

This is a repository copy of *The potential role of the ERRy pathway in placental dysfunction*.

White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/169601/

Version: Accepted Version

Article:

Zou, Z, Forbes, K orcid.org/0000-0002-3745-1337, Harris, LK et al. (1 more author) (2020) The potential role of the ERRy pathway in placental dysfunction. Reproduction. ISSN 1470-1626

https://doi.org/10.1530/rep-20-0272

© 2020 Society for Reproduction and Fertility 2020. Disclaimer: this is not the definitive Version of Record of this article. This manuscript has been accepted for publication in Reproduction, but the version presented here has not yet been copy-edited, formatted or proofed. Consequently, Bioscientifica accepts no responsibility for any errors or omissions it may contain.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

The potential role of the ERRy pathway in placental dysfunction

Zhiyong Zou¹, Karen Forbes^{1, 2}, Lynda K. Harris^{1,3}, Alexander E.P. Heazell^{1,4}

1. Maternal and Fetal Health Research Centre, University of Manchester, 5th floor (Research), St Mary's Hospital, Oxford Road, Manchester, UK, M13 9WL.

2. Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, UK.

3. Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK.

4. St Mary's Hospital, Manchester Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK

Abstract

Normal placental development and function is of key importance to fetal growth. Conversely aberrations of placental structure and function are evident in pregnancy complications including fetal growth restriction (FGR) and preeclampsia. Although trophoblast turnover and function is altered in these conditions, their underlying aetiologies and pathophysiology remains unclear, which hampers development of therapeutic interventions.

Here we review evidence that supports a role for Estrogen Related Receptor-gamma $(ERR\gamma)$ in the development of placental dysfunction in FGR and preeclampsia. This relationship deserves particular consideration because $ERR\gamma$ is highly expressed in normal placenta, is reduced in FGR and preeclampsia and its expression is altered by hypoxia, which is thought to result from deficient placentation seen in FGR and preeclampsia. Several studies have also found microRNA or other potential upstream regulators of $ERR\gamma$ negatively influence trophoblast function which could contribute to placental dysfunction seen in FGR and preeclampsia. Interestingly, microRNAs regulate $ERR\gamma$ expression in human trophoblast. Thus, if $ERR\gamma$ is pivotally associated with the abnormal trophoblast turnover and function it may be targeted by microRNAs

or other possible upstream regulators in the placenta.

This review explores altered expression of $ERR\gamma$ and upstream regulation of $ERR\gamma$ mediated pathways resulting in the trophoblast turnover, placental vascularisation, and placental metabolism underlying placental dysfunctions. This demonstrates that the $ERR\gamma$ pathway merits further investigation as a potential therapeutic target in FGR and preeclampsia.

Corresponding author: Zhiyong Zou, Maternal and Fetal Health Research Centre, University of Manchester, 5th floor (Research), St Mary's Hospital, Oxford Road, Manchester, UK, M13 9WL. Email address: zhiyong.zou@postgrad.manchester.ac.uk.

Short title: ERR γ and placental dysfunction.

Keywords: fetal growth restriction, preeclampsia, placental dysfunction, Estrogen Related Receptor-gamma.

Word count of full article (excluding reference and figure legend): 5695 words.

27

1	The potential role of the <i>ERR</i> pathway in placental dysfunction
2	Zhiyong Zou ¹ , Karen Forbes ^{1, 2} , Lynda K. Harris ^{1,3} , Alexander E.P. Heazell ^{1,4}
3	
4	1. Maternal and Fetal Health Research Centre, University of Manchester, 5th floor
5	(Research), St Mary's Hospital, Oxford Road, Manchester, UK, M13 9WL.
6	2. Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine
7	and Health, University of Leeds, Leeds, LS2 9JT, UK.
8	3. Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health,
9	University of Manchester, Manchester, M13 9PL, UK.
10	4. St Mary's Hospital, Manchester Foundation Trust, Manchester Academic Health
11	Science Centre, Manchester, M13 9WL, UK
12	
13	Abstract
14	Normal placental development and function is of key importance to fetal growth.
15	Conversely aberrations of placental structure and function are evident in pregnancy
16	complications including fetal growth restriction (FGR) and preeclampsia. Although
17	trophoblast turnover and function is altered in these conditions, their underlying
18	aetiologies and pathophysiology remains unclear, which hampers development of
19	therapeutic interventions.
20	Here we review evidence that supports a role for Estrogen Related Receptor-gamma
21	$(ERR\gamma)$ in the development of placental dysfunction in FGR and preeclampsia. This
22	relationship deserves particular consideration because $ERR\gamma$ is highly expressed in
23	normal placenta, is reduced in FGR and preeclampsia and its expression is altered by
24	hypoxia, which is thought to result from deficient placentation seen in FGR and
25	preeclampsia. Several studies have also found microRNA or other potential upstream
26	regulators of ERRy negatively influence trophoblast function which could contribute to

regulate $ERR\gamma$ expression in human trophoblast. Thus, if $ERR\gamma$ is pivotally associated

placental dysfunction seen in FGR and preeclampsia. Interestingly, microRNAs

29 with the abnormal trophoblast turnover and function it may be targeted by microRNAs

30 or other possible upstream regulators in the placenta. 31 This review explores altered expression of ERRy and upstream regulation of ERRymediated pathways resulting in the trophoblast turnover, placental vascularisation, and 32 33 placental metabolism underlying placental dysfunctions. This demonstrates that the 34 ERRy pathway merits further investigation as a potential therapeutic target in FGR and 35 preeclampsia. 36 37 Corresponding author: Zhiyong Zou, Maternal and Fetal Health Research Centre, University of Manchester, 5th floor (Research), St Mary's Hospital, Oxford Road, 38 Manchester, UK, M13 9WL. Email address: zhiyong.zou@postgrad.manchester.ac.uk. 39 40 41 Short title: ERR γ and placental dysfunction. 42 Keywords: fetal growth restriction, preeclampsia, placental dysfunction, Estrogen 43 44 Related Receptor-gamma. 45 Word count of full article (excluding reference and figure legend): 5695 words. 46 47 48 49 **1.0 Introduction** 50 Placental dysfunction describes when the placenta fails to develop and/or function adequately to support the nutritional demands of the fetus, and is central to the

51 52 development of both fetal growth restriction (FGR) and preeclampsia (Spinillo et al., 2019, Redman, 1991). FGR describes a fetus that does not reach its genetic growth 53 54 potential. In clinical practice, this is often identified as a small for gestational age infant 55 i.e. a baby whose estimated fetal weight (EFW) or birthweight is less than the 10th percentile for that stage of pregnancy (ACOG, 2019). However, being small for 56 gestational age is not synonymous with FGR. True FGR affects 5%-10% of fetuses and 57

Page 5 of 47

58 is associated with both short-term and long-term complications including stillbirth, 59 neonatal death, abnormal neurodevelopment, and cardiovascular and metabolic disorders in later life (Pels et al., 2019, Bernstein et al., 2000, Crispi et al., 2010, Gardosi 60 et al., 2005, Ramirez-Velez et al., 2017). The majority of cases of FGR are mediated 61 62 by abnormal placental structure and function (Spinillo et al., 2019). FGR may also coexist with preeclampsia, which is defined as an elevation of maternal blood pressure 63 with proteinuria occurring after 20 weeks' gestation (Brown et al., 2018). In addition 64 65 to adverse effects on the fetus, preeclampsia is associated with maternal morbidity and mortality (Souza et al., 2013, Brown et al., 2018). Presently there are no effective 66 therapies to treat FGR or preeclampsia, leaving a decision between expectant 67 management or delivery indicated by deterioration in fetal or maternal condition. 68 69 Therapeutic advances are in part impaired by an incomplete understanding of the mechanisms underlying the placental dysfunction evident in FGR and preeclampsia. 70 Therefore, the identification of key causal pathways amenable to therapeutic 71 manipulation is an important goal for research in this area. Here we review the evidence 72 73 for involvement of one such pathway, that of estrogen-related receptor γ (ERR γ) in the human placenta (Kumar and Mendelson, 2011). 74

Estrogen-related receptor- γ is a member of the ERR family of orphan nuclear receptors, 75 76 which is highly expressed in the human placenta (Takeda et al., 2009). Evidence suggests that ERRy serves an important role in trophoblast differentiation, proliferation, 77 and invasion, and may be involved in blood pressure homeostasis (Zhu et al., 2018a, 78 Luo et al., 2014). In addition, deficient expression of ERRy is linked to impaired 79 placental mitochondrial function (Poidatz et al., 2012), which could lead to inadequate 80 energy supply and thus reduced energy expenditure within the placenta. Due to its wide 81 range of functions in relevant biological processes, it is plausible that $ERR\gamma$ may also 82 play a role in placental dysfunction underlying pregnancies complicated with FGR or 83 84 preeclampsia.

To consider whether the *ERR* γ pathway has a causal role in placental dysfunction we have reviewed the literature to: (i) summarize knowledge regarding the role of *ERR* γ in

trophoblast, placental vascularisation and placental metabolism, (ii) discuss the
evidence for aberrant expression of constituents of the *ERRγ* pathway in pregnancy

89 complications, including FGR and preeclampsia, and (iii) consider the implications of

90 altered *ERRy* expression and how this may contribute to placental dysfunction.

91

92 **2.** Placental dysfunction underlying pregnancy complications

To assess whether a pathway may be involved in the pathophysiology of FGR and/or preeclampsia, its role in normal placental development requires consideration, followed by evaluation of whether the aberrant placental phenotype seen in these conditions is consistent with disruption of that pathway.

97 **2.1 Normal placental development**

98 In normal placental development, appropriate differentiation of cytotrophoblast cells, 99 the trophoblast stem cell population of the placenta, is important; two different pathways arise within the developing placental villus: the extravillous and villous 100 lineages. The extravillous trophoblasts (EVT) differentiate from cytotrophoblast cell 101 102 columns and invade the uterus (interstitial invasion) and spiral arteries (endovascular 103 invasion) to remodel the maternal blood vessels and produce dilated and compliant uterine arterioles (Figure 1A), thereby ensuring an adequate supply of oxygen and 104 nutrients to support fetal growth (Pijnenborg et al., 1983). Proliferation, differentiation 105 and fusion of villous cytotrophoblast maintains the syncytiotrophoblast, the 106 multinucleated outer layer of the placenta responsible for placental transport, protective 107 and endocrine functions (Jones and Fox, 1991) (Figure 1A and 1B). The villous 108 cytotrophoblast and syncytiotrophoblast, together with a core of villous stromal cells 109 110 containing fetoplacental blood vessels form the villous tree, which is the functional unit 111 of the placenta (Jones and Fox, 1991) (Figure 1 A and 1B). There are five different types of villi, including mesenchymal villi, immature intermediate villi, stem villi, 112 mature intermediate villi, and terminal villi. Terminal villi, which represent the final 113

branches of the villous tree, exhibit a high degree of capillarization and fetoplacental vessels are separated from maternal blood by a thin layer of syncytiotrophoblast and endothelial cells termed the vasculo-syncytial membrane, which is optimised for gas and nutrient exchange in human placenta (Kingdom et al., 2000). Consequently, there is a close relationship between terminal villous structure and function.

119 2.2 Placental changes in FGR and preeclampsia

120 Compared to placentas from normal pregnancies, placentas from pregnancies complicated by FGR and/or pre-eclampsia may exhibit a number of structural and 121 122 functional changes, including evidence of an unfolded protein response, increased 123 trophoblast apoptosis and autophagy, and reduced trophoblast proliferation and metabolic function (Heazell et al., 2011, Heazell et al., 2008, Burton and Jauniaux, 2018, 124 125 Curtis et al., 2013, Yung et al., 2019). In the syncytiotrophoblast, some nuclei are aggregated to form syncytial knots with features of apoptosis and a disordered 126 proliferation, and the increased formation of syncytial knots is related to the conditions 127 of placental dysfunction which have been found in the FGR placentas (Macara et al., 128 1996, Heazell et al., 2007). FGR placentas also show decreased volume and surface 129 area of terminal villi, with elongated and less-branched capillary loops (Krebs et al., 130 131 1996, Jackson et al., 1995). It is hypothesized that some of these changes in villous tissue are secondary to reduced invasion of extravillous trophoblast earlier in pregnancy, 132 leading to impaired perfusion of the intervillous space. There may also be abnormalities 133 134 of the fetal-placental vasculature and a reduction in placental weight, all of which combine to result in insufficient delivery of nutrients to the developing fetus (Roberts 135 and Post, 2008). 136

The placenta is a metabolically active organ that consumes a large volume of oxygen throughout gestation, with energy provision mainly dependent on mitochondrial activity by glucose utilization (Diamant et al., 1975, Malek et al., 1996). An imbalance of placental mitochondrial function with excessive generation of reactive oxygen and nitrogen species in placentas is observed in pregnancy complications such as FGR, and pre-eclampsia (Biri et al., 2007, Atamer et al., 2005, Leduc et al., 2010). Taken together with the observation of altered perfusion of the intervillous space the critical relationship between hypoxia, reactive oxygen species (ROS), and how this leads to placental dysfunction needs to be considered.

146 2.3 A possible role of hypoxia / ROS in placental dysfunction in FGR and 147 Preeclampsia

As stated above, hypoxia and hypoxia-reoxygenation can contribute to the elevation of 148 reactive oxygen species (ROS), which can lead to increased oxidative DNA damage 149 150 and depletion of local antioxidant defenses (Hung and Burton, 2006, Kimura et al., 151 2013). Placental hypoxia has been reported in both FGR and preeclampsia (Kimura et al., 2013). Furthermore, a hypoxic environment can reproduce elements of the 152 trophoblast phenotype seen in these conditions. Culture in 2% or 9% O₂ reduces 153 differentiation and induces apoptosis in third trimester primary cytotrophoblast (Levy 154 et al., 2000, Alsat et al., 1996). Culture in 2% O₂ impaired differentiation and invasion 155 in first-trimester primary cytotrophoblast (Genbacev et al., 1996), and term placental 156 villous explants also exhibited reduced proliferation and induction of apoptosis when 157 cultured at 1% compared to 6-8% O₂ (Heazell et al., 2008). Therefore, oxygen tension 158 159 can modulate both the development of villous structure and trophoblast function. The molecular mechanisms responsible for these changes in trophoblast phenotype are still 160 elusive, but recent reports suggest that it may, in part, be linked to activation of an 161 162 unfolded protein response (UPR) by placental oxidative stress (Yung et al., 2019, Yung et al., 2008). 163

164

To understand the potential contribution of the *ERR* γ pathway in the pathogenesis of placental dysfunction underlying FGR and preeclampsia, the functions of *ERR* γ in pregnancy will be described, and the evidence that *ERR* γ signalling might be involved in the occurrence of placental dysfunction will be reviewed. Page 9 of 47

169 **3. The ERR family**

170 Estrogen-related receptors (ERRs) are an NR3B (nuclear receptor 3B) group of the nuclear receptor subfamily, including $ERR\alpha$, $ERR\beta$, and $ERR\gamma$, which are encoded by 171 ESRRA, ESRRB, and ESRRG, respectively. The NR3B group of nuclear receptors is 172 one of the larger NR3 classes and includes the hormone receptors for estrogen, 173 androgens, progesterone, aldosterone, and cortisol (Giguere et al., 1988, Giguere, 1999). 174 175 Although ERRs share sequence homologies with the estrogen receptor (ER), the transcription of ERRs is not activated by estrogen, and information on the nature of 176 endogenous ligands for ERRs remains to be established (Vanacker et al., 1999). ERRs 177 can regulate transcription by binding to estrogen-related receptor elements (ERRE) in 178 179 target genes, which include several molecules involved in the cellular energy metabolic 180 pathway (Giguere, 2008).

181 **3.1 Structure of ERRs**

182 According to their sequence homology and function, the structural features of ERRs include an activation function (AF)-1 domain /N-terminal domain (NTD), a DNA -183 binding domain (DBD), a ligand-binding domain (LBD), and an AF-2 domain 184 185 (Giguere, 1999). The NTD is a non-conserved domain and it includes an AF-1 domain and a variable amino acid domain. In ERRy and ERRa, the NTD contains 186 phosphorylation-dependent sumoylation sites that are embedded in a synergy control 187 motif and may serve a role in regulating the transcriptional activity of ERRs (Tremblay 188 et al., 2008). The synergy control motif may have a role in modulating higher-order 189 190 interactions among transcriptional factors (Iniguez-Lluhi and Pearce, 2000). The ERRs' 191 DBD exists the highest sequence homology in the three ERR isoforms: $ERR\beta$ and $ERR\alpha$ share 99% and 93% identical amino acid sequence with ERRy respectively, which 192 193 suggests that more than two ERRs might share some target genes (Heard et al., 2000). 194 DBD contains two highly conserved zinc finger motifs, which recognize and bind a specific DNA sequence (TCAAGGTCA), denoted as an ERR response element 195 (ERRE). The ERRE can be either a monomer, a homodimer, or a heterodimer, which 196

197 can modulate the translational activities of ERRs (Johnston et al., 1997, Dufour et al., 198 2007). Moreover, ERRs and ERs have high homology in the DBD region (Giguere et 199 al., 1988); ERRs can recognize the ERRE embedded in estrogen response elements 200 (ERE), but only 21% of *ERRa* target promoters can be recognized by ERa in breast 201 cancer cell lines (Deblois et al., 2009). Despite this, several genes can be regulated by 202 both ERa and ERRs, including the human lactoferrin gene and monoamine oxidase B 203 (Yang et al., 1996, Zhang et al., 2006b).

The final structural part of ERRs is the LBD, a less conserved domain; there is a 77% 204 sequence homology between the LBDs of $ERR\beta$ and $ERR\gamma$, and 61% homology 205 between the ERR α and ERR γ (Heard et al., 2000). The homodimerization or 206 207 heterodimerization of LBD in ERRy can also influence the translation of ERRs; the homodimerization of ERRy via LBD can enhance the activity of translation; conversely, 208 heterodimerization with ERRa inhibits the activity of both receptors (Huppunen and 209 Aarnisalo, 2004). The interaction between the LBD and its coactivator is ligand-210 211 independent (Greschik et al., 2002). However, the crystal structure also showed that the 212 LBD can interact with ligands by a flexible ligand-binding pocket and importantly from the perspective of understanding receptor signalling pathways, several synthetic 213 214 molecules can inhibit or stimulate the transcriptional function of ERRs by LBD, 215 including proliferator-activated receptor coactivator 1-alpha, diethylstilbestrol (DES), and 4-hydroxytamoxifen (4-OH) (Kallen et al., 2004, Chao et al., 2006, Tremblav et 216 al., 2001a, Tremblay et al., 2001b). Bisphenol A (BPA) is a chemical and environment 217 contaminant used to produce plastics, which strongly binds to ERRy-LBD (Takeda et 218 al., 2009). As the level of BPA in maternal blood and placental tissue is inversely 219 related to fetal weight in human pregnancy (Troisi et al., 2014), BPA-mediated 220 upregulation of placental ERRy may provide a mechanistic link to explain the 221 association between elevated BPA levels and FGR (Takayanagi et al., 2006, Okada et 222 223 al., 2008).

224

Copyright © 2019 Society of Reproduction and Fertility. Downloaded from Bioscientifica.com at 01/05/2021 10:38:32AM by simon.laurenson@bioscientifica.com via SRF Member Access

Thus, the structure of the ERRs, specifically that of the LBD and DBD, is vital to the regulation of ERR signalling, including that of $ERR\gamma$. Furthermore, abnormal placental expression of $ERR\gamma$ in FGR and preeclampsia suggests a potential role for $ERR\gamma$ in the development or potentiation of these pregnancy complications (Zhu et al., 2018a, Luo et al., 2014). This review will consider how $ERR\gamma$ is regulated, its effects in trophoblast and how this may contribute to the phenotypes of placental dysfunction observed in FGR and preeclampsia.

232 **3.2** ERRy

233 Both fetal and adult organs abundantly express *ERRy* (Heard et al., 2000), including the 234 placenta, heart, and brain (Takeda et al., 2009, Heard et al., 2000, Misra et al., 2017). *ERRy* can regulate blood pressure homeostasis, due to the high expression of *ERRy* in 235 236 kidneys which mediate aldosterone-stimulated sodium and water reuptake (Alaynick et al., 2010). In ERRy null mice, the genes that regulate serum potassium and blood 237 pressure were decreased in the kidney; RNA expression of the potassium channels, 238 Kcnj1, Kcne1, and Kcne2, and kallikrein-kinin system genes kallikrein 1 (Klk1) and 239 kallikrein 6 (Klk6), were significantly reduced in the kidneys of ERRy null mice, 240 (Alaynick et al., 2010). Other potential mechanisms by which ERRy can regulate 241 242 maternal blood pressure homeostasis during pregnancy are related to steroid 11βhydroxylase (*Cyp11b1*) and aldosterone synthase (*Cyp11b2*) (Luo et al., 2014). In *ERRy* 243 heterozygous (ERR γ +/-) pregnant mice, expression of CYP11b1 and CYP11b2 is 244 decreased in the mouse adrenal cortex, resulting in reduced production of aldosterone 245 and a reduction in blood pressure; conversely, expression of CYP11b1 and CYP11b2 in 246 247 WT pregnant mice is increased after exposure to the ERRy agonist DY131, which increased maternal blood pressure (Luo et al., 2014). Given that development of 248 preeclampsia involves abnormal elevation of maternal blood pressure, dysregulation of 249 250 $ERR\gamma$ signaling in the kidney and adrenal cortex may contribute to this phenomenon.

Placental *ERR* expression also plays an important role in the maintenance of pregnancy.
Placenta has the highest expression of *ERR* in the human reproductive system (Figure

1B) (Takeda et al., 2009); expression of $ERR\gamma$ increases over gestation and is higher in 253 villous compared to extravillous trophoblast (Poidatz et al., 2012). ERRy expression is 254 dramatically increased during human cytotrophoblast cell differentiation, indicating a 255 potential regulatory role (Kumar and Mendelson, 2011). Moreover, ERRy also regulates 256 genes involved in cellular energy homeostasis and metabolism; expression of key 257 regulator genes involved in mitochondrial biogenesis (PGC-1 α and NRF-1) and energy 258 metabolism (PDK4 and MCAD) decreased after silencing ERRy in human first trimester 259 260 placental primary cytotrophoblast (Poidatz et al., 2012). As these studies indicate that ERRy signaling may influence multiple aspects of normal placental function, we will 261 review the evidence for the involvement of ERRy in regulating trophoblast function, 262 hypoxic responses, placental vascularisation, placental metabolism, and other 263 regulators in the human placenta (Table 1 and Figure 2). 264

265 **3.3 The effect of** *ERR\gamma* **on trophoblast function**

266 **3.3.1 Proliferation**

ERRy knockdown has been shown to reduce proliferation of the extravillous-like 267 trophoblast cell line HTR-8/SVneo, via decreasing the expression of its downstream 268 gene, 17β-hydroxysteroid dehydrogenase type 1 (HSD17B1) (Zhu et al., 2018a). 269 HSD17B1 is an enzyme capable of converting estrone to 17β -estradiol in the 270 metabolism of estrogen. Abnormal expression of HSD17B1 has been reported in both 271 272 FGR and preeclampsia (Zhu et al., 2018a); previous studies have revealed that a 273 reduced plasma HSD17B1 expression level could be considered a potential prognostic 274 factor for preeclampsia (Ohkuchi et al., 2012, Ishibashi et al., 2012). Ohkuchi et al. (Ohkuchi et al., 2012) examined 128 normal pregnant women and 30 pregnancies 275 complicated with preeclampsia and found that reducing maternal plasma levels of 276 HSD17B1 correlated with the occurrence of preeclampsia, implicating HSD17B1 in the 277 278 pathogenesis of the disease, possibly by influencing the process of estrogen metabolism. 279 Since estrogen can reduce the proliferation of HTR-8/SVneo cell line (Patel et al., 2015), this might suggest a relationship between low level of HSD17B1 in maternal serum, 280

Page 13 of 47

placental estrogen metabolism, and trophoblast proliferation. Moreover, the mRNA and protein level of *HSD17B1* was decreased in placentas complicated with FGR (Zhu et al., 2018a). Therefore, aberrant regulation of *HSD17B1* by *ERR* γ may contribute to placental dysfunction, by its ability to regulate the proliferation of cytotrophoblast cells which is disrupted in FGR and preeclampsia.

286 **3.3.2 Differentiation**

There is also evidence that $ERR\gamma$ may influence cytotrophoblast differentiation via its role as a regulator of the aromatase *CYP19A1*, the voltage-gated potassium (K_V7) channel family, or via interactions with two other downstream genes, placenta specific-1 (*PLAC1*), and 11β-hydroxysteroid dehydrogenase 2 (*HSD11B2*).

The cytochrome P-450 (CYP) family members include CYP11A1 and CYP19A1, and 291 hydroxysteroid dehydrogenases (HSDs), such as 3β-HSD and 17β-HSD; these enzymes 292 play a vital role in placental hormone synthesis and metabolism (Payne and Hales, 293 294 2004). C19 steroid precursors can be converted into estrogen via activating aromatase P450, which is encoded by the CYP19A1/ hCYP19 gene and only expressed in the 295 syncytiotrophoblast, not in trophoblast stem cells or cytotrophoblast (Fournet-296 297 Dulguerov et al., 1987, Kamat et al., 1998). Notably, *ERRy* has been shown to stimulate the expression of hCYP19 in vitro, via binding to its promotor to increase estrogen 298 levels in a 20% O₂ culture environment, which promotes trophoblast differentiation. 299 300 When human second-trimester primary cytotrophoblasts were cultured in a hypoxic environment (2% O_2), both ERRy and hCYP19 expression decreased; however, 301 302 elevating *ERRy* expression restored *hCYP19* expression (Kumar and Mendelson, 2011).

303 *ERRy* also induces mRNA and protein expression of the K_V7 family of potassium 304 channels to regulate the differentiation of cytotrophoblast in second-trimester placentas. 305 Voltage-gated K_V7 channels are encoded by the *KCNQ1-5* (α -subunit) and *KCNE1-5* 306 (β -subunit) genes. The human placenta expresses many potassium channel genes, 307 including the *KCNQ* and *KCNE* families, and the expression of *KCNQ3* and *KCNE5* is 308 markedly increased in placentas from pregnancies complicated with preeclampsia, 309 particularly in the syncytiotrophoblast (Mistry et al., 2011). ERRy induces mRNA and protein expression of the potassium channels KLK1, KCNO1, KCNE1, KCNE3 and 310 KCNE5 during primary cytotrophoblast differentiation, the effect of which was blocked 311 312 by hypoxia (Luo et al., 2013). After examining the promoter, an ERRE located in the upstream region of the KCNE1 and KLK1 genes was identified, to which ERRy can bind 313 (Luo et al., 2013). In addition, expression of the oxygen-sensitive K⁺ channel gene 314 315 $K_V 9.3$ was increased in FGR placentas, and expression of $K_V 2.1$ was increased in chorionic plate veins from the same placentas (Corcoran et al., 2008). However, the 316 relationship between ERRy and expression of K⁺ channels in functionally deficient 317 placentas remains unclear. 318

319 There is also evidence that *PLAC1* and *HSD11B2* are downstream effectors of *ERR*_y, and these two genes can regulate cytotrophoblast differentiation (Luo et al., 2013). The 320 expression of *PLAC1* is elevated during trophoblast differentiation and conversely, 321 322 reduced expression of PLAC1 attenuates fusion of term primary human cytotrophoblast in vitro (Chang et al., 2016). Contrary to expectations, Sifakis et al. found high PLAC1 323 expression in FGR placentas at term (Sifakis et al., 2018), although this may be linked 324 to the aberrant differentiation and trophoblast turnover reported in FGR(Heazell et al., 325 326 2011, Huppertz, 2011). Combined with the observations of Luo et al., these data suggest that the effect of *PLAC1* on trophoblast differentiation might be mediated via *ERRy*. 327

Another downstream gene of ERRy is HSD11B2, an enzyme that converts active 328 cortisol to inactive cortisone, which is expressed in villous syncytiotrophoblast (Pepe 329 et al., 1999). Both mRNA and protein expression of HSD11B2 is induced during term 330 primary cytotrophoblast differentiation, and it is considered a marker for trophoblast 331 differentiation (Hardy and Yang, 2002, Homan et al., 2006). During pregnancy, 332 333 HSD11B2 acts as a critical placental glucocorticoid barrier that protects the fetus from 334 the harmful effects of excessive maternal glucocorticoids (Zhu et al., 2018b, Benediktsson et al., 1993). Placental HSD11B2 expression correlates with fetal weight 335 and postnatal growth velocity (Benediktsson et al., 1993). McTernan et al. (McTernan 336 12

et al., 2001) showed that placental HSD11B2 expression is decreased in FGR and 337 demonstrated the importance of placental HSD11B2 in regulating fetal growth. Studies 338 of SGA placentas also reported low HSD11B2 expression, which further revealed the 339 relationship between HSD11B2 and fetal weight (Struwe et al., 2007). Placental 340 341 HSD11B2 expression at birth is positively associated with fetal length at birth, whereas its expression is inversely related to growth velocity in the first year of life, and might 342 therefore be a predictor of postnatal growth of fetuses with FGR (Tzschoppe et al., 343 344 2009). These studies support the relationship between abnormal differentiation of cytotrophoblast seen in FGR and preeclampsia and expression of HSD11B2, although 345 the roles of HSD11B2 in trophoblast function are still unclear. Since ERRy regulates 346 HSD11B2 (Luo et al., 2013), the reduced effect of HSD11B2 on trophoblast 347 differentiation might be due to reduced levels of ERRy in the presence of placental 348 dysfunction. 349

350 **3.3.3 Invasion**

351 Invasion of the extravillous trophoblast into the uterine wall and subsequent remodeling of the uterine arterioles is critical for normal placental development and optimal 352 uteroplacental perfusion. Knockdown of ERRy resulted in the deficient invasion of the 353 354 extravillous-like HTR-8/SVneo cell line (Liu et al., 2018, Zhu et al., 2018a). Liu et al. showed that overexpression of microRNA (miR)-320a inhibited HTR-8/SVneo 355 invasion by regulating ERR_{γ} signalling (Liu et al., 2018). Furthermore, Zhu et al. 356 357 demonstrated that reduced expression of ERRy in HTR-8/SVneo cells significantly impaired invasion via regulation of HSD17B1 (Zhu et al., 2018a). Although a 358 potentially significant finding, the relationship between ERRy and the invasive capacity 359 of extravillous trophoblast needs to be explored further using primary tissues. 360

361 **3.4 The effect of** *ERRy* **on response to hypoxia**

362 A hypoxic environment alters the expression of many genes which are associated with 363 trophoblast differentiation. The most well-studied oxygen sensor in trophoblast is

hypoxia-inducible factor 1α (HIF1 α), which is reported to be elevated in FGR and pre-364 eclampsia (Rajakumar et al., 2004, Robb et al., 2017). HIF-1 α regulates ERRy 365 expression in human trophoblast: culture in a 2% O₂ environment activates HIF-1a and 366 decreases the expression of ERRy and hCYP19 (Kumar and Mendelson, 2011). 367 Conversely, knockdown of HIF-1 α in trophoblast prevents ERRy suppression under 368 hypoxic conditions (Kumar and Mendelson, 2011). Collectively, these findings 369 demonstrate that ERRy serves as an oxygen-dependent transcriptional factor regulated 370 371 by HIF-1 α to control the expression of downstream hCYP19. This relationship appears to be maintained *in vivo*, as low *ERRy* expression has been reported in placentas from 372 FGR pregnancies, which often show evidence of hypoxia and/or oxidative 373 stress(Takagi et al., 2004). A preliminary study in a south Chinese population examined 374 the mRNA and protein level of ERRy in 28 FGR placentas and 30 matched appropriate 375 for gestational age (AGA) placentas, and reported lower expression of ERRy in FGR 376 placentas (Zhu et al., 2018a). Poidatz et al. (Poidatz et al., 2015) also reported lower 377 mRNA expression of ERRy in 39 FGR placentas compared with a 30 controls in a 378 379 European population. These studies support the hypothesis that $ERR\gamma$ might play a role in placental dysfunction originating from placental hypoxia. 380

381 **3.5 The effect of** *ERRy* **on placental vascularisation**

Although the trophoblast is critically important to the placental function, it is also 382 widely acknowledged that impaired placental blood vessel development may be 383 important in the aetiology of FGR (Hitschold et al., 1993). Several genes have been 384 implicated in regulating placental vascularisation, including vascular endothelial 385 growth factor A (VEGFA) (Ylikorkala et al., 2001, Burton et al., 2009). Maternal serum 386 levels of VEGFA, an angiogenic factor that is crucial for placental angiogenesis during 387 early gestation, are decreased in the 2nd and 3rd-trimester in pregnancies complicated 388 with FGR (Bersinger and Odegard, 2005). Expression of VEGFA in primary vascular 389 390 endothelial cells is also reduced in FGR placentas (Chui et al., 2014). The altered vascularisation seen in the placentas of women with FGR can potentially be attributed 391 to dysregulated ERRy expression. In mice, placentas from ERRy-/- fetuses have 392 14

393 significantly increased mRNA levels of VEGFA, compared with placentas from wild 394 type fetuses (Luo et al., 2014), and in ERRy +/- pregnant mice, circulating levels of the angiogenic, soluble receptor for *VEGF*, soluble fms-like tyrosine kinase-1(sFlt-1), were 395 significantly reduced (Luo et al., 2014). In the mouse myoblast cell line C2C12, 396 397 suppression of ERRy can block the transcriptional expression of VEGFA, whilst in HEK-293T cells, ERRy has been shown to activate the VEGFA promoter (Matsakas et 398 399 al., 2012). This indicates that $ERR\gamma$ may affect placental vascularisation via its 400 regulation of VEGFA, however further studies are required in humans to confirm this.

401 **3.6** *ERR y* and placental metabolism

402 There is accumulating evidence that $ERR\gamma$ plays a role in the regulation of several 403 mitochondrial functions, including mitochondrial biogenesis, oxidative 404 phosphorylation, and fatty acid oxidation, in the heart, kidney, skeletal muscle, and placenta (Huss et al., 2002, Alaynick et al., 2007, Dufour et al., 2007, Kubo et al., 2009, 405 Alaynick et al., 2010, Fan et al., 2018). In the human placenta, ERRy regulates 406 407 mitochondrial function by controlling gene networks involved in mitochondrial biogenesis and fat and glucose metabolism in the villous trophoblast, including 408 pyruvate dehydrogenase kinase 4 (PDK4), medium chain acyl-CoA dehydrogenase 409 410 (MCAD), sirtuin 1 (SIRT1) and peroxisome proliferator-activated receptor γ (PPAR γ) coactivator 1 α (*PGC-1* α) (Poidatz et al., 2012). 411

412 In human term primary villous cytotrophoblast, expression of PDK4 and MCAD was 413 decreased after knockdown of ERRy expression (Poidatz et al., 2012), which implicates 414 $ERR\gamma$ as a potential regulator of placental fatty acid oxidation and glucose metabolism 415 mediated via these genes. PDK4 can phosphorylate the pyruvate dehydrogenase complex (PDC), which facilitates the conversion of pyruvate to acetyl-CoA in 416 mitochondria, to inhibit the activity of PDC (Sugden and Holness, 2003); MCAD is an 417 418 enzyme which catalyzes the initial step of mitochondrial fatty acid oxidation (FAO) 419 (Schulz, 1991). ERRy can stimulate the expression of PDK4 in human liver cell lines (HepG2 cells) and rat hepatoma cells (Zhang et al., 2006a, Lee et al., 2012); regulation 420

421 of the promoter of *PDK4* by *ERRy* has been observed in mammary epithelial cells by 422 using both ChIP and luciferase reporter assays, and the activation of the ERRy-PDK4 pathway attenuates glucose oxidation and decrease cell death and apoptosis 423 (Kamarajugadda et al., 2012). Thus, a reduction in $ERR\gamma$ would be expected to be 424 associated with increased apoptosis and cell death, as is observed in FGR. This suggests 425 that the *ERRy-PDK4* signalling pathway in human placentas might contribute to the 426 placental dysfunction. MCAD is one of the targets of ERRa and the increased expression 427 428 of the ERR α -MCAD pathway serves an important role in the decidualization of human primary endometrial stromal cells (Bombail et al., 2010). Since $ERR\gamma$ is similar to $ERR\alpha$, 429 it is possible that *ERRy* also contributes to the regulation of *MCAD*, however further 430 studies are needed to investigate this and to determine the role of the pathway in 431 432 placental dysfunction.

433 SIRT1, PGC-1 α , and PGC-1 β are also coactivators of ERR γ that have known roles in regulating placental metabolism. SIRT1, a NAD(+)-dependent protein deacetylase, is 434 435 expressed ubiquitously in different organs and is required for many cellular processes related to differentiation and metabolism (Leibiger and Berggren, 2006). SIRT1 is 436 expressed in both the syncytiotrophoblast and cytotrophoblast (Lappas et al., 2011). 437 Findings from two recent studies in mice indicate that SIRT1 plays a key role in 438 439 trophoblast differentiation and placental development (Arul Nambi Rajan et al., 2018, McBurney et al., 2003). The differentiation of mouse trophoblast stem cells obtained 440 from SIRT1-null mice was blunted in vitro (Arul Nambi Rajan et al., 2018), resulting 441 in fetuses with FGR, and smaller placentas with deficient morphology including a 442 thickened chorion and a more hypercellular labyrinth were observed (Arul Nambi Rajan 443 et al., 2018, McBurney et al., 2003). Wilson et al. found SIRT1 can deacetylate and 444 increases ERRa DNA-binding activity by interacting with ERRa in vivo and in vitro, 445 which also suggest a potential interaction between ERRy and SIRT1 (Wilson et al., 446 447 2010), since $ERR\alpha$ and $ERR\gamma$ have structural and functional similarities. In HepG2 cells, 448 small heterodimer partner interacting leucine zipper protein (SMILE) expression and its 449 ability to repress *ERRy* transactivation and downstream signaling, is dependent on the 450 expression of SIRT1 (Xie et al., 2009). SIRT1 can also positively regulate the expression of another *ERR* γ coactivator, *PGC-1* α (Amat et al., 2009, Gerhart-Hines et al., 2007). 451 *PGC-1a* and its family member, *PGC-1b*, act as transcriptional co-regulators of *ERRa* 452 and *ERRy* to influence metabolism in many diseases, such as cardiovascular disease and 453 454 cancer (Liu et al., 2005, Huss et al., 2002, Torrano et al., 2016, Luo et al., 2017). In human placental tissue, the mRNA expression level of $PGC-1\alpha$ and SIRT1 correlated 455 with that of ERRy in pregnancies complicated with preeclampsia and FGR (Poidatz et 456 457 al., 2015); low mRNA levels of ERRy, PGC-1 α and SIRT1 have all been reported in FGR placentas (Poidatz et al., 2015). Together, these studies suggest that methods to 458 modulate both ERR_{γ} and its transcriptional co-regulators, may provide a potential 459 therapeutic strategy to improve placental metabolism and fetal growth. Therefore, we 460 461 will conclude by reviewing the microRNAs (miRNAs) that have been identified as upstream regulators of ERRy, and which may also contribute to the etiology of placental 462 dysfunction. 463

464 **3.7 Regulation of** *ERR*γ **in the human placenta by miRNAs**

miRNAs are short non-coding RNAs with 19-23 nucleotides which post-translationally 465 reduce gene expression in both animals and plants by mediating argonaute (AGO) 466 467 binding to the 3'-untranslated-region (3'-UTR) of mRNA (Baek et al., 2008). The miRNA-induced silencing complex (miRISC), which includes the miRNAs and AGO, 468 degrades target mRNA and represses protein translation. Different miRNAs are 469 470 expressed in specific tissues, and by regulating different sets of target genes, specific miRNAs can mediate many cellular processes, such as differentiation, proliferation, 471 472 and invasion (Anton et al., 2013, Li et al., 2014). In humans, more than 60% of proteincoding genes are thought to be regulated by miRNAs, many of which are specifically 473 expressed in the placenta (Friedman et al., 2009). Expression of numerous miRNAs is 474 475 altered in pregnancy complications such as FGR and preeclampsia, which are 476 associated with placental dysfunction (Friedman et al., 2009, Zhang et al., 2010, Hromadnikova et al., 2015). The following miRNAs are associated with placental 477 dysfunction and have been identified as potential upstream regulators of ERRy. 478

479 3.7.1 miR-320a

miR-320a levels are increased in the placentas of women with late-onset preeclampsia, and overexpression of miR-320a in HTR-8/SVneo cells inhibits mRNA and protein expression of *ERRy* (Gao et al., 2018). Key functional roles for *ERRy* in the placenta appear to be modulated by miR-320a: direct regulation of *ERRy* by miR-320a inhibits migration, invasion, and proliferation and indirectly modulates levels of *VEGFA* in both HTR-8/SVneo cells and human umbilical vein endothelial cells (HUVECs) (Gao et al., 2018, Liu et al., 2018). However, to our knowledge, expression levels of miR-320a in

487 FGR placentas has yet to be assessed.

488 **3.7.2 Other ERRy regulatory miRNAs**

Several other miRNAs have been implicated in placental dysfunction by regulating 489 proliferation, invasion, or invasion of trophoblastic-like cell lines, and by reducing 490 ERRy expression in other cell lines, these include miR-378a-5p, miR-424, miR-377, 491 492 and miR-204-5p (Eichner et al., 2010, Cheng et al., 2018, Zou et al., 2019). miR-378a-5p inhibits both mRNA and protein levels of ERRy in the breast cancer cell line, BT-493 474 (Eichner et al., 2010); it also enhances the invasion and migration of HTR8/SVneo 494 495 cells and reduces BeWo cell differentiation (Luo et al., 2012, Nadeem et al., 2014). miR-424 expression was increased in FGR placentas (Huang et al., 2013) and miR-424 496 overexpression inhibited protein expression of ERRy in HTR/8SVneo cells. However, 497 498 this study did not identify a regulatory relationship between miR-424 and the 3'-UTR 499 of ERRy, thus more in-depth studies of miR-424 are required in the future (Zou et al., 500 2019).

501 miR-377 is more highly expressed in human term placentas compared with first-502 trimester placentas, and overexpression of miR-377 in the first-trimester placental 503 explants reduced cytotrophoblast proliferation (Farrokhnia et al., 2014). Furthermore, 504 miR-377 inhibits the expression levels of *SIRT-1* in human retinal endothelial cells; 505 taking into account the reported interaction between *ERRy* and *SIRT-1* in the human 506 placenta, miR-377 may also regulate ERRy expression (Cui et al., 2019). As 507 overexpression of miR-204-5p reduced the invasion of BeWo cells and JEG3 cells (Yu et al., 2015), and miR-204-5p overexpression reduced the differentiation of C1C12 508 509 myoblast cells by directly targeting 3'-UTR of ERRy, this data suggest that a direct 510 regulatory relationship may also exist between miR-204-5p and ERRy in the placenta (Cheng et al., 2018). Since the above studies only used cell lines to assess trophoblast 511 512 function, more data derived from primary placental models are needed; specifically 513 those that focus on the relationship between individual miRNAs, ERRy and its downstream effectors, and their roles in the etiology of FGR; these relationships have 514 been summarized in Figure 3. 515

516 Manipulation of the expression of miRNAs upstream of ERRy may represent an 517 additional approach to correct placental dysfunction; accumulating studies in vivo and *in vitro* indicate the possibility of developing an inverse agonist of *ERRy* as a promising 518 519 treatment for *ERRy*-related anaplastic thyroid cancer, breast cancer, and type 2 diabetes 520 (Kim et al., 2019, Kim et al., 2012, Vernier et al., 2020). Our group has demonstrated 521 that targeted miRNA inhibitors can be used to selectively manipulate placental function: targeted inhibition of trophoblast miR-145 and miR-675 expression promoted 522 cytotrophoblast proliferation in human first-trimester villous placental explants and 523 524 increased fetal and placental weight when administered intravenously to pregnant mice (Beards et al., 2017). Therefore, exploring the regulatory pathway of *ERRy* in the human 525 placenta could inform the development of potential new therapeutic approaches for 526 pregnancy complications involving placental dysfunction, like FGR or preeclampsia. 527

528 **4.0 Summary**

Even though many studies have focused on the pathogenesis of placental dysfunction underlying FGR and preeclampsia, the precise pathophysiological mechanisms and biochemical pathways in the placenta are still unclear, which limits options for therapeutic discovery, making a better understanding of the underpinning placental pathways a priority. The most obvious changes in the placenta in FGR and preeclampsia

include abnormal trophoblast function, increased cell death, altered metabolism and 534 nutrient transport, hypoxia and oxidative stress, and aberrant villous structure. Since 535 $ERR\gamma$ is highly expressed in the human normal term placenta, and it holds key roles in 536 the regulation of cell invasion, differentiation, cellular energy homeostasis, hypoxic 537 responses and metabolism, we argue that involvement of the ERRy pathway in the 538 placental dysfunction underlying FGR and preeclampsia is plausible, and thorough 539 exploration may offer new therapeutic options. In support of this hypothesis, several 540 541 studies have revealed significantly lower levels of ERRy mRNA and protein in the human placenta in FGR, and *ERRy* can regulate the invasion and proliferation of human 542 trophoblast cell lines. Furthermore, additional evidence of disruption of both upstream 543 regulators and downstream effectors of ERRy provides evidence that the pathway is 544 intact, and functions as expected in the human placenta. These data highlight that ERRy 545 may be involved in the development and pathogenesis of placental dysfunction by 546 influencing trophoblast function and further studies of the regulation of this pathway 547 are needed. By better understanding the intrinsic role of $ERR\gamma$ as a regulator of 548 549 trophoblast function, metabolism, and cell turnover, this in turn might provide new ideas for the treatment of placental dysfunction underpinning FGR and preeclampsia in 550 the future. 551

553	Declaration of interest
554	There is no conflict of interest that could be perceived as prejudicing the impartiality
555	of the review.
556	
557	Funding
558	This student is supported by the joint scholarship of University of Manchester and
559	Chinese government. AEPH is supported by Tommy's charity.
560	
561	Author contribution statement
562	ZZ, LKH, KF, and AEPH conceived and designed the research. ZZ drafted the
563	manuscript. All authors read and approved the final manuscript.
564	
565	Acknowledgements
566	
567	Reference
568	ACOG 2019. American College of Obstetricians and Gynecologists Practice Bulletin No. 204: Fetal
569	Growth Restriction. Obstet Gynecol, 133, e97-e109.
570	ALAYNICK, W. A., KONDO, R. P., XIE, W., HE, W., DUFOUR, C. R., DOWNES, M., JONKER, J.
571	W., GILES, W., NAVIAUX, R. K., GIGUERE, V., et al. 2007. ERRgamma directs and maintains the
572	transition to oxidative metabolism in the postnatal heart. Cell Metab, 6, 13-24.
573	ALAYNICK, W. A., WAY, J. M., WILSON, S. A., BENSON, W. G., PEI, L., DOWNES, M., YU, R.,
574	JONKER, J. W., HOLT, J. A., RAJPAL, D. K., et al. 2010. ERRgamma regulates cardiac, gastric, and
575	renal potassium homeostasis. Mol Endocrinol, 24, 299-309.

576	ALSAT, E., WYPLOSZ, P., MALASSINE, A., GUIBOURDENCHE, J., PORQUET, D.,
577	NESSMANN, C. & EVAIN-BRION, D. 1996. Hypoxia impairs cell fusion and differentiation process
578	in human cytotrophoblast, in vitro. J Cell Physiol, 168, 346-53.
579	AMAT, R., PLANAVILA, A., CHEN, S. L., IGLESIAS, R., GIRALT, M. & VILLARROYA, F. 2009.
580	SIRT1 controls the transcription of the peroxisome proliferator-activated receptor-gamma Co-activator-
581	1alpha (PGC-1alpha) gene in skeletal muscle through the PGC-1alpha autoregulatory loop and
582	interaction with MyoD. J Biol Chem, 284, 21872-80.
583	ANTON, L., OLARERIN-GEORGE, A. O., SCHWARTZ, N., SRINIVAS, S., BASTEK, J.,
584	HOGENESCH, J. B. & ELOVITZ, M. A. 2013. miR-210 inhibits trophoblast invasion and is a serum
585	biomarker for preeclampsia. Am J Pathol, 183, 1437-1445.
586	ARUL NAMBI RAJAN, K., KHATER, M., SONCIN, F., PIZZO, D., MORETTO-ZITA, M., PHAM,
587	J., STUS, O., IYER, P., TACHE, V., LAURENT, L. C., et al. 2018. Sirtuin1 is required for proper
588	trophoblast differentiation and placental development in mice. Placenta, 62, 1-8.
589	ATAMER, Y., KOCYIGIT, Y., YOKUS, B., ATAMER, A. & ERDEN, A. C. 2005. Lipid
590	peroxidation, antioxidant defense, status of trace metals and leptin levels in preeclampsia. Eur J Obstet
591	Gynecol Reprod Biol, 119, 60-6.
592	BAEK, D., VILLEN, J., SHIN, C., CAMARGO, F. D., GYGI, S. P. & BARTEL, D. P. 2008. The
593	impact of microRNAs on protein output. Nature, 455, 64-71.
594	BEARDS, F., JONES, L. E., CHARNOCK, J., FORBES, K. & HARRIS, L. K. 2017. Placental
595	Homing Peptide-microRNA Inhibitor Conjugates for Targeted Enhancement of Intrinsic Placental
596	Growth Signaling. Theranostics, 7, 2940-2955.
597	BENEDIKTSSON, R., LINDSAY, R. S., NOBLE, J., SECKL, J. R. & EDWARDS, C. R. 1993.
598	Glucocorticoid exposure in utero: new model for adult hypertension. Lancet, 341, 339-41.
599	BERNSTEIN, I. M., HORBAR, J. D., BADGER, G. J., OHLSSON, A. & GOLAN, A. 2000.
600	Morbidity and mortality among very-low-birth-weight neonates with intrauterine growth restriction.
601	The Vermont Oxford Network. Am J Obstet Gynecol, 182, 198-206.
602	BERSINGER, N. A. & ODEGARD, R. A. 2005. Serum levels of macrophage colony stimulating,
603	vascular endothelial, and placenta growth factor in relation to later clinical onset of pre-eclampsia and a
604	small-for-gestational age birth. Am J Reprod Immunol, 54, 77-83.
605	BIRI, A., BOZKURT, N., TURP, A., KAVUTCU, M., HIMMETOGLU, O. & DURAK, I. 2007. Role
	22

606	of oxidative stress in intrauterine growth restriction. Gynecol Obstet Invest, 64, 187-92.
607	BOMBAIL, V., GIBSON, D. A., COLLINS, F., MACPHERSON, S., CRITCHLEY, H. O. &
608	SAUNDERS, P. T. 2010. A Role for the orphan nuclear receptor estrogen-related receptor alpha in
609	endometrial stromal cell decidualization and expression of genes implicated in energy metabolism. J
610	Clin Endocrinol Metab, 95, E224-8.
611	BROSENS, I., DIXON, H. G. & ROBERTSON, W. B. 1977. Fetal growth retardation and the arteries
612	of the placental bed. Br J Obstet Gynaecol, 84, 656-63.
613	BROWN, M. A., MAGEE, L. A., KENNY, L. C., KARUMANCHI, S. A., MCCARTHY, F. P.,
614	SAITO, S., HALL, D. R., WARREN, C. E., ADOYI, G., ISHAKU, S., et al. 2018. The hypertensive
615	disorders of pregnancy: ISSHP classification, diagnosis & management recommendations for
616	international practice. Pregnancy Hypertens, 13, 291-310.
617	BURTON, G. J., CHARNOCK-JONES, D. S. & JAUNIAUX, E. 2009. Regulation of vascular growth
618	and function in the human placenta. Reproduction, 138, 895-902.
619	BURTON, G. J. & JAUNIAUX, E. 2018. Pathophysiology of placental-derived fetal growth
620	restriction. Am J Obstet Gynecol, 218, S745-S761.
621	CHANG, W. L., WANG, H., CUI, L., PENG, N. N., FAN, X., XUE, L. Q. & YANG, Q. 2016. PLAC1
622	is involved in human trophoblast syncytialization. Reprod Biol, 16, 218-224.
623	CHAO, E. Y., COLLINS, J. L., GAILLARD, S., MILLER, A. B., WANG, L., ORBAND-MILLER, L.
624	A., NOLTE, R. T., MCDONNELL, D. P., WILLSON, T. M. & ZUERCHER, W. J. 2006. Structure-
625	guided synthesis of tamoxifen analogs with improved selectivity for the orphan ERRgamma. Bioorg
626	Med Chem Lett, 16, 821-4.
627	CHENG, X., DU, J., SHEN, L., TAN, Z., JIANG, D., JIANG, A., LI, Q., TANG, G., JIANG, Y.,
628	WANG, J., et al. 2018. MiR-204-5p regulates C2C12 myoblast differentiation by targeting MEF2C and
629	ERRgamma. Biomed Pharmacother, 101, 528-535.
630	CHUI, A., MURTHI, P., GUNATILLAKE, T., BRENNECKE, S. P., IGNJATOVIC, V., MONAGLE,
631	P. T., WHITELOCK, J. M. & SAID, J. M. 2014. Altered decorin leads to disrupted endothelial cell
632	function: a possible mechanism in the pathogenesis of fetal growth restriction? <i>Placenta</i> , 35, 596-605.
633	CORCORAN, J., LACEY, H., BAKER, P. N. & WAREING, M. 2008. Altered potassium channel
634	expression in the human placental vasculature of pregnancies complicated by fetal growth restriction.
635	Hypertens Pregnancy, 27, 75-86.

636	CRISPI, F., BIJNENS, B., FIGUERAS, F., BARTRONS, J., EIXARCH, E., LE NOBLE, F., AHMED,
637	A. & GRATACOS, E. 2010. Fetal growth restriction results in remodeled and less efficient hearts in
638	children. Circulation, 121, 2427-36.
639	CUI, C., LI, Y. & LIU, Y. 2019. Down-regulation of miR-377 suppresses high glucose and hypoxia-
640	induced angiogenesis and inflammation in human retinal endothelial cells by direct up-regulation of
641	target gene SIRT1. Hum Cell, 32, 260-274.
642	CURTIS, S., JONES, C. J., GARROD, A., HULME, C. H. & HEAZELL, A. E. 2013. Identification of
643	autophagic vacuoles and regulators of autophagy in villous trophoblast from normal term pregnancies
644	and in fetal growth restriction. J Matern Fetal Neonatal Med, 26, 339-46.
645	DEBLOIS, G., HALL, J. A., PERRY, M. C., LAGANIERE, J., GHAHREMANI, M., PARK, M.,
646	HALLETT, M. & GIGUERE, V. 2009. Genome-wide identification of direct target genes implicates
647	estrogen-related receptor alpha as a determinant of breast cancer heterogeneity. Cancer Res, 69, 6149-
648	57.
649	DIAMANT, Y. Z., MAYOREK, N., NEUMANN, S. & SHAFRIR, E. 1975. Enzymes of glucose and
650	fatty acid metabolism in early and term human placenta. Am J Obstet Gynecol, 121, 58-61.
651	DUFOUR, C. R., WILSON, B. J., HUSS, J. M., KELLY, D. P., ALAYNICK, W. A., DOWNES, M.,
652	EVANS, R. M., BLANCHETTE, M. & GIGUERE, V. 2007. Genome-wide orchestration of cardiac
653	functions by the orphan nuclear receptors ERRalpha and gamma. Cell Metab, 5, 345-56.
654	EICHNER, L. J., PERRY, M. C., DUFOUR, C. R., BERTOS, N., PARK, M., ST-PIERRE, J. &
655	GIGUERE, V. 2010. miR-378(*) mediates metabolic shift in breast cancer cells via the PGC-
656	1beta/ERRgamma transcriptional pathway. Cell Metab, 12, 352-361.
657	FAN, W., HE, N., LIN, C. S., WEI, Z., HAH, N., WAIZENEGGER, W., HE, M. X., LIDDLE, C., YU,
658	R. T., ATKINS, A. R., et al. 2018. ERRgamma Promotes Angiogenesis, Mitochondrial Biogenesis, and
659	Oxidative Remodeling in PGC1alpha/beta-Deficient Muscle. Cell Rep, 22, 2521-2529.
660	FARROKHNIA, F., APLIN, J. D., WESTWOOD, M. & FORBES, K. 2014. MicroRNA regulation of
661	mitogenic signaling networks in the human placenta. J Biol Chem, 289, 30404-16.
662	FOURNET-DULGUEROV, N., MACLUSKY, N. J., LERANTH, C. Z., TODD, R., MENDELSON,
663	C. R., SIMPSON, E. R. & NAFTOLIN, F. 1987. Immunohistochemical localization of aromatase
	cytochrome P-450 and estradiol dehydrogenase in the syncytiotrophoblast of the human placenta. J
664	cytochrome 1-450 and estradior denydrogenase in the syncytotrophobiast of the numan placenta. J

666	FRIEDMAN, R. C., FARH, K. K., BURGE, C. B. & BARTEL, D. P. 2009. Most mammalian mRNAs
667	are conserved targets of microRNAs. Genome Res, 19, 92-105.
668	GAO, T., DENG, M. & WANG, Q. 2018. MiRNA-320a inhibits trophoblast cell invasion by targeting
669	estrogen-related receptor-gamma. J Obstet Gynaecol Res, 44, 756-763.
670	GARDOSI, J., KADY, S. M., MCGEOWN, P., FRANCIS, A. & TONKS, A. 2005. Classification of
671	stillbirth by relevant condition at death (ReCoDe): population based cohort study. BMJ, 331, 1113-7.
672	GENBACEV, O., JOSLIN, R., DAMSKY, C. H., POLLIOTTI, B. M. & FISHER, S. J. 1996. Hypoxia
673	alters early gestation human cytotrophoblast differentiation/invasion in vitro and models the placental
674	defects that occur in preeclampsia. J Clin Invest, 97, 540-50.
675	GERHART-HINES, Z., RODGERS, J. T., BARE, O., LERIN, C., KIM, S. H., MOSTOSLAVSKY, R.,
676	ALT, F. W., WU, Z. & PUIGSERVER, P. 2007. Metabolic control of muscle mitochondrial function
677	and fatty acid oxidation through SIRT1/PGC-1alpha. EMBO J, 26, 1913-23.
678	GIGUERE, V. 1999. Orphan nuclear receptors: from gene to function. Endocr Rev, 20, 689-725.
679	GIGUERE, V. 2008. Transcriptional control of energy homeostasis by the estrogen-related receptors.
680	Endocr Rev, 29, 677-96.
681	GIGUERE, V., YANG, N., SEGUI, P. & EVANS, R. M. 1988. Identification of a new class of steroid
682	hormone receptors. Nature, 331, 91-4.
683	GRESCHIK, H., WURTZ, J. M., SANGLIER, S., BOURGUET, W., VAN DORSSELAER, A.,
684	MORAS, D. & RENAUD, J. P. 2002. Structural and functional evidence for ligand-independent
685	transcriptional activation by the estrogen-related receptor 3. Mol Cell, 9, 303-13.
686	HARDY, D. B. & YANG, K. 2002. The expression of 11 beta-hydroxysteroid dehydrogenase type 2 is
687	induced during trophoblast differentiation: effects of hypoxia. J Clin Endocrinol Metab, 87, 3696-701.
688	HEARD, D. J., NORBY, P. L., HOLLOWAY, J. & VISSING, H. 2000. Human ERRgamma, a third
689	member of the estrogen receptor-related receptor (ERR) subfamily of orphan nuclear receptors: tissue-
690	specific isoforms are expressed during development and in the adult. Mol Endocrinol, 14, 382-92.
691	HEAZELL, A. E., LACEY, H. A., JONES, C. J., HUPPERTZ, B., BAKER, P. N. & CROCKER, I. P.
692	2008. Effects of oxygen on cell turnover and expression of regulators of apoptosis in human placental
693	trophoblast. Placenta, 29, 175-86.
694	HEAZELL, A. E., MOLL, S. J., JONES, C. J., BAKER, P. N. & CROCKER, I. P. 2007. Formation of
695	syncytial knots is increased by hyperoxia, hypoxia and reactive oxygen species. Placenta, 28 Suppl A,

Page 28 of 47

696	S33-40.
697	HEAZELL, A. E., SHARP, A. N., BAKER, P. N. & CROCKER, I. P. 2011. Intra-uterine growth
698	restriction is associated with increased apoptosis and altered expression of proteins in the p53 pathway
699	in villous trophoblast. Apoptosis, 16, 135-44.
700	HITSCHOLD, T., WEISS, E., BECK, T., HUNTERFERING, H. & BERLE, P. 1993. Low target birth
701	weight or growth retardation? Umbilical Doppler flow velocity waveforms and histometric analysis of
702	fetoplacental vascular tree. Am J Obstet Gynecol, 168, 1260-4.
703	HOMAN, A., GUAN, H., HARDY, D. B., GRATTON, R. J. & YANG, K. 2006. Hypoxia blocks
704	11beta-hydroxysteroid dehydrogenase type 2 induction in human trophoblast cells during
705	differentiation by a time-dependent mechanism that involves both translation and transcription.
706	Placenta, 27, 832-40.
707	HROMADNIKOVA, I., KOTLABOVA, K., ONDRACKOVA, M., PIRKOVA, P., KESTLEROVA,
708	A., NOVOTNA, V., HYMPANOVA, L. & KROFTA, L. 2015. Expression profile of C19MC
709	microRNAs in placental tissue in pregnancy-related complications. DNA Cell Biol, 34, 437-57.
710	HUANG, L., SHEN, Z., XU, Q., HUANG, X., CHEN, Q. & LI, D. 2013. Increased levels of
711	microRNA-424 are associated with the pathogenesis of fetal growth restriction. <i>Placenta</i> , 34, 624-7.
712	HUNG, T. H. & BURTON, G. J. 2006. Hypoxia and reoxygenation: a possible mechanism for
713	placental oxidative stress in preeclampsia. Taiwan J Obstet Gynecol, 45, 189-200.
714	HUPPERTZ, B. 2011. Trophoblast differentiation, fetal growth restriction and preeclampsia.
715	Pregnancy Hypertens, 1, 79-86.
716	HUPPUNEN, J. & AARNISALO, P. 2004. Dimerization modulates the activity of the orphan nuclear
717	receptor ERRgamma. Biochem Biophys Res Commun, 314, 964-70.
718	HUSS, J. M., KOPP, R. P. & KELLY, D. P. 2002. Peroxisome proliferator-activated receptor
719	coactivator-1alpha (PGC-1alpha) coactivates the cardiac-enriched nuclear receptors estrogen-related
720	receptor-alpha and -gamma. Identification of novel leucine-rich interaction motif within PGC-1alpha. J
721	Biol Chem, 277, 40265-74.
722	INIGUEZ-LLUHI, J. A. & PEARCE, D. 2000. A common motif within the negative regulatory regions
723	of multiple factors inhibits their transcriptional synergy. Mol Cell Biol, 20, 6040-50.
724	ISHIBASHI, O., OHKUCHI, A., ALI, M. M., KURASHINA, R., LUO, S. S., ISHIKAWA, T.,
725	TAKIZAWA, T., HIRASHIMA, C., TAKAHASHI, K., MIGITA, M., et al. 2012. Hydroxysteroid (17- 26

726	beta) dehydrogenase 1 is dysregulated by miR-210 and miR-518c that are aberrantly expressed in
727	preeclamptic placentas: a novel marker for predicting preeclampsia. Hypertension, 59, 265-73.
728	JACKSON, M. R., WALSH, A. J., MORROW, R. J., MULLEN, J. B., LYE, S. J. & RITCHIE, J. W.
729	1995. Reduced placental villous tree elaboration in small-for-gestational-age pregnancies: relationship
730	with umbilical artery Doppler waveforms. Am J Obstet Gynecol, 172, 518-25.
731	JOHNSTON, S. D., LIU, X., ZUO, F., EISENBRAUN, T. L., WILEY, S. R., KRAUS, R. J. &
732	MERTZ, J. E. 1997. Estrogen-related receptor alpha 1 functionally binds as a monomer to extended
733	half-site sequences including ones contained within estrogen-response elements. Mol Endocrinol, 11,
734	342-52.
735	JONES, C. J. & FOX, H. 1991. Ultrastructure of the normal human placenta. Electron Microsc Rev, 4,
736	129-78.
737	KALLEN, J., SCHLAEPPI, J. M., BITSCH, F., FILIPUZZI, I., SCHILB, A., RIOU, V., GRAHAM,
738	A., STRAUSS, A., GEISER, M. & FOURNIER, B. 2004. Evidence for ligand-independent
739	transcriptional activation of the human estrogen-related receptor alpha (ERRalpha): crystal structure of
740	ERRalpha ligand binding domain in complex with peroxisome proliferator-activated receptor
741	coactivator-1alpha. J Biol Chem, 279, 49330-7.
742	KAMARAJUGADDA, S., STEMBOROSKI, L., CAI, Q., SIMPSON, N. E., NAYAK, S., TAN, M. &
743	LU, J. 2012. Glucose oxidation modulates anoikis and tumor metastasis. <i>Mol Cell Biol</i> , 32, 1893-907.
744	KAMAT, A., ALCORN, J. L., KUNCZT, C. & MENDELSON, C. R. 1998. Characterization of the
745	regulatory regions of the human aromatase (P450arom) gene involved in placenta-specific expression.
746	Mol Endocrinol, 12, 1764-77.
747	KIM, D. K., RYU, D., KOH, M., LEE, M. W., LIM, D., KIM, M. J., KIM, Y. H., CHO, W. J., LEE, C.
748	H., PARK, S. B., et al. 2012. Orphan nuclear receptor estrogen-related receptor gamma (ERRgamma)
749	is key regulator of hepatic gluconeogenesis. J Biol Chem, 287, 21628-39.
750	KIM, J., SONG, J., JI, H. D., YOO, E. K., LEE, J. E., LEE, S. B., OH, J. M., LEE, S., HWANG, J. S.,
751	YOON, H., et al. 2019. Discovery of Potent, Selective, and Orally Bioavailable Estrogen-Related
752	Receptor-gamma Inverse Agonists To Restore the Sodium Iodide Symporter Function in Anaplastic
753	Thyroid Cancer. J Med Chem, 62, 1837-1858.
754	KIMURA, C., WATANABE, K., IWASAKI, A., MORI, T., MATSUSHITA, H., SHINOHARA, K. &
755	WAKATSUKI, A. 2013. The severity of hypoxic changes and oxidative DNA damage in the placenta 27

756	of early-onset preeclamptic women and fetal growth restriction. J Matern Fetal Neonatal Med, 26, 491-
757	6.
758	KINGDOM, J., HUPPERTZ, B., SEAWARD, G. & KAUFMANN, P. 2000. Development of the
759	placental villous tree and its consequences for fetal growth. Eur J Obstet Gynecol Reprod Biol, 92, 35-
760	43.
761	KREBS, C., MACARA, L. M., LEISER, R., BOWMAN, A. W., GREER, I. A. & KINGDOM, J. C.
762	1996. Intrauterine growth restriction with absent end-diastolic flow velocity in the umbilical artery is
763	associated with maldevelopment of the placental terminal villous tree. Am J Obstet Gynecol, 175,
764	1534-42.
765	KUBO, M., IJICHI, N., IKEDA, K., HORIE-INOUE, K., TAKEDA, S. & INOUE, S. 2009.
766	Modulation of adipogenesis-related gene expression by estrogen-related receptor gamma during
767	adipocytic differentiation. Biochim Biophys Acta, 1789, 71-7.
768	KUMAR, P. & MENDELSON, C. R. 2011. Estrogen-related receptor gamma (ERRgamma) mediates
769	oxygen-dependent induction of aromatase (CYP19) gene expression during human trophoblast
770	differentiation. Mol Endocrinol, 25, 1513-26.
771	LAPPAS, M., MITTON, A., LIM, R., BARKER, G., RILEY, C. & PERMEZEL, M. 2011. SIRT1 is a
772	novel regulator of key pathways of human labor. Biol Reprod, 84, 167-78.
773	LEDUC, L., LEVY, E., BOUITY-VOUBOU, M. & DELVIN, E. 2010. Fetal programming of
774	atherosclerosis: possible role of the mitochondria. Eur J Obstet Gynecol Reprod Biol, 149, 127-30.
775	LEE, J. H., KIM, E. J., KIM, D. K., LEE, J. M., PARK, S. B., LEE, I. K., HARRIS, R. A., LEE, M. O.
776	& CHOI, H. S. 2012. Hypoxia induces PDK4 gene expression through induction of the orphan nuclear
777	receptor ERRgamma. PLoS One, 7, e46324.
778	LEIBIGER, I. B. & BERGGREN, P. O. 2006. Sirt1: a metabolic master switch that modulates lifespan.
779	<i>Nat Med</i> , 12, 34-6; discussion 36.
780	LEVY, R., SMITH, S. D., CHANDLER, K., SADOVSKY, Y. & NELSON, D. M. 2000. Apoptosis in
781	human cultured trophoblasts is enhanced by hypoxia and diminished by epidermal growth factor. $Am J$
782	Physiol Cell Physiol, 278, C982-8.
783	LI, Q., PAN, Z., WANG, X., GAO, Z., REN, C. & YANG, W. 2014. miR-125b-1-3p inhibits
784	trophoblast cell invasion by targeting sphingosine-1-phosphate receptor 1 in preeclampsia. Biochem
785	Biophys Res Commun, 453, 57-63.

786	LIU, D., ZHANG, Z. & TENG, C. T. 2005. Estrogen-related receptor-gamma and peroxisome
787	proliferator-activated receptor-gamma coactivator-1alpha regulate estrogen-related receptor-alpha gene
788	expression via a conserved multi-hormone response element. J Mol Endocrinol, 34, 473-87.
789	LIU, R. H., MENG, Q., SHI, Y. P. & XU, H. S. 2018. Regulatory role of microRNA-320a in the
790	proliferation, migration, invasion, and apoptosis of trophoblasts and endothelial cells by targeting
791	estrogen-related receptor gamma. J Cell Physiol, 234, 682-691.
792	LUO, C., BALSA, E., THOMAS, A., HATTING, M., JEDRYCHOWSKI, M., GYGI, S. P.,
793	WIDLUND, H. R. & PUIGSERVER, P. 2017. ERRalpha Maintains Mitochondrial Oxidative
794	Metabolism and Constitutes an Actionable Target in PGC1alpha-Elevated Melanomas. Mol Cancer
795	<i>Res,</i> 15, 1366-1375.
796	LUO, L., YE, G., NADEEM, L., FU, G., YANG, B. B., HONARPARVAR, E., DUNK, C., LYE, S. &
797	PENG, C. 2012. MicroRNA-378a-5p promotes trophoblast cell survival, migration and invasion by
798	targeting Nodal. J Cell Sci, 125, 3124-32.
799	LUO, Y., KUMAR, P., CHEN, C. C., LATHAM, J., WANG, L., TUDELA, C., ALEXANDER, J. M.,
800	SHELTON, J. M., MCKOWN, L. & MENDELSON, C. R. 2014. Estrogen-related receptor gamma
801	serves a role in blood pressure homeostasis during pregnancy. Mol Endocrinol, 28, 965-75.
802	LUO, Y., KUMAR, P. & MENDELSON, C. R. 2013. Estrogen-related receptor gamma (ERRgamma)
803	regulates oxygen-dependent expression of voltage-gated potassium (K+) channels and tissue kallikrein
804	during human trophoblast differentiation. Mol Endocrinol, 27, 940-52.
805	MACARA, L., KINGDOM, J. C., KAUFMANN, P., KOHNEN, G., HAIR, J., MORE, I. A., LYALL,
806	F. & GREER, I. A. 1996. Structural analysis of placental terminal villi from growth-restricted
807	pregnancies with abnormal umbilical artery Doppler waveforms. Placenta, 17, 37-48.
808	MALEK, A., MILLER, R. K., MATTISON, D. R., KENNEDY, S., PANIGEL, M., DI
809	SANT'AGNESE, P. A. & JESSEE, L. 1996. Energy charge monitoring via magnetic resonance
810	spectroscopy 31P in the perfused human placenta: effects of cadmium, dinitrophenol and iodoacetate.
811	Placenta, 17, 495-506.
812	MATSAKAS, A., YADAV, V., LORCA, S., EVANS, R. M. & NARKAR, V. A. 2012.
813	Revascularization of ischemic skeletal muscle by estrogen-related receptor-gamma. Circ Res, 110,
814	1087-96.
815	MCBURNEY, M. W., YANG, X., JARDINE, K., HIXON, M., BOEKELHEIDE, K., WEBB, J. R., 29

816	LANSDORP, P. M. & LEMIEUX, M. 2003. The mammalian SIR2alpha protein has a role in
817	embryogenesis and gametogenesis. Mol Cell Biol, 23, 38-54.
818	MCTERNAN, C. L., DRAPER, N., NICHOLSON, H., CHALDER, S. M., DRIVER, P., HEWISON,
819	M., KILBY, M. D. & STEWART, P. M. 2001. Reduced placental 11beta-hydroxysteroid
820	dehydrogenase type 2 mRNA levels in human pregnancies complicated by intrauterine growth
821	restriction: an analysis of possible mechanisms. J Clin Endocrinol Metab, 86, 4979-83.
822	MISRA, J., KIM, D. K. & CHOI, H. S. 2017. ERRgamma: a Junior Orphan with a Senior Role in
823	Metabolism. Trends Endocrinol Metab, 28, 261-272.
824	MISTRY, H. D., MCCALLUM, L. A., KURLAK, L. O., GREENWOOD, I. A., BROUGHTON
825	PIPKIN, F. & TRIBE, R. M. 2011. Novel expression and regulation of voltage-dependent potassium
826	channels in placentas from women with preeclampsia. Hypertension, 58, 497-504.
827	NADEEM, U., YE, G., SALEM, M. & PENG, C. 2014. MicroRNA-378a-5p targets cyclin G2 to
828	inhibit fusion and differentiation in BeWo cells. Biol Reprod, 91, 76.
829	OHKUCHI, A., ISHIBASHI, O., HIRASHIMA, C., TAKAHASHI, K., MATSUBARA, S.,
830	TAKIZAWA, T. & SUZUKI, M. 2012. Plasma level of hydroxysteroid (17-beta) dehydrogenase 1 in
831	the second trimester is an independent risk factor for predicting preeclampsia after adjusting for the
832	effects of mean blood pressure, bilateral notching and plasma level of soluble fms-like tyrosine kinase
833	1/placental growth factor ratio. Hypertens Res, 35, 1152-8.
834	OKADA, H., TOKUNAGA, T., LIU, X., TAKAYANAGI, S., MATSUSHIMA, A. &
835	SHIMOHIGASHI, Y. 2008. Direct evidence revealing structural elements essential for the high
836	binding ability of bisphenol A to human estrogen-related receptor-gamma. Environ Health Perspect,
837	116, 32-8.
838	PATEL, S., KILBURN, B., IMUDIA, A., ARMANT, D. R. & SKAFAR, D. F. 2015. Estradiol Elicits
839	Proapoptotic and Antiproliferative Effects in Human Trophoblast Cells. Biol Reprod, 93, 74.
840	PAYNE, A. H. & HALES, D. B. 2004. Overview of steroidogenic enzymes in the pathway from
841	cholesterol to active steroid hormones. Endocr Rev, 25, 947-70.
842	PELS, A., KNAVEN, O. C., WIJNBERG-WILLIAMS, B. J., EIJSERMANS, M. J. C., MULDER-DE
843	TOLLENAER, S. M., AARNOUDSE-MOENS, C. S. H., KOOPMAN-ESSEBOOM, C., VAN EYCK,
844	J., DERKS, J. B., GANZEVOORT, W., et al. 2019. Neurodevelopmental outcomes at five years after
845	early-onset fetal growth restriction: Analyses in a Dutch subgroup participating in a European
	30

846	management trial. Eur J Obstet Gynecol Reprod Biol, 234, 63-70.
847	PEPE, G. J., BURCH, M. G. & ALBRECHT, E. D. 1999. Expression of the 11beta-hydroxysteroid
848	dehydrogenase types 1 and 2 proteins in human and baboon placental syncytiotrophoblast. Placenta,
849	20, 575-82.
850	PIJNENBORG, R., BLAND, J. M., ROBERTSON, W. B. & BROSENS, I. 1983. Uteroplacental
851	arterial changes related to interstitial trophoblast migration in early human pregnancy. Placenta, 4,
852	397-413.
853	POIDATZ, D., DOS SANTOS, E., BRULE, A., DE MAZANCOURT, P. & DIEUDONNE, M. N.
854	2012. Estrogen-related receptor gamma modulates energy metabolism target genes in human
855	trophoblast. Placenta, 33, 688-95.
856	POIDATZ, D., DOS SANTOS, E., DUVAL, F., MOINDJIE, H., SERAZIN, V., VIALARD, F., DE
857	MAZANCOURT, P. & DIEUDONNE, M. N. 2015. Involvement of estrogen-related receptor-gamma
858	and mitochondrial content in intrauterine growth restriction and preeclampsia. Fertil Steril, 104, 483-
859	90.
860	RAJAKUMAR, A., BRANDON, H. M., DAFTARY, A., NESS, R. & CONRAD, K. P. 2004.
861	Evidence for the functional activity of hypoxia-inducible transcription factors overexpressed in
862	preeclamptic placentae. Placenta, 25, 763-9.
863	RAMIREZ-VELEZ, R., CORREA-BAUTISTA, J. E., VILLA-GONZALEZ, E., MARTINEZ-
864	TORRES, J., HACKNEY, A. C. & GARCIA-HERMOSO, A. 2017. Effects of preterm birth and fetal
865	growth retardation on life-course cardiovascular risk factors among schoolchildren from Colombia:
866	The FUPRECOL study. Early Hum Dev, 106-107, 53-58.
867	REDMAN, C. W. 1991. Current topic: pre-eclampsia and the placenta. Placenta, 12, 301-8.
868	ROBB, K. P., COTECHINI, T., ALLAIRE, C., SPEROU, A. & GRAHAM, C. H. 2017. Inflammation-
869	induced fetal growth restriction in rats is associated with increased placental HIF-1alpha accumulation.
870	PLoS One, 12, e0175805.
871	ROBERTS, D. J. & POST, M. D. 2008. The placenta in pre-eclampsia and intrauterine growth
872	restriction. J Clin Pathol, 61, 1254-60.
873	SCHULZ, H. 1991. Beta oxidation of fatty acids. Biochim Biophys Acta, 1081, 109-20.
874	SIFAKIS, S., ANDROUTSOPOULOS, V. P., PONTIKAKI, A., VELEGRAKIS, A.,
875	PAPAIOANNOU, G. I., KOUKOURA, O., SPANDIDOS, D. A. & PAPANTONIOU, N. 2018.
	31

876	Placental expression of PAPPA, PAPPA-2 and PLAC-1 in pregnacies is associated with FGR. Mol
877	Med Rep, 17, 6435-6440.
878	SOUZA, J. P., GULMEZOGLU, A. M., VOGEL, J., CARROLI, G., LUMBIGANON, P., QURESHI,
879	Z., COSTA, M. J., FAWOLE, B., MUGERWA, Y., NAFIOU, I., et al. 2013. Moving beyond essential
880	interventions for reduction of maternal mortality (the WHO Multicountry Survey on Maternal and
881	Newborn Health): a cross-sectional study. Lancet, 381, 1747-55.
882	SPINILLO, A., GARDELLA, B., ADAMO, L., MUSCETTOLA, G., FIANDRINO, G. & CESARI, S.
883	2019. Pathologic placental lesions in early and late fetal growth restriction. Acta Obstet Gynecol Scand,
884	98, 1585-1594.
885	STRUWE, E., BERZL, G. M., SCHILD, R. L., BECKMANN, M. W., DORR, H. G., RASCHER, W.
886	& DOTSCH, J. 2007. Simultaneously reduced gene expression of cortisol-activating and cortisol-
887	inactivating enzymes in placentas of small-for-gestational-age neonates. Am J Obstet Gynecol, 197, 43
888	e1-6.
889	SUGDEN, M. C. & HOLNESS, M. J. 2003. Recent advances in mechanisms regulating glucose
890	oxidation at the level of the pyruvate dehydrogenase complex by PDKs. Am J Physiol Endocrinol
891	Metab, 284, E855-62.
892	TAKAGI, Y., NIKAIDO, T., TOKI, T., KITA, N., KANAI, M., ASHIDA, T., OHIRA, S. &
893	KONISHI, I. 2004. Levels of oxidative stress and redox-related molecules in the placenta in
894	preeclampsia and fetal growth restriction. Virchows Arch, 444, 49-55.
895	TAKAYANAGI, S., TOKUNAGA, T., LIU, X., OKADA, H., MATSUSHIMA, A. &
896	SHIMOHIGASHI, Y. 2006. Endocrine disruptor bisphenol A strongly binds to human estrogen-related
897	receptor gamma (ERRgamma) with high constitutive activity. Toxicol Lett, 167, 95-105.
898	TAKEDA, Y., LIU, X., SUMIYOSHI, M., MATSUSHIMA, A., SHIMOHIGASHI, M. &
899	SHIMOHIGASHI, Y. 2009. Placenta expressing the greatest quantity of bisphenol A receptor
900	ERR{gamma} among the human reproductive tissues: Predominant expression of type-1 ERRgamma
901	isoform. J Biochem, 146, 113-22.
902	TORRANO, V., VALCARCEL-JIMENEZ, L., CORTAZAR, A. R., LIU, X., UROSEVIC, J.,
903	
705	CASTILLO-MARTIN, M., FERNANDEZ-RUIZ, S., MORCIANO, G., CARO-MALDONADO, A.,
903 904	CASTILLO-MARTIN, M., FERNANDEZ-RUIZ, S., MORCIANO, G., CARO-MALDONADO, A., GUIU, M., et al. 2016. The metabolic co-regulator PGC1alpha suppresses prostate cancer metastasis.

906	TREMBLAY, A. M., WILSON, B. J., YANG, X. J. & GIGUERE, V. 2008. Phosphorylation-
907	dependent sumoylation regulates estrogen-related receptor-alpha and -gamma transcriptional activity
908	through a synergy control motif. Mol Endocrinol, 22, 570-84.
909	TREMBLAY, G. B., BERGERON, D. & GIGUERE, V. 2001a. 4-Hydroxytamoxifen is an isoform-
910	specific inhibitor of orphan estrogen-receptor-related (ERR) nuclear receptors beta and gamma.
911	Endocrinology, 142, 4572-5.
912	TREMBLAY, G. B., KUNATH, T., BERGERON, D., LAPOINTE, L., CHAMPIGNY, C., BADER, J.
913	A., ROSSANT, J. & GIGUERE, V. 2001b. Diethylstilbestrol regulates trophoblast stem cell
914	differentiation as a ligand of orphan nuclear receptor ERR beta. Genes Dev, 15, 833-8.
915	TROISI, J., MIKELSON, C., RICHARDS, S., SYMES, S., ADAIR, D., ZULLO, F. & GUIDA, M.
916	2014. Placental concentrations of bisphenol A and birth weight from births in the Southeastern U.S.
917	Placenta, 35, 947-52.
918	TZSCHOPPE, A., STRUWE, E., BLESSING, H., FAHLBUSCH, F., LIEBHABER, G., DORR, H. G.,
919	RAUH, M., RASCHER, W., GOECKE, T. W., SCHILD, R. L., et al. 2009. Placental 11beta-HSD2
920	gene expression at birth is inversely correlated with growth velocity in the first year of life after
921	intrauterine growth restriction. Pediatr Res, 65, 647-53.
922	VANACKER, J. M., PETTERSSON, K., GUSTAFSSON, J. A. & LAUDET, V. 1999. Transcriptional
923	targets shared by estrogen receptor- related receptors (ERRs) and estrogen receptor (ER) alpha, but not
924	by ERbeta. EMBO J, 18, 4270-9.
925	VERNIER, M., DUFOUR, C. R., MCGUIRK, S., SCHOLTES, C., LI, X., BOURMEAU, G.,
926	KUASNE, H., PARK, M., ST-PIERRE, J., AUDET-WALSH, E., et al. 2020. Estrogen-related
927	receptors are targetable ROS sensors. Genes Dev, 34, 544-559.
928	WILSON, B. J., TREMBLAY, A. M., DEBLOIS, G., SYLVAIN-DROLET, G. & GIGUERE, V. 2010.
929	An acetylation switch modulates the transcriptional activity of estrogen-related receptor alpha. Mol
930	Endocrinol, 24, 1349-58.
931	XIE, Y. B., PARK, J. H., KIM, D. K., HWANG, J. H., OH, S., PARK, S. B., SHONG, M., LEE, I. K.
932	& CHOI, H. S. 2009. Transcriptional corepressor SMILE recruits SIRT1 to inhibit nuclear receptor
933	estrogen receptor-related receptor gamma transactivation. J Biol Chem, 284, 28762-74.
934	YANG, N., SHIGETA, H., SHI, H. & TENG, C. T. 1996. Estrogen-related receptor, hERR1,
935	modulates estrogen receptor-mediated response of human lactoferrin gene promoter. <i>J Biol Chem</i> , 271, 33

936	5795-804.
937	YLIKORKALA, A., ROSSI, D. J., KORSISAARI, N., LUUKKO, K., ALITALO, K.,
938	HENKEMEYER, M. & MAKELA, T. P. 2001. Vascular abnormalities and deregulation of VEGF in
939	Lkb1-deficient mice. Science, 293, 1323-6.
940	YU, Y., WANG, L., LIU, T. & GUAN, H. 2015. MicroRNA-204 suppresses trophoblast-like cell
941	invasion by targeting matrix metalloproteinase-9. Biochem Biophys Res Commun, 463, 285-91.
942	YUNG, H. W., CALABRESE, S., HYNX, D., HEMMINGS, B. A., CETIN, I., CHARNOCK-JONES,
943	D. S. & BURTON, G. J. 2008. Evidence of placental translation inhibition and endoplasmic reticulum
944	stress in the etiology of human intrauterine growth restriction. Am J Pathol, 173, 451-62.
945	YUNG, H. W., COLLEONI, F., DOMMETT, E., CINDROVA-DAVIES, T., KINGDOM, J.,
946	MURRAY, A. J. & BURTON, G. J. 2019. Noncanonical mitochondrial unfolded protein response
947	impairs placental oxidative phosphorylation in early-onset preeclampsia. Proc Natl Acad Sci USA,
948	116, 18109-18118.
949	ZHANG, Y., DIAO, Z., SU, L., SUN, H., LI, R., CUI, H. & HU, Y. 2010. MicroRNA-155 contributes
950	to preeclampsia by down-regulating CYR61. Am J Obstet Gynecol, 202, 466 e1-7.
951	ZHANG, Y., MA, K., SADANA, P., CHOWDHURY, F., GAILLARD, S., WANG, F.,
952	MCDONNELL, D. P., UNTERMAN, T. G., ELAM, M. B. & PARK, E. A. 2006a. Estrogen-related
953	receptors stimulate pyruvate dehydrogenase kinase isoform 4 gene expression. J Biol Chem, 281,
954	39897-906.
955	ZHANG, Z., CHEN, K., SHIH, J. C. & TENG, C. T. 2006b. Estrogen-related receptors-stimulated
956	monoamine oxidase B promoter activity is down-regulated by estrogen receptors. Mol Endocrinol, 20,
957	1547-61.
958	ZHU, H., HUANG, L., HE, Z., ZOU, Z. & LUO, Y. 2018a. Estrogen-related receptor gamma regulates
959	expression of 17beta-hydroxysteroid dehydrogenase type 1 in fetal growth restriction. Placenta, 67, 38-
960	44.
961	ZHU, P., WANG, W., ZUO, R. & SUN, K. 2018b. Mechanisms for establishment of the placental
962	glucocorticoid barrier, a guard for life. Cell Mol Life Sci.
963	ZOU, Z., HE, Z., CAI, J., HUANG, L., ZHU, H. & LUO, Y. 2019. Potential role of microRNA-424 in
964	regulating ERRgamma to suppress trophoblast proliferation and invasion in fetal growth restriction.
965	<i>Placenta</i> , 83, 57-62.

34

966

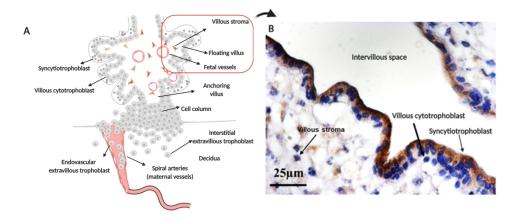


Figure 1. Schematic showing villous structure, trophoblast lineages and ERRy localization in the human placenta.

386x160mm (300 x 300 DPI)

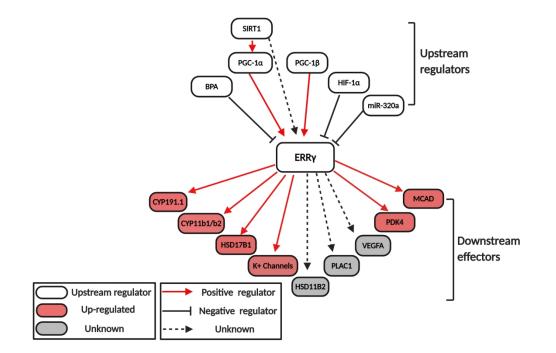


Figure 2. Diagrammatic representation of known upstream regulators and downstream effectors of ERR γ in the placenta.

175x118mm (300 x 300 DPI)

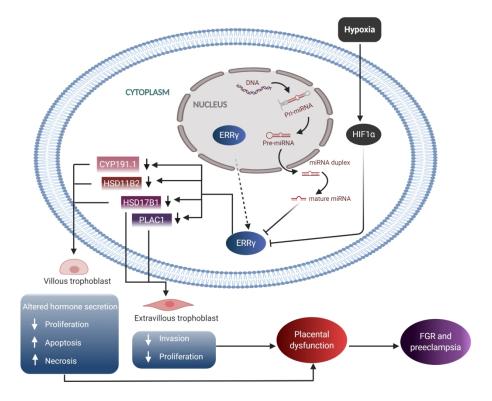


Figure 3. Proposed mechanism by which placental ERRy expression and function is altered in pregnancies complicated by FGR and preeclampsia.

218x169mm (300 x 300 DPI)

Figure 1. Schematic showing villous structure, trophoblast lineages and $ERR\gamma$ localization in the human placenta. Figure 1A: Extravillous trophoblast that are situated at the end of the cell column invade the decidua and remodel the maternal spiral arterioles to produce dilated and compliant uterine vessels. Villous cytotrophoblast differentiates and fuses to form the outer multinucleated syncytiotrophoblast which transports nutrients and gases from the maternal to fetal circulation. Figure 1B light micrograph showing immunostaining of $ERR\gamma$ in first trimester placental explants. $ERR\gamma$ is mainly observed in the cytoplasm of the syncytiotrophoblast and cytotrophoblast. Arrows indicate villous cytotrophoblast, syncytiotrophoblast and villous stroma. Scale bar represents 25µm.

Figure 2. Diagrammatic representation of known upstream regulators and downstream effectors of *ERRy* in the placenta. Expression of the depicted genes is known to be altered in the FGR or preeclampsia placenta, where a red arrow indicates a positive effect and a black line indicates a negative effect. Meanwhile, a black dot arrow suggests an unclear relationship between *ERRy* and downstream effectors. *CYP11b1*: cytochrome P450 family 11 subfamily B member 1; *HSD11B2*: hydroxysteroid 11-beta dehydrogenase 2; *HSD17B1*: hydroxysteroid 17-beta dehydrogenase 1; *PLAC1*: placenta-specific 1; *VEGFA*: vascular endothelial growth factor A; *PDK4*: pyruvate dehydrogenase kinase 4; *MCAD*: medium-chain acyl-CoA dehydrogenase; BPA: bisphenol A; *PCG-1a/β*: peroxisome proliferator-activated receptor- γ coactivator-1 alpha/beta; *HIF-1a*: Hypoxia-inducible factor 1-alpha.

Figure 3. Proposed mechanism by which placental *ERR* γ expression and function is altered in pregnancies complicated by FGR and preeclampsia. The hypoxic environment of the maternofetal interface in FGR results in upregulation and activation of *HIF1* α in the placenta, resulting in inhibition of *ERR* γ expression. The expression of several miRNAs is upregulated in FGR and we propose that amongst these are key *ERR* γ regulatory miRNAs. Binding of these miRNAs to the 3'UTR of *ERR* γ results in mRNA degradation and inhibition of *ERR* γ protein translation. This leads to reduced expression of genes downstream of *ERR*_γ, including *CYP19*, *HSD17B1*, *HSD11B2* and *PLAC1*. These downstream genes play an important role in placental hormone production and regulating different aspects of cytotrophoblast function, including villous cytotrophoblast proliferation and extravillous trophoblast invasion.

Table 1. Relationship of *ERR* to upstream regulators and downstream effectors demonstrated in studies of placenta.

	Tissue/cell type/subject	Reference	Study Methods	Main finding	Influence on trophoblast function	Definition of FGR / preeclampsia (where applicable)
Downstream						
hCYP19	Mid-trimester primary cytotrophoblasts	Kumar & Mendelson (2011)	RT-PCR; WB; ChIP;	 <i>ERRγ</i> is an oxygen-dependent transcription factor and mediates <i>hCYP19</i> expression in trophoblast differentiation. 	Differentiatio n	
Cyp11b1	Late-onset PE placenta; Mouse model	Luo <i>et al.</i> (2014)	RT-PCR; IHC; WB; ChIP; LRA	<i>ERRy</i> is increased in placenta in PE and can influence the blood pressure in pregnant mice by targeting <i>Cyp11b1</i> .	Reduced production of aldosterone	PE defined as maternal blood pressure (\geq 140/90 mmHg) and proteinuria (proteinuria \geq 300mg per 24 hours or \geq 1+ protein by dipstick from 2 random urine specimens or \geq 2+protein by 1 dipstick) after 20 weeks of gestation.
Potassium (K ⁺) channels	Mid-trimester primary trophoblast cells; Term FGR placenta	Luo <i>et al.</i> (2013); Corcoran <i>et al.</i> (2008)	RT-PCR; WB; ChIP; LRA; Whole-genome gene expression arrays	 Hypoxia inhibits the expression of <i>ERRγ</i> and K⁺ channels; <i>ERRγ</i> can regulate K⁺ channels that may be 	Differentiatio n	FGR defined as the individualized birth weight ratio (IBR) \leq 5th centile for gestational age.

		1	1			
			,	associated with PE and		
			,	identified three ERRy		
			,	potential effectors, including		
			,	HSD11B2, HSD17B1, and		
				PLAC1;		
				Oxygen-sensitive K ⁺ channel		
				gene $K_V 9.3$ was increased in		
				FGR placenta and $K_V 2.1$ was		
				increased in FGR placental		
				vein		
HSD11B2	Cytotrophoblast	McTernan <i>et al</i> .	RT-PCR	HSD11B2 mRNA is	Not reported	FGR are diagnosed with at
	from mid-trimester	(2001); Luo <i>et al</i> .		decreased in ERRy		least three of four following
	placenta;	(2013)		knockdown mid-trimester		ultrasound features: 1) fetal
	Early-onset FGR			cytotrophoblasts.		abdominal circumference $\leq 3^{rd}$
	placenta (n=15)			HSD11B2 is decreased in		centile for weeks of gestation,
	and later-onset			both early-onset and later-		2) abnormal fetal growth
	FGR placentas			onset FGR placentas, when		velocity 3) severe
	(n=4)			compared with gestational		oligohydramnios (amniotic
				matched normal placentas.		fluid index $\leq 3^{rd}$ percentile for
						gestational age), 4) absent or
						reversed velocities in
						umbilical artery Doppler
						waveforms.

PLAC1	Placental villi of	Chang <i>et al.</i> (2016)	RT-PCR; IHC;	PLAC1 is increased during	Differentiatio	FGR were diagnosed as a fetus
	the human first		WB	the trophoblast differentiation	n	with reduced growth velocity,
	trimester and term			and low expression inhibits		which is less than 10 th centile
	placenta			the cell fusion.		after 20 gestational weeks.
	Later-onset FGR	Sifakis <i>et al.</i> (2018)	RT-PCR	PLAC1 is increased in FGR	Not reported	
	placenta			placenta.		
HSD17B1	Late-onset FGR	Zhu et al. (2018)	RT-PCR; IHC;	$ERR\gamma$ can regulate $HSD17B1$	Decrease	FGR defined as estimated fetal
	placenta;		WB; LRA	that is associated with FGR	invasion;	weight is less than 10 th centile.
	HTR-8 cell lines				proliferation	
VEGFA	Mouse model	Luo et al. (2014)	RT-PCR	The expression of VEGFA is	No detection	
				decreased in ERRy deficient	reported	
				mice placenta		
PDK4	Primary	Poidatz <i>et al</i> .	RT-PCR, IHC	The expression of $ERR\gamma$ is	Differentiatio	
	trophoblast	(2012)		increased during trophoblast	n	
	Bewo cell line			differentiation;		
				PDK4 is decreased after		
				inhibiting ERRy expression.		
MCAD	First trimester	Poidatz et al.	RT-PCR, IHC	MCAD is decreased after	Differentiatio	
	human primary	(2012)		inhibiting <i>ERR</i> v expression.	n	
	cytotrophoblast;					
	Bewo cell line					

Up	ostream						
	BPA	Placentas from low birth weight infant; 587 children	Troisi <i>et al.</i> (2014); Miao <i>et al.</i> (2011)	GC-MS analysis, Interview	Negative relationshipbetween BPA and fetalweight; <i>ERRγ</i> is a receptor of	Not reported	Low birth weight defined as the infant weight less than 2500g at birth;
					BPA in the placenta.		
	PGC-1α	FGR and PE placenta; Late-onset FGR placenta	Poidatz <i>et al.</i> (2015)	IHC, RT-PCR, Quantification Mitochondrial DNA	In FGR and PE placenta, the expression of $ERR\gamma$, PGC-1 α and SIRT1 is decreased.	No detection reported	FGR defined as a birth weightless than 10^{th} centile.PE was diagnosed as anelevated maternal bloodpressure (systolic and diastolicblood pressure $\geq 140/90$ mmHg) andproteinuria (≥ 300 mg per 24hours) after 20 weeks ofgestation.
	SIRT1	FGR and PE placenta; Late-onset FGR placenta	Poidatz <i>et al.</i> (2015)	IHC, RT-PCR, Quantification Mitochondrial DNA	In FGR and PE placenta, the expression of $ERR\gamma$, $PGC-1\alpha$ and $SIRT1$ is decreased.	No detection	FGR defined as a birth weightless than 10^{th} centile.The definition of PE has beenmentioned in the part of PCG- 1α .
	MiR-320a	Late-onset PE placenta; HTR-	Gao <i>et al.</i> (2018)	RT-PCR; IHC; WB; LRA	MiR-320a regulates <i>ERR</i> in PE	Decreased invasion;	PE defined as increased diastolic and systolic maternal

	8/SVneo				No change in	blood pressure with
					proliferation	proteinuria.
					and migration	
	HTR-8/SVneo;	Liu et al. (2018)	RT-PCR; WB;	MiR-320a directly target	Decreased	
	,		LRA	ERRy and may indirectly	invasion,	
	HUVECs			control the expression of	proliferation	
				VEGFA to influence the	and migration;	
				function of both trophoblast	Increase in	
				and vein endothelial cells.	apoptosis	
HIF-1α	Mid-trimester	Kumar &	RT-PCR; WB;	<i>HIF-1</i> α can mediate <i>ERR</i> γ	Differentiatio	
	primary trophoblast	Mendelson (2011)	ChIP assay	expression in trophoblast	n	
	cells			differentiation		

 $ERR\gamma$, estrogen related receptor γ ; *hCYP19*, cytochrome P-450; RT-PCR, reverse transcription polymerase chain reaction; WB, western blot; CHIP, chromatin immunoprecipitation; FGR, fetal growth restriction; *CYP11b1*, cytochrome P450 family 11 subfamily B member 1; IHC, immunochemistry; LRA, luciferase reporter assay; PE, preeclampsia; *HSD11B2*, hydroxysteroid 11-beta dehydrogenase 2; *HSD17B1*, hydroxysteroid 17-beta dehydrogenase 1; *PLAC1*, placenta-specific 1; *VEGFA*, vascular endothelial growth factor A; *PDK4*, pyruvate dehydrogenase kinase 4; SGA, small for gestational age; *MCAD*, medium-chain acyl-CoA dehydrogenase; BPA, bisphenol A; GC-MS, gas chromatography-mass spectrometry; *PCG-1a*, peroxisome proliferator-activated receptor- γ coactivator-1 alpha; HUVECs, human umbilical vein endothelial cells; *HIF-1a*, Hypoxia-inducible factor 1-alpha.