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The completeness properties of Gaussian-type orbitals in quantum chemistry
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In this work, I extend results on the convergence of Gaussian basis sets, previously

shown for ground state hydrogenic wavefunctions, to orbitals of arbitrary angular

momentum. I give rigorous proofs of their asymptotic behaviour, and demonstrate

that for methods with regular potential operators - in particular, Hartree-Fock and

Kohn-Sham density functional theory - that the assumption of completeness is correct

under fairly lenient conditions. The final result under the correct norm is that the

convergence in energy follows exp(−k
√
M) where M is the number of Gaussians

and k is a positive constant, generalizing previous results due to Kutzelnigg. This

then yields prescriptions for accelerated convergence using even-tempered Gaussians,

which could be used as initial guesses in future basis set optimizations.
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I. INTRODUCTION

Non-relativistic quantum chemistry focuses on the solution of the Schrödinger equation

to obtain the wavefunction for the system. From this, expectation values for observables - in

particular, the energy - can be calculated. Construction of a wavefunction using computers

requires discretization of a continuous problem, and this is normally achieved by expansion of

the wavefunction in terms of molecular orbitals. These orbitals are themselves then expanded

as linear combinations of one-electron functions, termed a basis set. Most commonly, these

functions take the form of Gaussians in the radial part, with spherical harmonics describing

the angular part1,2.

Much work has previously focused on the completeness of the description of an N -electron

wavefunction in terms of Slater determinants3,4, but the more specific problem of the discrete

representation of the one-electron functions has been less well explored. In fact, it is de

facto assumed that simply by adding more Gaussians, convergence of the energy will be

achieved towards the so-called ”complete basis set” (CBS) limit5–8 - that is, the lowest

energy achievable within whatever ansatz is used - and basis set extrapolation schemes take

advantage of this9–12.

The first real consideration of this was by Klahn and Bingel in the late ’70s, who demon-

strated some sufficient criteria for completeness13. It was not until several years later with

work by Hill14, and then Kutzelnigg15–17, that the asymptotic details of convergence, rather

than hypothetical completeness, were considered in any detail. The latter work has var-

iously shown three convergence patterns, the most favourable of which he demonstrated

most recently for ground-state hydrogenic wavefunctions, with an innovative use of Gaus-

sian transforms17. Finally, Bachmayr and coworkers18 in 2014 gave a rigorous proof, and

asymptotic analysis of, the completeness of even-tempered Gaussian bases. Here, I will show

using simpler methods that the approach of Kutzelnigg can be extended much more gener-

ally to all mean-field wavefunctions constructed using Gaussian-type orbitals. Moreover, I

will demonstrate it for convergence in the correct energy norm, giving detailed comparison

with other weaker measures of error, remarkably ending up at the same result despite con-

siderable differences in the error distributions. This indirectly is a representation of how the

electronic cusp dominates the error, as should be expected from work on explicitly-correlated

methods19–21.
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Within the formalism of second quantization, both the observables and the wavefunction

are written in terms of operators, with the formal (anti)symmetry requirements following

from the underlying Lie algebra of these operators. I briefly introduce this formalism, before

expounding upon the representation of the wavefunction in a finite basis. This discretization

of a continuous operator has an associated error, which vanishes in the limit of a complete

basis, and is thus termed the basis set incompleteness error (BSIE). The conditions under

which a particular choice of basis becomes complete and how this affects the convergence of

energy calculations forms the main focus of this article.

II. WAVEFUNCTIONS

Conventionally, a given system in quantum chemistry is represented using a basis of M

orthonormal one-electron spin orbitals {φP} in some Hilbert space, H, depending on the

nuclear and spin coordinates, xi of an electron i.41 For a system of N -electrons, N such

orbitals are combined into a Slater determinant:

|φP1
φP2

· · ·φPN
| = Â [φP1

(x1)φP2
(x2) · · ·φPN

(xN)] (1)

where the operator Â = N−1/2
∑

π̂∈SN
π̂ is an antisymmetriser, permuting electron coordi-

nates according to the symmetric group SN . The total N -electron wavefunction can then in

principle be represented exactly by linear combinations of Slater determinants in the limit

that the spin orbital basis tends to completion. In practice this is restricted to finite M ,

rather than taken to infinity. These Slater determinants span a space comprising the N -fold

tensor product of Hilbert spaces, and the set of all such N -dimensional spaces form a Fock

space. In the formalism of second quantization, points in Fock space are represented in

terms of creation and annihilation operators, a†p and ap, acting on the vacuum.

Any operator representing a physical observable must be number conserving, and thus

be represented with equal numbers of creation and annihilation operators. In particular, an

m-electron operator will involve the destruction and creation of particles in m orbitals.42

The non-relativistic, molecular electronic Hamiltonian in second quantization notation (and

atomic units) is written as a sum of one- and two-electron operators:

Ĥ =
∑

PQ

hPQa
†
PaQ +

1

2

∑

PQRS

gPQRSa
†
Pa

†
RaSaQ (2)
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where the matrix elements are defined to be

hPQ =

∫

d4x1 φ∗
P (x1)ĥ1φQ(x1) (3)

gPQRS =

∫

d4x1 d4x2 φ∗
P (x1)φ

∗
R(x2)V̂12φP (x1)φS(x2) (4)

In general, the spectrum of the molecular Hamiltonian will comprise continuous and point

spectra, corresponding to free and bound states, where we are primarily interested in the

latter. If we consider the expectation value over a particular state vector, |n〉, we see that

the one-electron term gives hPQ 〈n|a†PaQ|n〉, such that the left- and right-vectors differ in

their occupations of orbitals P and Q. The orthonormality of the spin orbitals then implies

that this is zero unless P = Q. Similarly, for the two-electron terms, we must either have

P = Q,R = S, or P = S,R = Q, with the latter carrying a negative sign due to the

exchange of S and Q. The total energy of this state is thus given by:

En = 〈n|Ĥ|n〉 =
∑

P

hPP +
1

2

∑

PR

[gPPRR − gPRRP ] (5)

A. Rayleigh-Ritz and Galerkin methods

The central problem of quantum chemistry is thus to find the eigenstates and eigenvalues

of the above Hamiltonian. In practice, the dimensionality of the problem requires the use

of computers, which in turn necessitates discretizing the equations. For simplicity and

clarity, we consider the one-electron, spin-integrated case,43 posed as follows: find λ ∈ R

and u ∈ H1(R3) with ‖u‖L2(R3) = 1, such that

a(u, v) = λ 〈u|v〉 ∀ v ∈ H1(R3) (6)

where we have defined the bilinear form

a : H1(R3)×H1(R3) → R

(u, v) 7→ 〈u|Ĥ|v〉
(7)

We write ‖·‖X to denote the norm induced on a given space, X, the details of which will

be defined later. Note that we look at the first Sobolev space H1, rather than the Lebesgue

space L2. This is due to the presence of the differential operator in the Hamiltonian; at

first it may seem that the second Sobolev space is the relevant one, but the operator is
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self-adjoint such that 〈u|∇ · ∇|v〉 = 〈∇u|∇v〉.44 The physical relevance of these spaces is

that they reflect the differentiability of the wavefunction. The first space thus describes the

smoothness of the wavefunction, while the second its curvature - intuitively, restrictions on

these are used as boundary conditions when solving the Schrödinger equation.

We then introduce a finite set of M basis functions, {ϕm}, which collectively span some

subspace BM ⊂ H1(R3). We then make a guess to the true eigenfunction using the linearity

of the space:

uM(r) =
∑

m

cmϕm(r) (8)

Since a is self-adjoint and bilinear, the Rayleigh-Ritz Theorem22,23 implies what is commonly

termed the variational principle:

λ 〈uM |uM〉 ≤ a(uM , uM) (9)

That is, the eigenvalue determined from the guess gives an upper-bound on the true eigen-

value. We can thus vary the coefficients, cm, to determine the lowest possible eigenvalue, giv-

ing the best possible estimate to the true energy of the system (the Rayleigh-Ritz method).

This dimension reduction is used both in Hartree-Fock24,25, where a mean field potential is

used and the wavefunction restricted to a single state in Fock space, and in configuration

interaction methods26, where multiple states are included in a linear combination. These

are thus specific examples of a more general class of Galerkin methods. The bilinearity of

equation 7 then guarantees that the problem is well-posed, and allows for the application of

Cea’s lemma27:

Lemma 1 (Cea’s lemma) Let u and ūM be the true and Galerkin solutions to the problem

in equation 6. Then for some constant K > 0, we have

‖u− ūM‖H1(R3) ≤ K inf
uM∈BM

‖u− uM‖H1(R3) (10)

where BM is the subspace spanned by a set of M Gaussian functions.

That is, the Galerkin solution is the best approximation from BM to u up to a constant.

More to the point, this means it is sufficient to study the structure of BM to determine the

quality of the wavefunction thus obtained.
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B. Atomic basis functions

For the case of a single electron in the central field of a nucleus, i.e. a hydrogenic atom,

the above system is exactly soluble. The wavefunction in spherical coordinates separates

into radial and angular parts, Ψnlm(r) = Rnl(r)Ylm(θ, φ), where the Ylm are the spherical

harmonics, and n, l, m are the principal, azimuthal, and magnetic quantum numbers, re-

spectively. The normalized radial functions corresponding to the point spectrum (bound

states) for a hydrogenic system with nuclear charge Z are given by:

Rnl(r) =

(

2Z

n

)3/2+l
√

(n− l − 1)!

2n(n+ l)!
rl exp(−Zr/n)L2l+1

n−l−1

(

2Zr

n

)

(11)

where La
n(x) are the associated Laguerre polynomials.28 These do not form a complete basis

for the one-particle Hilbert space unless Z is allowed to vary. In contrast, Slater- and

Gaussian-type orbitals (STOs and GTOs), given in equations 12 and 13 respectively, do

form complete sets - explained shortly in Definition III.1 for fixed exponents13.

ϕS
nlm(r) =

(2ζ)l+3/2

√

(2l + 2)!
rl exp(−ζr)Ylm(θ, φ) (12)

ϕG
nlm(r) =

2l+3/4(
√
ζ)l+3/2

π1/4
√

(2l + 1)!!
rl exp(−ζr2)Ylm(θ, φ) (13)

It is more practical, however, to allow the exponent to vary and restrict the quantum numbers

to relevant shells. Typically, basis set extrapolations also add higher angular momentum

functions at each stage, particularly for correlation consistent sets where such functions are

vital in the subsequent, correlated parts of the calculation.

Clearly, the STOs are more similar to the true hydrogenic functions than the GTOs,

and thus are expected be a better description of atomic orbitals in general. The latter in

particular give a poor description in both very near to, and very far from, the nucleus, as

they lack a cusp at the origin and decay as exp(−r2). This is demonstrated in Figure 1.

However, the matrix elements in equations 3 and 4 can be evaluated analytically over GTOs,

due to the Gaussian product theorem29. This means that the integrals are far more efficient

to compute, to the point where it is feasible to use considerably more functions such that

the inadequacies are irrelevant.
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FIG. 1. The radial part of the 2s orbital of a hydrogenic atom, and the equivalent (nodeless)

Slater- and Gaussian-type orbitals. Note in particular how the GTO lacks a cusp at the origin and

decays too rapidly. Note that the orbitals are not normalised, so as to make it easier to see the

differences between them.

III. CONVERGENCE PROPERTIES OF GAUSSIAN BASIS SETS

The accuracy of the results from application of the Galerkin method will depend strongly

on the quality of the basis used. Given that some form of self-consistent field (SCF) calcu-

lation, namely Hartree-Fock (HF) or Kohn-Sham (KS), is the starting point of almost all

quantum chemistry methods, this implies that an understanding of the properties of the

particular choice of basis is essential. In particular, it is often assumed that by systemati-

cally adding additional functions, convergence to the exact result can be achieved - that is,

an assumption of completeness of the basis with respect to the energy norm. The conditions

under which this is true, however, are neither well-known nor widely studied in the chem-

istry community. This section takes the analysis of Kutzelnigg17 as a starting point, and

significantly extends it by considering the approximation of arbitrary angular momentum

STOs by finite linear combinations of GTOs, using more robust metrics than the L∞-norm.
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A. Completeness results

Completeness of a basis with respect to the norm induced on a Hilbert space, H, is

defined as follows:

Definition III.1 The basis {ϕm} is complete with respect to the norm ‖·‖X if, for any ǫ > 0

and f ∈ H, there exists an integer N > 0 and coefficients {cn} such that

∥

∥

∥

∥

∥

f −
N
∑

n=1

cnϕn

∥

∥

∥

∥

∥

X

< ǫ

Essentially, this means that it is possible to get arbitrarily close to any point in the Hilbert

space. The definition of distance is almost arbitrary, and as such this property depends

critically on the particular choice of metric.45 The usual choices are the Lp-norms:

Definition III.2 The Lp-norm for some f ∈ H and 1 ≤ p < ∞, with H ⊆ Lp(S), is given

by

‖f‖p =
(
∫

S

f p

)1/p

The L∞-norm is then

‖f‖∞ = sup
s∈S

|f(s)|

If the underlying σ-algebra, S, is equipped with finite measure, these norms are equivalent;

in particular, ‖f‖p ≥ ‖f‖q for p < q.22 The Lebesgue measure over R
n is not finite30,

however, such that these inequalities do not hold, but they do illustrate that completeness

in the L1-norm is generally the strongest result. The exception is the case ‖f‖∞ ≤ ‖f‖p,
which is always true for 1 ≤ p < ∞23.

Klahn and Bingel13 have given sufficient (but not necessary) conditions for completeness

of the Slater- and Gaussian-type bases in the L2-norm:

Lemma 2 Let {ζn}∞n=1 be a sequence of positive numbers. Then systems of functions com-

prising the radial parts of equations 12 or 13 are complete in L2(R+) if the sequence has:

1. a limit point ζ ∈ (0,∞), or

2. a monotonically increasing subsequence {ζni
} whose elements tend to infinity, such

that
∑

ni

1
ζni

→ ∞.
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For example, sequences of the form {n} or {n−1} lead to complete sets, but it is not possible

to determine whether this is true for {n2} or {n−2}, although the lemma suggests they may

not be. Moreover, this condition implies over-completeness of the basis, as an arbitrary,

countable subset of the functions can be removed without affecting the criteria given above.

The completeness of the spherical harmonics then implies that it is sufficient to consider

just the radial parts as above31.

Having determined that it is possible to form a complete basis, it is natural to ask how the

errors behave as the finite basis tends towards completeness. As Kutzelnigg stated recently

“If convergence is guaranteed, this does not imply convergence is fast enough to be of any

practical use”17. Previous studies have demonstrated three types of asymptotic behaviour

for the incompleteness error, ǫM (where M is the dimension of the basis): ǫM ∼ M−p;

ǫM ∼ exp(−pM); and ǫM ∼ exp(−p
√
M), all for some p > 016,17. For example, the inverse

power law is observed for Hermite functions, while in the usual Gaussian basis, it is possible

to achieve either kind of exponential convergence. Clearly, the second of these is more

efficient.

As noted earlier, however, completeness in the L2-norm is not sufficient for energy con-

vergence. Instead, we consider the so-called energy norm. The molecular Hamiltonian is

semi-bounded below, such that there exists a positive constant c, such that the operator

c + Ĥ is positive definite. Shifting the datum in this way does not change the domain of

the operator, such that the closure of that domain is still the first Sobolev space, H1. The

energy norm is then defined as follows:

Definition III.3 Given f ∈ H1(R+) and the first-order differential operator D̂ on H1, the

energy norm is given by

‖f‖H1 = 〈f |c+ D̂|f〉1/2

Mikhlin32 and Kato33 have separately shown that completeness in the H2-norm, where D̂

is replaced with the kinetic energy operator T̂ in the above, is sufficient to guarantee con-

vergence of the energy in the Rayleigh-Ritz method. As H2 ⊂ H1 ⊂ L2, it follows that

this is a stronger requirement than completeness in the energy norm. Klahn and Bingel13

additionally extended the work of Mikhlin to provide a necessary and sufficient criterion

for convergence in the H1-norm, albeit not one that has proven to be practically useful.

These results have previously been excellently summarised by Cancés and coworkers34. The
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culmination of this was a proof of completeness of Hermite and even-tempered GTOs with

respect to the H1-norm by Bachmayr et al.18. The latter made use of sinc approximation

theory to arrive at their proof, necessitated by the use of less stringent assumptions on the

wavefunction. In the following, I present a simpler, novel proof of this result, assuming that

the orbitals in question are regular - for practical purposes, this assumption is known to be

valid35.

Consider the Galerkin problem as described in equation 6, in the particular case of HF

or KS SCF.46 We denote the true and Galerkin orbitals by {φi} and {φi,M}, respectively, to
distinguish them from general points um ∈ BM , where BM is the subspace of L2 spanned by

a set of M GTOs. We first need the following preliminary result:

Lemma 3 For the closed-shell SCF problem with Nel. electron using an M-dimensional

Gaussian basis spanning BM ⊂ L2, there exists a constant K > 0 such that

Nel./2
∑

i=1

‖φi − φi,M‖H1 ≤ K sup
i

inf
um∈BM

‖φi − um‖H1 (14)

Proof By Cea’s Lemma (equation 10) for each i there exists a constant Ki such that

‖φi − φi,M‖H1 ≤ Ki inf
um∈BM

‖φi − um‖H1

By definition, the supremum over a set is an upper bound for that set, such that by defining

K =
∑

i Ki, we have

∑

i

Ki inf
um∈BM

‖φi − um‖H1 ≤ K sup
i

inf
um∈BM

‖φi − um‖H1

The result then follows.

This allows us to prove the main result of this section:

Theorem 4 Let E[{φ}] denote the Hartree-Fock energy functional over some set of orbitals,

{φ}, satisfying Lemma 3. Then there exists a constant K > 0 such that

ǫN = |E[{φi}]− E[{φi,N}]| ≤ K sup
i

inf
um∈BM

‖φi − um‖2H1 (15)

Proof Consider the following inner product, 〈u|c+ ĥ+ V̂eff.|v〉, where ĥ is the one-electron

operator defined in equation 2, and V̂eff. is some effective one-electron approximation to the
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two-electron operator in the same equation. The relevant analogue of equation 5 then gives

the following:

∑

i

〈φi|c+ ĥ+ V̂eff.|φi〉 =
1

2
Nel.c+

∑

i

(hii + Vii) = E[{φi}] + k

where k = Nel.c/2 does not depend on the choice of orbitals. This together with the bilin-

earity of the inner product means that

∑

i

〈φi − φi,N |c+ ĥ+ V̂eff.|φi − φi,N〉

= 2k + E[{φi}] + E[{φi,N}]−
∑

i

[

〈φi|c+ ĥ+ V̂eff.|φi,N〉+ h. c.
]

≥ 2k + E[{φi}] + E[{φi,N}]−
∑

i

[

〈φi|c+ ĥ+ V̂eff.|φi〉+ h. c.
]

≥ |E[{φi}]− E[{φi,N}]| = ǫN

where we note that the constant k terms are positive, and h. c. denotes the Hermitian

conjugate of the preceding term. The third and fourth lines follow from the fact that the

true orbitals necessarily provide a lower bound on the energy functional. We then use the

fact that the domain of the effective Hamiltonian here is the same as that of the kinetic

energy operator, simplying the underlying Sobolev spaces are identical. This is clearly true

for the c+ĥ terms, as these take the same form as the kinetic energy operator. The proof that

this is true for the potential operator is non-trivial, however, and relies on its regularity33.

Given this equivalence, the above becomes

ǫN ≤
∑

i

‖φi − φi,N‖2H1

Then, given norms are necessarily non-negative, we have that
∑

i ‖f‖
2 ≤ [

∑

i ‖f‖]2, such
that applying Lemma 3, there exists a positive constant K1/2 such that

∑

i

‖φi − φi,N‖2H1 ≤
[

K1/2 sup
i

inf
um∈BM

‖φi − um‖H1

]2

= K sup
i

inf
um∈BM

‖φi − um‖2H1

This completes the proof.

In essence, this demonstrates three important things:
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1. the error in the energy decays as the square of the error in the wavefunction;

2. convergence of the wavefunction in the energy norm is sufficient to ensure absolute

convergence of the energy;

3. it is sufficient to consider only the best approximation of a one-electron orbital by a

Gaussian.

Note that there is no dependence in the above on the particular choice of potential, so long

as it is regular, and the analysis could be extended to consider other observables than the

energy given an appropriate functional. This emphasizes that the wavefunction is the vital

quantity, and all observables follow from the wavefunction. Methods in quantum chemistry,

including typical basis function optimizations, often focus on only the energy, and in doing

so are ignoring the root cause of incompleteness errors.

B. Gaussian transforms of Slater-type orbitals

The Slater-type orbitals of equation 12 are nodeless equivalents of the hydrogenic orbitals

in equation 11. This suggests that it is reasonable to take the general form of an atomic

orbital to be that of an STO. As demonstrated above, it suffices just to consider the radial

part, then using the result in Theorem 4, we can obtain the asymptotic behaviour of the

error in the energy. To do this, it is desirable to have an exact representation of the STOs in

a Gaussian basis, such that the truncation to a finite basis can be introduced systematically.

Kutzelnigg used the Gaussian transform17, essentially a special type of Laplace transform,

to achieve this for the ground-state 1s orbital of a hydrogenic atom. This was first introduced

to quantum chemistry by Shavitt et al. as a tool for the evaluation of integrals over Slater-

type orbitals36. It takes the following form:

exp(−r) =
1

2
√
π

∫ ∞

0

t−3/2 exp

(

− 1

4t

)

exp(−tr2)dt =

∫ ∞

0

f(t, r)dt

This integral can then be approximated by a finite Riemann sum of the form

exp(−r) ≈
M
∑

m=1

wmc(tm) exp(−tmr
2)

where the wm and tm are weights and abscissae that depend on the Riemann partitioning

of the integral, and c(x) = x−3/2 exp[−1/(4x)]. This demonstrates a clear analogy with ex-

panding an orbital in a finite Gaussian basis, and could lead to prescriptions on how to best
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FIG. 2. Plots of the untransformed and transformed integrands, f(t, r), for the Gaussian transform

of e−r, in the case r = 1. Note how the transformed integrand is more symmetric about the origin,

and closer to bell-shaped as a result.

form near-complete bases systematically. Kutzelnigg’s particular choice of discretization was

using the trapezium rule, corresponding to equally-spaced abscissae with unit weight, on the

basis that this is known to work surprisingly well for bell-shaped integrands37. However,

Figure 2 demonstrates that the integrand in its current form is skewed, such that the trans-

formation s = exp(t) needs to be applied first, which symmetrizes the integral, as can be

seen in the Figure.

The transformed integral is then split into three distinct portions by applying lower and

upper cutoffs, sl and su, to the range of integration. Defining g(s, r) = f(exp(s), r) exp(−s),

this is then:

exp(−r) =

∫ sl

−∞

g(s, r)ds+

∫ su

sl

g(s, r)ds+

∫ ∞

su

g(s, r)ds

There are thus three sources of error in the discretization: the lower and upper truncation

errors associated with neglecting the first and third integrals above, denoted εl(r) and εu(r),

respectively; and that associated with using a finite sum for the middle integral, denoted

εm(r). The former terms correspond to the poor long-range behaviour of GTOs, where

any such expansion will essentially have a finite extent, whereas the STO will decay far

less rapidly. The largest source of error for the latter term, on the other hand, will be the

poor description of the nuclear cusp. Kutzelnigg focused in his exposition on the latter -
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specifically r = 0 - in what he called the ‘local approximation’17; I will demonstrate this is

equivalent to considering the L∞-norm of the error. He then went on to consider numerically

the associated error in the energy expectation value in this framework. The previous sections

have demonstrated, however, that this is the weakest norm in which to consider the errors,

and is not sufficient to ensure convergence, either in wavefunction or energy.

Moreover, as only the 1s orbital with fixed exponent was considered, it is not clear whether

the conclusions hold for orbitals of arbitrary principal quantum number and exponent -

that is, that the errors asymptotically go as exp(−k
√
M) for some positive constant k.

Clearly, one could apply all results for exp(−r) to rl exp(−r), assuming that the GTOs are

also replaced by ones of the form rl exp(−αr2). Indeed, this means that abritrary angular

momenta can be considered. It is not, however, customary to expand the nth principal

quantum number shell by Gaussians of the form rn+l exp(−αr2), which is what would be

necessary to expand the ns orbital, rather only the angular momentum is included in the

power. Thus, we must generalise the transform to STOs of the form rn−1 exp(−αr).

In the following section, I will extend this analysis by considering the errors for a general

Slater-type orbital in the L∞-, L1-, andH1-norms. To do so, we need the Gaussian transform

as above but in the general case, which is derived in the appendix:

rn−1 exp(−αr) =

∫ ∞

0

cn(t) exp(−tr2)dt =

∫ ∞

0

fn(t, r)dt

cn(t) =
1

2n
√
π
t−(n+1)/2 exp

(

−α2

4t

)

Hn

(

α

2
√
t

) (16)

where α > 0 and Hn(x) is the nth physicist’s Hermite polynomial. We can define gn(s, r) in

the same way as above by making the transformation t = exp(s). Then, using the trapezium

rule with M points, corresponding to an expansion in M GTOs, the abscissae used in the

middle integral are given by

sk = sl +

(

k − 1

2

)

h (17)

where h = (su − sl)/M is the chosen interval width, and k = 1, 2, . . . ,M . This implies that

su = sl +Mh, such that for fixed M , there are only two variable parameters: sl and h.

C. Discretization errors

Firstly, consider the untransformed integrand, fn(t, r), in equation 16. Its only depen-

dence on r is in the exp(−tr2) term at the end, which has its maximum at the origin.

14



Moreover, consideration of ∂rfn(t, r) for fixed t trivially shows the only stationary point is

at the origin. As fn(t, r) necessarily tends to zero as r → ∞, the continuity of the function

implies that it always attains its maximum absolute value when r = 0. Therefore, we have

in general that

sup
r∈[0,∞)

fn(t, r) = |fn(t, 0)| ∀ t ∈ [0,∞)

This implies from Definition III.2 that

‖ε‖∞ = |ε(0)| (18)

such that the so-called ‘local approximation’, restricting attention to r = 0, simply corre-

sponds to the L∞-norm. We look at this case first as it is the simplest, before moving on to

the stronger L1-norm and then finally the H1-norm, allowing us to make conclusions about

the energy convergence.

1. The infinity norm

In the case where r = 0, the lower truncation error is given by

‖εl‖∞ =
1

2n
√
π

∫ tl

0

t−(n+1)/2 exp

(

−α2

4t

)

Hn

(

α

2
√
t

)

dt

Making the substitution z = α/(2
√
t), such that α2dz = −2z3dt, this becomes

‖εl‖∞ =
1

αn−1
√
π

∫ ∞

zl

zn−2 exp(−z2)Hn(z)dz

where zl = α/(2
√
tl). The Hermite polynomials can be expanded as

Hn(x) =
n

∑

k=0

b
(n)
k xk

where the coefficients are defined by the recurrences

b
(n+1)
k = b

(n)
k−1 − nb

(n−1)
k for k > 0, and b

(n+1)
0 = −nb

(n−1)
0

with b
(0)
0 = 1, b

(1)
0 = 0, and b

(1)
1 = 2. The integral thus reduces to a linear combination of

standard integrals of the form

∫ ∞

zl

zk+n−2 exp(−z2)dz =
1

2
Γ

(

k + n− 1

2
, z2l

)

15



where Γ(n, z) is the upper incomplete gamma function28.

Following the same procedure for the upper truncation error gives identical results, but

with the integrals being in terms of the lower incomplete gamma function28, γ(n, z). Both

errors are summarised below:

∥

∥

∥
ε
(n)
l

∥

∥

∥

∞
=

1

2αn−1
√
π

∣

∣

∣

∣

∣

n
∑

k=0

b
(n)
k Γ

(

k + n− 1

2
,
α2

4tl

)

∣

∣

∣

∣

∣

(19)

∥

∥ε(n)u

∥

∥

∞
=

1

2αn−1
√
π

∣

∣

∣

∣

∣

n
∑

k=0

b
(n)
k γ

(

k + n− 1

2
,
α2

4tu

)

∣

∣

∣

∣

∣

(20)

The behaviour of the lower error as a function of tl for a few cases of n is shown in Figure 3.

Note that in the special case n = α = 1, we recover

∥

∥

∥
ǫ
(1)
l

∥

∥

∥

∞
= 1− erf

(

1

2
√
tl

)

and
∥

∥ǫ(1)u

∥

∥

∞
= erf

(

1

2
√
tu

)

where we have written it in terms of the error function. For convenience, we will fix tl (and

therefore tu) by requiring that the upper and lower truncation errors be equal. The result

above that su = sl +Mh implies that tu = tl exp(Mh), such that defining x = α2/(4tl), we

have
α2

4tu
= x exp(−Mh)

Therefore, setting equations 19 and 20 to be equal is achieved by requiring that, for each

K = (k + n− 1)/2, k = 0, 1, . . . , n:47

Γ(K, x) = γ(K, βhx)

where βh = exp(−Mh). For small tl, i.e. large x, the leading order term in the series

expansions of the incomplete gamma functions gives

xK−1 exp(−x) = (βhx)
K exp(−βhx)

However, large x implies large Mh, such that βh ≪ 1. Thus the above becomes

exp[−(1− βh)x] ≈ exp(−x) ∼ βK
h x

i.e. x − ln x ∼ KMh. The linear term dominates the logarithm, meaning that overall

x ∼ KMh.

The terms in the sum in equation 19 go themselves as xK−1 exp(−x) to leading order in x,

meaning that the overall error is dominated by the largest value of K, i.e. Kmax = n− 1/2.
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FIG. 3. The L∞-norm of the lower truncation error as a function of the threshold, tl, for n = 1,

2, and 3, with α = 1.

Note that this is positive for all integers n > 0. This implies that for sufficiently small tl,

the truncation errors behave as

∥

∥

∥
ε
(n)
l

∥

∥

∥

∞
∼ (KmaxMh)Kmax−1 exp(−KmaxMh) (21)

That is, they show exponential convergence with the basis dimension, M . In particular,

when n = 1, K = 1/2, it goes as exp(−Mh/2), showing that Kutzelnigg’s result is a

special case of the above. Interestingly, keeping Mh fixed and considering varying Kmax -

i.e. varying n - we can rewrite this as

∥

∥

∥
ε
(n)
l

∥

∥

∥

∞
∼ (Mh)Kmax−1

Kmax

exp(Kmax[lnKmax −Mh])

suggesting that the error will generally increase with K. This is borne out in Figure 3.

For the region between the cutoffs, the reason for using the trapezium rule becomes clear

- it is possible to write the discretization error in the following form:

ε(n)m (r, θ) = 2

∫ su

sl

gn(s, r) cos

(

2πs

h
+ θ

)

ds (22)

where θ is a phase factor that depends on where the abscissae are placed. There are two

options for dealing with this phase: average over it, or select a particular choice. As we are

17



primarily interested in the asymptotics, it seems logical to set θ = 0, which is equivalent

to placing the abscissae in the centre of each segment of length h. In the following, εm(r)

will be taken to mean εm(r, 0). By the same logic as before, the L∞-norm is then found by

considering r = 0:
∥

∥ε(n)m

∥

∥

∞
= 2

∣

∣

∣

∣

∫ su

sl

g(s, 0) cos

(

2πs

h

)

ds

∣

∣

∣

∣

Using the fact that cos(x) is the real part of exp(ix) and extending the integration to the

entire real line, this becomes:

∥

∥ε(n)m

∥

∥

∞
= 2

∣

∣

∣

∣

Re

{
∫ ∞

−∞

g(s, 0) exp

(

2πis

h

)

ds

}∣

∣

∣

∣

= 2

∣

∣

∣

∣

Re

{

F{gr=0}
(

1

h

)}∣

∣

∣

∣

where F denotes a Fourier transform. It is assumed that the error introduced by extending

the integration limits should be negligible; it is not equivalent to including the truncation

errors above, due to the cosine in the integrand. Expanding the Hermite polynomials and

using the linearity of the Fourier transform then allows us to write

F{gr=0}(z) =
n

∑

k=0

b
(n)
k

(α

2

)2k

F
{

exp

(

τn,ks−
α2

4
exp(−s)

)}

where τn,k = −(k+ n− 1)/2. The remaining transform is simply the Fourier representation

of the complex Gamma function38, such that

∥

∥ε(n)m

∥

∥

∞
= 2

∣

∣

∣

∣

∣

n
∑

k=0

ωn,k(α)Re

{

Γ

(

τn,k +
i

h

)}

∣

∣

∣

∣

∣

ωn,k(α) = b
(n)
k

(α

2

)2k

exp

(

τn,k ln
α2

4

)

(23)

This is not really a simplification, as the real part of the complex Gamma function is itself

defined by an integral. However, it is much easier to evaluate, and standard asymptotic

expansions exist for it28. The indefinite phase means that the error oscillates, but the

behaviour can be extracted by considering the peaks; this phase-averaged error as a function

of h is shown for a few cases of n in Figure 4.

For small h, such that x = 1/h is large, Stirling’s approximation gives

Γ(τ + ix) ∼ (τ + ix)(τ+ix−1/2) exp[−(τ + ix)]

such that the real part goes to leading order as exp(−τ)x−x−1/2 cos(x), with the cosine

introducing the aforementioned oscillations. Therefore the discretization error, which is
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FIG. 4. The phase-averaged L∞-norm (‖ǫ‖∞ averaged over a unit sphere) of the discretization

error as a function of the spacing, h, for n = 1, 2, and 3, with α = 1.

dominated by the largest k term in the sum, asymptotically behaves as

∥

∥ε(n)m

∥

∥

∞
∼ exp

(

−n+
1

2

)

exp

(

lnh

h

)

∼ exp

(

−n− 1

h

)

(24)

Combining this with the truncation errors in equation 21, the total error follows

ǫ(h) = exp(−KmaxMh) + exp

(

−1

h

)

The optimal value of h is found by setting the derivative of this to zero:

ǫ′(h) = −KmaxM exp(−KmaxMh) +
1

h2
exp

(

−1

h

)

= 0

This is solved exactly when h = 1/
√
KmaxM , i.e. when the two sources of error become

equal. Thus, the total error in the finite basis expansion is

∥

∥ε(n)
∥

∥

∞
∼ exp(−

√

KmaxM) (25)

Thus, the result of Kutzelnigg has been generalized to all STOs. Note that, as this is in the

infinity norm, it represents a lower bound on the error.

2. The absolute-value norm

Assuming that the lower cutoff threshold, tl, is small enough that the Hermite polynomial

does not change sign on the interval [0, tl],
48 the L1-norm for the truncation error is given
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by
∥

∥

∥
ε
(n)
l

∥

∥

∥

L1

=

∫ ∞

0

dr

∫ tl

0

dt |fn(t, r)| =
∣

∣

∣

∣

∫ tl

0

dt

∫ ∞

0

dr fn(t, r)

∣

∣

∣

∣

The only r-dependent part of fn is in the exp(−tr2) term, such that the inner integral above

is a standard Gaussian integral, leading to

∥

∥

∥
ε
(n)
l

∥

∥

∥

L1

=

√
π

2

∣

∣

∣

∣

∫ tl

0

dt t−1/2fn(t, 0)

∣

∣

∣

∣

This is therefore identical to the integral needed for the L∞-norm but with an additional

factor of t−1/2; by the same logic, this also applies for the upper truncation error. As such,

we can immediately write down the results for the lower and upper truncation errors using

equations 19 and 20:

∥

∥

∥
ε
(n)
l

∥

∥

∥

L1

=
1

4αn

∣

∣

∣

∣

∣

n
∑

k=0

b
(n)
k Γ

(

k + n

2
,
α2

4tl

)

∣

∣

∣

∣

∣

(26)

∥

∥ε(n)u

∥

∥

L1
=

1

4αn

∣

∣

∣

∣

∣

n
∑

k=0

b
(n)
k γ

(

k + n

2
,
α2

4tu

)

∣

∣

∣

∣

∣

(27)

This means that the asymptotics will be identical to equation 21, but with a slightly different

prefactor and Kmax = n. There is a somewhat stronger dependence on the exponent, α,

here; in both cases, smaller α (more diffuse orbitals) result in larger errors, but there is an

additional factor of 1/α in the above compared to in the infinity norm. The only significant

change is that the order of the gamma functions has increased by 1/2, which means that

in general the L1-error will be substantially larger than the L∞-error, as expected. It is

reasonable to expect this to be an upper bound on the Lp-normed errors, although there

may be edge cases where this is not true.

Following the same procedure, the middle error (equation 22) integrated over r also

introduces a factor of t−1/2 = exp(−s/2). This has the simple effect of adding −1/2 to each

τn,k, but with equation 23 otherwise remaining the same. This allows us to immediately

state the result for the asymptotics of the total error in the L1-norm:

∥

∥ε(n)
∥

∥

L1
∼ exp(−

√
nM) (28)

This suggests that the asymptotic behaviour in any Lp-norm will follow this square-root

exponential convergence with respect to basis size. In particular, this implies that the

wavefunction converges in this way in the L2-norm, which is necessary, but not sufficient, to

assure convergence in the energy.
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3. The energy norm

The lack of sufficiency above leads us to finally consider the energy norm. Using defini-

tion III.3, we have that

‖ε‖2H1 = c ‖ε‖2L2 + 〈ε|D̂ε〉 (29)

where c is a finite, positive constant necessary to make the operator positive definite. From

the above, we have the behaviour of the first term, such that we need only consider the

second term. As we are considering H1(R+), the differential operator is simply D̂ = d/dr,

such that

ε2D = 〈ε|D̂ε〉 =
∫ ∞

0

dr

(
∫

D

dt fn(t, r)

)(
∫

D

dt
d

dr
fn(t, r)

)

where the domain of integration D in the inner integrals depends on which particular error

is being considered. The derivative is easily found as f ′
n(t, r) = −2trfn(t, r).

As before, it is easiest to perform the r-integration first. In the case of the lower truncation

error, we get

∥

∥

∥
ε
(n)
l

∥

∥

∥

2

D
= 2

∣

∣

∣

∣

∫ tl

0

dt1 fn(t1, 0)

∫ tl

0

dt2 t2fn(t2, 0)

∫ ∞

0

dr r exp(−(t1 + t2)r
2)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ tl

0

dt1 fn(t1, 0)

∫ tl

0

dt2
t2fn(t2, 0)

t1 + t2

∣

∣

∣

∣

This is essentially a convolution, and thus could in principal be solved using Fourier trans-

forms; the result is messy, however, and not particularly enlightening. Instead, we consider

directly the asymptotic region of small tl, corresponding to small t1 and t2 in the integration,

where fn(t, 0) is dominated by the exp(−α2/(4t)) term and t2/(t1 + t2) ∼ 1/t1 for fixed t1;

the latter term is itself then dominated by the exponential. This means that

∥

∥

∥
ε
(n)
l

∥

∥

∥

2

D
∼ 2−2n

[
∫ tl

0

dt exp

(

− α2

4t1

)]2

Making the substitutions ui = α2/(4ti) for i = 1, 2, this can be written in terms of upper

incomplete gamma functions as follows:

∥

∥

∥
ε
(n)
l

∥

∥

∥

D
∼ 2−n

∣

∣

∣

∣

Γ

(

−1,
α2

4tl

)∣

∣

∣

∣

(30)

For the upper truncation error, we take the large-t limit, such that fn(t, 0) is dominated

by the leading power in the Hermite polynomial, i.e.

fn(t, 0) ∼ 2α−(n+1)

(

α2

4t

)n+1/2
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In this instance, t2/(t1 + t2) ∼ 1 for fixed t1, such that overall we have

∥

∥ε(n)u

∥

∥

2

D
∼ 4α−2(n+1)

[

∫ ∞

tu

dt

(

α2

4t

)n+1/2
]2

such that
∥

∥ε(n)u

∥

∥

D
∼ αn

2n−1(2n− 1)

√
tu
tnu

(31)

As was done for the infinity norm, we require the upper and lower errors to be asymptoti-

cally equal. Writing x = α2/(4tl) such that βhx = α2/(4tu), and using the large-x expansion

of the gamma function, this gives

exp(−x)x−2 = (βhx)
n−1/2

Remembering that n− 1/2 = Kmax from earlier, and taking logarithms, we get

x− (Kmax − 1) ln x ∼ KmaxMh

which means x ∼ KmaxMh, exactly the same result as for the L∞-norm. As the error in

equation 30 is a gamma function just as in equation 19, the truncation errors have the same

asymptotic behaviour here:
∥

∥

∥
ε
(n)
l

∥

∥

∥

D
∼ exp(−KmaxMh) (32)

All that remains is to consider the discretization error. We note that the cosine in

equation 22 does not depend on r, and ∂rgn(s, r) = −2r exp(s)gn(s, r). Applying the same

procedure as above, integrating out r gives

∥

∥ε(n)m

∥

∥

2

D
=

∣

∣

∣

∣

∫ su

sl

ds1 gn(s1, 0) cos

(

2πs1
h

)
∫ su

sl

ds2
gn(s2, 0) cos(2πs2/h)

1 + exp(s1 − s2)

∣

∣

∣

∣

By extending the range of integration, each integral in the above could be treated as the real

part of a Fourier transform as was done for the L∞-norm. The problem is the convolution

term, 1/[1 + exp(s1 − s2)], in the inner integral. Using the Convolution Theorem38 and the

result for the transform of gn(s, 0) from earlier (equation 23), but keeping only the n = k

term, we can expand the inner integral above follows:

∫ ∞

−∞

ds2
1

1 + exp(s1 − s2)

∫ ∞

−∞

dz exp [2πis2(1/h− z)] Γ(τn,n + iz)

We know that for small h the gamma function in this goes as exp(−1/h), such that the inner

integral above becomes a Dirac-delta, where the transforms here are taken in a distributional
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sense. We are thus left with

exp

(

−1

h

)
∫ ∞

−∞

ds2
exp(2πis2/h)

1 + exp(s1 − s2)
δ(s2) =

exp(−1/h)

1 + exp(s1)

The remaining integral is again of the form of a Fourier transform of gn(s, 0)/[1 + exp(s)],

such that repeating the procedure, we conclude that

∥

∥ε(n)m

∥

∥

D
∼ exp

(

−1

h

)

(33)

Combining equations 32, 33, and 29, we see that exactly the same results hold in the H1-

norm as in the L∞-norm, despite the respective error distributions being very different over

the majority of their domains. That is, the optimal h is again found when h = 1/
√
KmaxM ,

leading to total errors converging as

∥

∥ε(n)
∥

∥

H1
∼ exp(−

√

KmaxM) (34)

D. Prescriptions for convergent basis sets

The natural discretization within the trapezium rule is as follows:

φn(r) ≈ h
M
∑

m=1

cn(tm) exp(−tmr
2) (35)

The above analysis suggests that the optimal choice of h is 1/
√
KmaxM , with tl = α2/(4h),

such that

tm = tl exp

([

m− 1

2

]

h

)

= γn,Mβm−1
n,M , k = 1, 2, . . . ,M

γn,M =
α2

4

√

KmaxM exp

(

− 1

2
√
KmaxM

)

βn,M = exp

(

1√
KmaxM

)

(36)

That is, we have arrived at a so-called even-tempered expansion, with a fixed prefactor,

γn,M , and exponent, βn,M , for each basis size. Such an expansion was first suggested as a

means to systematically reach the CBS limit by Feller and Ruedenberg39. In general, it can

be seen that the exponent will steadily tend towards unity as the basis dimension tends

to infinity, as the spacing between the abscissae (which are now the exponents) decreases.

Larger values of α lead directly to larger prefactors, as should be expected - the diffusivity
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FIG. 5. Approximations to Slater-type orbitals with n = 1 (top), n = 2 (middle), and n = 3

(bottom) for different basis dimensions, M , are shown on the left, and their respective error

distributions on the right - note that the M = 64 curves on the left often overlap with the exact

solution. As Kmax = n−1/2, from top to bottom is also increasing this parameter. For all of these,

α = 1 - increasing/decreasing this would simply decrease/increase the width of the orbitals, such

that the parameter can effectively be seen as a scaling. The approximants were formed using the

even-tempered scheme suggested by the asymptotic analysis. In all cases, the error at the origin

dominates, and rapidly decreases with M .

24



of the gaussians should reflect the diffusivity of the original STO. Finally, larger n leads to

smaller exponents, reflecting the fact that orbitals with higher principal quantum number

tend to have larger radii. The performance of these expansions with increasing M for a few

values of n is shown in Figure 5, where the convergence can clearly be seen.

Somewhat interestingly, excellent agreement is achieved quite rapidly in the long-range,

with the error at the origin always dominating. This is unsurprising, as this constitutes a

much larger portion of the domain, such that it is effectively weighted to be more impor-

tant. Additionally, the cusp at the origin is by definition a reflection of discontinuity in the

derivative, a property that the gaussians do not possess. Thus it is expected that improved

convergence can only be achieved by improving the description at the origin; this is the

basis for the highly successful explicitly correlated methods20. Additionally, we note that

this poor behaviour at the origin is exactly why consideration of the L∞-norm led to the

correct result, despite it not rigorously being sufficient to ensure convergence.

Having demonstrated the behaviour of the wavefunction, it remains to consider the com-

pleteness of the designed basis with respect to the energy. From equation 36, we see that for

each choice of M , the exponent β = 1+ δM for some δM > 0, such that δM tends to strictly

monotonically to zero as M tends to infinity. This means that the sequence {γβm−1} is both

monotonically increasing and unbounded. Moreover, the geometric series gives that the sum

to infinity of αβ−m is α/δ, which tends to infinity as δ tends to zero - equivalent to M tend-

ing to infinity. As such, condition two of Lemma 2 is satisfied, meaning the even-tempered

basis of GTOs of the type in equation 13 described herein is complete in H = L2(R3).

Therefore, given the continuity of tensor product maps, a Slater determinant formed of N

orbitals each expanded in the (inifinite) Gaussian basis is complete in the product space

H⊗M . Completeness within each component of a direct sum trivially ensures completeness

in the summed space, such that any point in Fock space can be satisfactorily described.

Finally, having ensured convergence in the wavefunction, convergence in the energy is

also achieved. Choosing u ∈ BM
49 to be the linear combination described in equation 35,

we see that for any particular orbital φi:

inf
um∈BM

‖φi − um‖H1 ≤ ‖φi − u‖H1

Therefore, using this and equation 34, we can apply Theorem 4, to get that the error in the
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FIG. 6. The error convergence of the RHF energy of the hydrogen molecule using progressively

larger even-tempered bases. Excellent agreement is seen with the predicted asymptotic exponential

decay. Note that n = 1 such that Kmax = 1/2.

Hartree-Fock energy, ǫM , behaves as follows:

ǫM ∼ C
[

exp(−
√

KmaxM)
]2

= C exp(−2
√

KmaxM) (37)

for some C > 0. In the particular case of the hydrogen 1s orbital, where n = α = 1, we

have that Kmax = 1/2, such that we expect energy convergence of the form C exp(−
√
2M).

Figure 6 shows that this is exactly the observed asymptotic behaviour for the restricted

Hartree-Fock (RHF) energy of the hydrogen molecule using the even-tempered basis de-

scribed above, with a relatively low prefactor of C = 0.139.

IV. CONCLUSIONS

The idea that basis sets can be systematically constructed to achieve convergence in the

energy has become a central tenet of quantum chemistry. In this paper, I have confirmed

that this is a rigorous and reasonable assumption to make. By analytical means, I have

shown that it is sufficient to consider convergence of the wavefunction in terms of only

the one-electron functions, by treating mean-field methods as Galerkin-type problems. The

energy error then converges as the square of the wavefunction error, leading to an asymptotic

behaviour following exp(−k
√
M) where M is the number of Gaussians and k is a positive

constant. This is in agreement with previous results17, but extended to arbitrary molecular
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orbitals. It also matches closely with the results of Bachmayr et al.18, although achieved

through different means, with subtle differences in the form of the constants. For practical

purposes, i.e. in extrapolation procedures, the slightly simpler form given here is perhaps

more useful.

The analysis has led to prescriptions for an even-tempered basis that best uses the

favourable limiting convergence. However, this is not supposed to be a practicable basis

set on its own. Rather, its practical use is in either providing initial guesses for further

basis set optimization, or for rapidly generating systematically converging results, to which

other basis sets can be compared. Further work could investigate, for example, best poly-

nomial approximations to the even-tempered form. Relaxing the even-tempered restraint

would allow for much smaller basis sets to be constructed but without losing the desirable

completeness properties.

Finally, it should be noted that the results presented here apply only to convergence

in the energy, and for methods with regular potential operators. Properties depending on

derivatives of the energy would require further extension to norms in higher-order Sobolev

spaces. In principle, this should be simple using the machinery developed here. The regu-

larity requirement is much more difficult, however, as the true two-electron potential is not

regular40. As such, these results are currently limited effectively to HF and KS-DFT ener-

gies. Extension to correlated methods in a rigorous manner remains a diabolically complex

problem in mathematical analysis.
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APPENDIX

The general Gaussian transform of a Lebesgue-integrable function, f(t), defined for all

t ≥ 0 is given by

F (r) = G{f}(r) =
∫ ∞

0

f(t) exp(−tr2)dt (38)

This is related to the standard Laplace transform by the mapping

L{f}(s) = G{f}(
√
s}

which is continuous and bijective, given that r, s ≥ 0. As such, the problem of finding the

Gaussian transform representation of a general Slater-type orbital

φn(r) = rn−1 exp(−αr)

for some real α > 0 and integer n > 0 reduces to the problem of finding the inverse Laplace

transform of φn(
√
r). This can be found using the Bromwich integral (also known as Meilin’s

inverse formula):

f(t) = L−1{F}(t) = 1

2πi
lim
η→∞

∫ γ+iη

γ−iη

F (s) exp(st)ds (39)

where γ is a real number chosen such that the contour lies in the right half-plane.

Using F (s) = φn(
√
s), inserting into equation 39, and making the substitution u =

√
s,

such that 2udu = ds, we get

f(t) =
2

2πi
lim
η→∞

∫ γ+iη

γ−iη

un exp(tu2 − αu)du

Note that this is not truly a substitution, but a transformation of the complex plane - it only

behaves as a substitution due to the analyticity of the integrand in the relevant portion of

the complex plane. Completing the square in the exponential, and translating the contour

such that z = u− α/(2t), this becomes

f(t) =
1

iπ
exp

(

−α2

4t

)

lim
η→∞

∫ γ+iη

γ−iη

(

z +
α

2t

)n

exp(tz2)dz

Setting γ = 0, which we can do as there is no singularity in the original integrand along

the imaginary axis, and carefully substituting it−1/2z for z, the remaining integral turns into

the standard integral representation of the nth physicist’s Hermite polynomial, Hn:
∫ γ+iη

γ−iη

(

z +
α

2t

)n

exp(tz2)dz = it−(n+1)/2

∫ ∞

−∞

(

iz +
α

2
√
t

)n

exp(−z2)

=
i
√
π

2n
t−(n+1)/2Hn

(

α

2
√
t

)
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Therefore overall we get

f(t) =
1

2n
√
π
t−(n+1)/2 exp

(

−α2

4t

)

Hn

(

α

2
√
t

)

Finally, inserting this into equation 38, we see that the Gaussian transform of a Slater-type

orbital is given by

φn(r) =
1

2n
√
π

∫ ∞

0

t−(n+1)/2 exp

(

−α2

4t

)

Hn

(

α

2
√
t

)

exp(−tr2)dt (40)

In particular, for the case n = α = 1, whence H1(x) = 2x, this reduces to the transform

used by Kutzelnigg:

exp(−r) =
1

2
√
π

∫ ∞

0

t−3/2 exp

(

− 1

4t

)

exp(−tr2)dt
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