We map each POS tag

to a randomly initialized 10-dimensional POS em-

bedding. We concatenate both word and POS em-

beddings as the input embeddings. For any given

sentence, the input embeddings for words are fed

to a BiLSTM network to learn a 100-dimensional

embedding for each word. We improve learning

by using dropout regularization in the input em-

beddings. The BiLSTM embeddings represent the

shared features H in the RIN model. Our model

is trained using an Adam optimizer (Kingma and

Ba, 2014). The hyper-parameters are set empiri-

cally and manually tuned on the development set

to select the best model. We implement our model

using PyTorch on a Linux machine with a GPU

device NVIDIA V100 NVLINK 32GB. Table 3

2https://nlp.stanford.edu/projects/glove/
3https://stanfordnlp.github.io/CoreNLP/



NYT WebNLG
Evaluation Model Prec Rec F1 Prec Rec F1

OneDecoder 59.4 53.1 56.0 32.2 28.9 30.5
MultiDecoder 61.0 56.6 58.7 37.7 36.4 37.1

Partial Match OrderRL 77.9 67.2 72.1 63.3 59.9 61.6
RINw/o interaction 83.9±0.6 83.1±0.6 83.5±0.2 84.9±0.6 86.3±0.8 85.6±0.3
RIN 87.2±0.2 87.3±0.3 87.3±0.1 87.6±0.1 87.0±0.9 87.3±0.4

NovelTagging 62.4 31.7 42.0 52.5 19.3 28.3
GraphRel1p 62.9 57.3 60.0 42.3 39.2 40.7
GraphRel2p 63.9 60.0 61.9 44.7 41.1 42.9

Exact Match CopyMLT-One 72.7 69.2 70.9 57.8 60.1 58.9
CopyMLT-Mul 75.7 68.7 72.0 58.0 54.9 56.4
RINw/o interaction 77.4±1.1 76.4±0.7 76.9±0.3 75.0±1.1 73.3±0.7 74.2±0.3
RIN 83.9±0.5 85.5±0.5 84.7±0.4 77.3±0.7 76.8±1.0 77.0±0.2

Table 1: Precision, Recall and F1 performance of different models on the datasets. Results for the compared models

are retrieved from their original papers. We report the mean results over five runs and the standard deviation. The

best performance is bold-typed.

Dataset Train Dev Test

NYT 56195 5000 5000
WebNLG 5019 500 703

Table 2: Statistics of NYT and WebNLG

lists the hyper-parameters of RIN on the datasets.

For the relation classification task, we threshold

the probabilities of the prediction and return only

the relations with probability values ≥ 0.5. The

code for our model will be made available upon

acceptance.

Hyper-parameter NYT WebNLG

K 4 2
d 0.1 0.1

Partial Match η 1e−3
5e−4

bs 50 50

epochs 100 150

K 7 3
d 0.1 0.1

Exact Match η 1e−3
5e−4

bs 50 50

epochs 100 150

Table 3: Hyper-parameter settings of RIN on the

datasets (K: number of interaction layers, d: dropout

rate for input embeddings, η: learning rate, bs: batch

size.)

5.3 Performance Comparison

We compare our model with several recent models

based on the Partial Match and the Exact Match

evaluation tasks. We also include a baseline model

RINw/o interaction which excludes the interaction net-

work used in RIN. In RINw/o interaction, the shared

features H modeled by BiLSTM network is di-

rectly passed into Ce and Cr for task-specific

predictions. We also compare with several re-

cent models, including the NovelTagging (Zheng

et al., 2017), sequence-to-sequence (seq2seq) mod-

els such as OneDecoder (Zeng et al., 2018), Multi-

Decoder (Zeng et al., 2018), and OrderRL (Zeng

et al., 2019b), and MTL-based methods Copy-

MLT (Zeng et al., 2019a), and GraphRel (Fu et al.,

2019).
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84

85

86
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F1
.%

NYT
WebNLG
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#number of interaction layers of RIN
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(A) Partial Match (B) Exact Match

Figure 3: Curves of F1 performance on different num-

ber of interaction layers K.

Partial Match Table 1 shows the performance of

different models on the datasets. For the Partial

Match evaluation task, it can first be noted that

the small standard deviation for our model RIN

and its ablated model RINw/o interaction shows that

our results are stable to an extent on the datasets.

Even with the simple structure of RINw/o interaction,

its results outperform the compared methods. In

extracting relational facts, our model treats the Par-

tial Match task as a relation classification problem.

Whereas the compared methods take a seq2seq

based approach to directly extract relational facts

in the sentence. The results suggest that our ap-

proach may be more effective in identifying the

relational facts for this task. It is more interesting

to see the performance achieved by RIN. First of all,

it can be noted that the model shows a level of sta-

bility due to its small standard deviation. Moreover,

RIN shows a significant performance boost to the



RINw/o interaction model, suggesting the importance

of dynamically learning the explicit interactions

between the ER task and the RC task.

Exact Match For the Exact Match task, we do not

consider the methods (Zeng et al., 2018, 2019b),

since these methods consider a seq2seq approach

in extracting relational triples. Seq2seq methods

are able to only decode a single word for an entity.

Hence, they will inevitably fail to identify entities

with multiple words.

In Table 1, we find that our ablated model

RINw/o interaction consistently outperforms previous

models on the two datasets. In a more detailed anal-

ysis, we can note that the variants of the GraphRel

model (Fu et al., 2019) consider the Exact Match

task as a relation classification problem which clas-

sifies all word pairs in the sentence. In its relation

classification module, it exploits a softmax func-

tion for the final classification. Hence, the model is

not able to address cases where multiple relations

exist between a pair of entities. We believe this

explains why its results underperforms when com-

pared to RINw/o interaction. Although CopyMLT and

its variants (Zeng et al., 2019a) consider a seq2seq

based approach to directly extract relational triples,

its ER model can identify entities with multiple

words and hence can address the Exact Match task.

Nonetheless, it fails to outperform our model due to

the fact that it uses a seq2seq based approach which

we believe to be a more complex method for iden-

tifying relational triples. Besides, our main model

RIN significantly outperforms RINw/o interaction on

the two datasets, further proving the importance

of the explicit interactions learned between the ER

and RC tasks.

5.4 Impact of K on the results

The hyper-parameter K is the number of interac-

tion layers of the RIN model. Thus, K controls

the number of times the RIN model attempts to

learn explicit interactions between the ER and RC

task. We conduct experiments to study the im-

pact of K on the performance of RIN. We expect

that the performance of the model increases as we

learn more explicit interactions between the ER

task and the RC task. Figure 3 shows the F1 curves

of RIN on the datasets for increasing values of

K. Here, at K = 0 the RIN model is reduced to

RINw/o interaction.

We observe that as K increases the performance

of RIN increases to an extent up to a point where it

overfits. Taking a closer look at the performance on

the Partial Match task, we find that RINw/o interaction

poorly models the interaction between the ER and

RC task. By learning explicit interactions using the

RIN model, we observe a sharp rise in performance

at K = 1. On the Exact Match task we observe

an interesting behaviour of RIN on the NYT and

WebNLG dataset. Note that the 60% of entities on

the WebNLG are multi-tokens, while 30% of the

entities in the NYT dataset are multi-tokens. This

means that the Exact Match task is more difficult

on the WebNLG dataset, compared to the NYT

dataset. As a consequence, RIN finds it difficult to

learn explicit interactions on the WebNLG, while

it learns much more easily on the NYT as K rises.

We observe a sharp rise in performance from the

first layer to the second layer on the NYT dataset.

The second layer of RIN takes advantage of the

original shared features H and the task-specific

features of the first interaction layer. Thus, effective

learning of the interaction between the two tasks

takes place from the second layer. This explains

the sharp rise in performance on the NYT dataset

for the Exact Match task.

The results suggests that, to an extent, the pro-

posed RIN model can dynamically filter addi-

tional interaction information between the two

tasks along the multiple interaction layers.

5.5 Ablation Experiment

To examine the contributions of our main model

components, we conduct ablation experiments on

the NYT and WebNLG datasets. We use the de-

fault hyper-parameter settings for the ablated mod-

els (see Table 3). The ablated models are: (1)

RINw/o ER: A RIN model which excludes the task-

specific features He in the update of the shared

features H , restricting the RC module from learn-

ing from the ER module. (2) RINw/o RC: A RIN

model which excludes the task-specific features Hr

in the update of the shared features H , restricting

the ER module from learning from the RC mod-

ule. (3) RINw/o POS: A RIN which only uses the

Glove word embeddings as the input embeddings.

We also include the ablated model RINw/o interaction.

Table 5 shows the results for the experiment.

We find that the performance of RIN deterio-

rates as we remove critical components. Among

the ablated models designed, RINw/o interaction per-

forms very poorly on the two datasets, suggesting

the importance of learning explicit interactions dy-



Case1: A cult of victimology arose and

was happily exploited by clever radicals

among Europes Muslims, especially

certain religious leaders like Imam Ahmad

Abu Laban in Denmark and Mullah Krekar

in Norway.

Golden:Europe, Denmark, Norway

(Europe, /location/location/contains, Denmark)

(Europe, /location/location/contains, Norway)

RINw/o interaction: Europe, Denmark, Norway

(Europe, /location/location/contains, Denmark)

RIN: Europe, Denmark, Norway

(Europe, /location/location/contains, Denmark)

(Europe, /location/location/contains, Norway)

Case2: Scott (No rating , 75 minutes)

Engulfed by nightmares, blackouts and the

anxieties of the age, a Texas woman flees

homeland insecurity for a New York vision

quest in this acute, resourceful and

bracingly ambitious debut film.

Golden: Scott, New York

(York, /location/location/contains, Scott)

RINw/o interaction: Texas, New York

(York, /location/location/contains, Scott)

RIN: Scott, New York

(York, /location/location/contains, Scott)

Table 4: Case study for RIN and RINw/o interaction. Entities and relational triples are in blue and orange texts

respectively. We mark a wrong prediction with a red text.

Model NYT WebNLG

RIN 84.7 77.0

RINw/o ER 83.9 76.4
RINw/o RC 77.3 76.0
RINw/o interaction 76.9 74.2
RINw/o POS 84.1 76.6

Table 5: F1 performance of different ablation models

on the datasets. The Exact Match evaluation is used.

namically between the ER and RC tasks. We also

find that RINw/o ER marginally underperforms the

RIN model, and also showing a better performance

when compared to RINw/o RC. The results suggest

that the performance of RIN is heavily dependent

on the ER module exploiting information from the

RC module. Lastly, the results for RINw/o POS sug-

gest that the POS tags does not significantly boost

the performance of RIN.

5.6 Case Study

We present two case examples from NYT dataset

as illustrations to observe the behaviour of the RIN

and RINw/o interaction models. Table 4 shows the

results of the study. In the first case example, both

RIN and RINw/o interaction correctly extracts all the

gold entities in the sentence. But, RINw/o interaction

captures only the gold relational triple (Europe,

/location/location/contains,

Denmark), and misses the gold triple (Europe,

/location/location/contains,

Norway). Given the fact that (Europe,

/location/location/contains,

Norway) overlaps a relational fat, it is im-

portant to dynamically learn to capture the

complex interaction between the ER and RC tasks.

The RIN model takes advantage of its interaction

network to identify both gold triples.

In the second case, we observe that

both RIN and RINw/o interaction correctly

extract the relational triple (York,

/location/location/contains,

Scott). However, RINw/o interaction identi-

fies Texas as an entity by error while RIN

correctly extracts the entity Scott and New

York. The results suggest that RIN is able to

leverage information from the RC module to

correctly identify entities in the ER module. It is

worth noting that we can easily complete the entity

York in the extracted relational triple by aligning

it to the extracted entity New York.

6 Conclusion

In this paper, we tackle the weakness of existing

MTL-based methods proposed for the joint extrac-

tion of entities and relation in unstructured text.

Specifically, these methods assume that a shared

network is sufficient to capture the correlations be-

tween the entity recognition task and the relation

classification task, and that the shared features de-

rived from this network can be passed into models

for the task-specific tasks to make predictions in-

dependently. Instead, we show that dynamically

learning the interactions between the tasks may cap-

ture complex correlations which improves the task-

specific feature for classification. We proposed

multi-task learning model which allows explicit in-

teractions to be dynamically learned among the sub-

tasks. Our experiments on benchmark datasets val-

idates clear advantage over the existing proposed

methods. We note that our model can be adapted

for other NLP tasks, including aspect level senti-

ment classification and slot filling. As future work,

we intend to explore its application in those fields.
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