# UNIVERSITY OF LEEDS

This is a repository copy of Solute Specific Perturbations to Water Structure and Dynamics in Tertiary Aqueous Solution.

White Rose Research Online URL for this paper: <u>https://eprints.whiterose.ac.uk/169498/</u>

Version: Accepted Version

### Article:

Laurent, H orcid.org/0000-0002-8925-4773, Baker, DL orcid.org/0000-0002-5145-3320, Soper, AK orcid.org/0000-0002-7903-8356 et al. (2 more authors) (2020) Solute Specific Perturbations to Water Structure and Dynamics in Tertiary Aqueous Solution. The Journal of Physical Chemistry B, 124 (48). pp. 10983-10993. ISSN 1520-6106

https://doi.org/10.1021/acs.jpcb.0c07780

© 2020 American Chemical Society. This is an author produced version of an article published in The Journal of Physical Chemistry B. Uploaded in accordance with the publisher's self-archiving policy.

#### Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

#### Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.



eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

## **Supporting Information:**

# Solute Specific Perturbations to Water Structure and Dynamics in Tertiary Aqueous Solution

Harrison Laurent, Daniel L. Baker, Alan K. Soper, Michael E. Ries, Lorna Dougan\*

<sup>1</sup>School of Physics and Astronomy, University of Leeds, Leeds, UK

<sup>2</sup>ISIS Facility, STFC Rutherford Appleton Laboratory, Didcot, UK

<sup>3</sup>Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK

\*Corresponding email address: L.Dougan@leeds.ac.uk

| Pages   | S1-S12 |
|---------|--------|
| Figures | S1-9   |
| Tables  | S1-4   |

List S1. Samples list with isotopic makeup

- H2O
- D2O
- HDO
- H2O, 1.0 M H-TMAO
- D2O, 1.0 M H-TMAO
- HDO, 1.0 M H-TMAO
- H2O, 1.0 M D-TMAO
- D2O, 1.0 M D-TMAO
- HDO, 1.0 M D-TMAO
- HDO, 1.0 M HD-TMAO
- H2O, 0.2 M Mg(ClO<sub>4</sub>)<sub>2</sub>
- D2O, 0.2 M Mg(ClO<sub>4</sub>)<sub>2</sub>
- HDO, 0.2 M Mg(ClO<sub>4</sub>)<sub>2</sub>
- H2O, 1.0 M H-TMAO, 0.2 M Mg(ClO<sub>4</sub>)<sub>2</sub>
- D2O, 1.0 M H-TMAO, 0.2 M Mg(ClO<sub>4</sub>)<sub>2</sub>
- HDO, 1.0 M H-TMAO, 0.2 M Mg(ClO<sub>4</sub>)<sub>2</sub>
- H2O, 1.0 M D-TMAO, 0.2 M Mg(ClO<sub>4</sub>)<sub>2</sub>
- D2O, 1.0 M D-TMAO, 0.2 M Mg(ClO<sub>4</sub>)<sub>2</sub>
- HDO, 1.0 M D-TMAO, 0.2 M Mg(ClO<sub>4</sub>)<sub>2</sub>
- HDO, 1.0 M HD-TMAO, 0.2 M Mg(ClO<sub>4</sub>)<sub>2</sub>
- H2O, 2.7 M Mg(ClO<sub>4</sub>)<sub>2</sub>
- D2O, 2.7 M Mg(ClO<sub>4</sub>)<sub>2</sub>
- HDO, 2.7 M Mg(ClO<sub>4</sub>)<sub>2</sub>
- H2O, 1.0 M H-TMAO, 2.7 M Mg(ClO<sub>4</sub>)<sub>2</sub>
- D2O, 1.0 M H-TMAO, 2.7 M Mg(ClO<sub>4</sub>)<sub>2</sub>
- HDO, 1.0 M H-TMAO, 2.7 M Mg(ClO<sub>4</sub>)<sub>2</sub>
- H2O, 1.0 M D-TMAO, 2.7 M Mg(ClO<sub>4</sub>)<sub>2</sub>
- D2O, 1.0 M D-TMAO, 2.7 M Mg(ClO<sub>4</sub>)<sub>2</sub>
- HDO, 1.0 M D-TMAO, 2.7 M Mg(ClO<sub>4</sub>)<sub>2</sub>
- HDO, 1.0 M HD-TMAO, 2.7 M Mg(ClO<sub>4</sub>)<sub>2</sub>

| Atomic species | <i>ɛ</i> (kJ/mol) | <b>σ</b> (Å) | Charge (e) |
|----------------|-------------------|--------------|------------|
| $O_{\rm w}$    | 0.65              | 3.166        | -0.8476    |
| $H_{\rm w}$    | 0.00              | 0.00         | 0.4238     |
| C1             | 0.39              | 3.70         | -0.2600    |

| H1                                                                                         | 0.065  | 1.80  | 0.1100  |
|--------------------------------------------------------------------------------------------|--------|-------|---------|
| N1                                                                                         | 0.711  | 3.25  | 0.4400  |
| 01                                                                                         | 0.585  | 3.08  | -0.6500 |
| Mg                                                                                         | 0.4593 | 0.90  | 2.0000  |
| Cl <sub>p</sub>                                                                            | 0.566  | 4.19  | 2.3904  |
| Op                                                                                         | 0.65   | 3.166 | -0.8476 |
| Table S1. Lennard-Jones and Coulomb parameters for atomic species present in simulation. W |        |       |         |

subscript indicates water atoms, 1 indicates TMAO, p indicates perchlorate ion

| Sample                                                                                   | Water     | ТМАО      | Mg <sup>2+</sup> ions | ClO <sub>4</sub> <sup>-</sup> ions | Box       |
|------------------------------------------------------------------------------------------|-----------|-----------|-----------------------|------------------------------------|-----------|
|                                                                                          | Molecules | Molecules |                       |                                    | dimension |
|                                                                                          |           |           |                       |                                    | (Å)       |
| H <sub>2</sub> O                                                                         | 1000      | -         | -                     | -                                  | 31.0723   |
| 1.0 M TMAO                                                                               | 4104      | 80        | -                     | -                                  | 51.0434   |
| 0.2 M Mg(ClO <sub>4</sub> ) <sub>2</sub>                                                 | 4104      | -         | 16                    | 32                                 | 49.9840   |
| 1.0 M TMAO, 0.2 M                                                                        | 4104      | 80        | 16                    | 32                                 | 51.2654   |
| $Mg(ClO_4)_2$                                                                            |           |           |                       |                                    |           |
| 2.7 M Mg(ClO <sub>4</sub> ) <sub>2</sub>                                                 | 4224      | -         | 260                   | 520                                | 54.4902   |
| 1.0 M TMAO, 2.7 M                                                                        | 4224      | 80        | 260                   | 520                                | 55.5774   |
| Mg(ClO <sub>4</sub> ) <sub>2</sub>                                                       |           |           |                       |                                    |           |
| <b>Table S2.</b> Number of molecules used in each simulation box and length of cubic box |           |           |                       |                                    |           |



**Figure S1.** H<sup>1</sup> NMR peak shift for water as a function of increasing concentration of the potassium halide salts: KF, KCl, KBr, KI.



**Figure S2.** Net magnetization in the z direction following a 180° pulse for four example datasets. The data are all extremely well described using a single exponential decay term, indicating that any dynamic heterogeneities in the sample are minimal.

| Solute<br>pair                                                                                           | 1.0 M TMAO    | 0.2 M<br>Mg(ClO <sub>4</sub> ) <sub>2</sub> | 0.2 M<br>Mg(ClO <sub>4</sub> ) <sub>2</sub> +<br>1.0 M TMAO | 2.7 M<br>Mg(ClO <sub>4</sub> ) <sub>2</sub> | 2.7 M<br>Mg(ClO <sub>4</sub> ) <sub>2</sub> +<br>1.0 M TMAO |
|----------------------------------------------------------------------------------------------------------|---------------|---------------------------------------------|-------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------------|
| Cl <sub>p</sub> - Mg                                                                                     | -             | 0.03 (3.50 Å)                               | 0.03 (3.50 Å)                                               | 0.58 (3.50 Å)                               | 0.55 (3.50 Å)                                               |
| N1 - Cl <sub>p</sub>                                                                                     | -             | -                                           | 0.24 (6.28 Å)                                               | -                                           | 3.45 (6.61 Å)                                               |
| N1-Mg                                                                                                    | -             | -                                           | 0.03 (3.50 Å)                                               | -                                           | 0.2 (3.50 Å)                                                |
| N1 - N1                                                                                                  | 0.70 (7.04 Å) | -                                           | 1.00 (7.82 Å)                                               | -                                           | 0.33 (6.24 Å)                                               |
| <b>Table S3.</b> Coordination numbers for solute – solute interactions present in samples. Distance used |               |                                             |                                                             |                                             |                                                             |

to calculate solute – solute – solute – solute interactions present in samples. Distance used to calculate solute – solute coordination number correspond to the location of the first minima in the associated RDF, shown in brackets.











weighting factor. Weighting factor is set to 1.54, the average optimum weighting factor as described in figure 6 in main text. (a) Diffusion coefficient data, (b) NMR peak position data, (c) Average hydrogen bond interaction energy data





1.0 M TMAO samples.

#### **Derivation S1. Determination of Excluded Volume**

Here we make the very basic assumption that the excluded volume of a solute molecule is equivalent to the volume of a sphere whose radius corresponds to the distance from the solute molecule's central atom to the first peak of the central atom – water RDF. Table below shows the location of the first peak of the radial distribution functions for water around a central atom X (RDFs shown in figure S9) and the volume of the corresponding sphere.

| Central atom X X-O <sub>w</sub> RDF first peak location (Å) | Effective volume (Å <sup>3</sup> ) |
|-------------------------------------------------------------|------------------------------------|
|-------------------------------------------------------------|------------------------------------|

| Central TMAO nitrogen                                                                                                   | 4.52 | 387 |  |
|-------------------------------------------------------------------------------------------------------------------------|------|-----|--|
| $Mg^{2+}$                                                                                                               | 1.61 | 18  |  |
| Central ClO <sub>4</sub> <sup>-</sup> chlorine                                                                          | 3.94 | 256 |  |
| <b>Table S4.</b> Location of the first peak in the X-O <sub>w</sub> radial distribution function where X is the central |      |     |  |
| atom of a solute molecule/ion and the volume of a sphere described by this distance. Data taken using                   |      |     |  |
| the 0.2 M Mg(ClO <sub>4</sub> ) <sub>2</sub> + 1.0 M TMAO sample to minimise effects of hydration shell overlap.        |      |     |  |

A TMAO molecule therefore has an effective volume of 387 Å<sup>3</sup>, and a completely dissolved Mg(ClO<sub>4</sub>)<sub>2</sub> molecule therefore has an effective volume of 530 Å<sup>3</sup>. If the weighting parameter *g* were solely due to excluded volume effects it would therefore be equal to the ratio of the TMAO effective volume to the Mg(ClO<sub>4</sub>)<sub>2</sub> effective volume, which is 0.73.