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Kernel circular deconvolution density estimation

Marco Di Marzio, Stefania Fensore, Agnese Panzera, Charles C. Taylor

Abstract We consider the problem of nonparametrically estimating a circular den-

sity from data contaminated by angular measurement errors. Specifically, we obtain

a kernel-type estimator with weight functions that are reminiscent of deconvolution

kernels. Here, differently from the Euclidean setting, discrete Fourier coefficients

are involved rather than characteristic functions. We provide some simulation re-

sults along with a real data application.

1 Introduction

Circular data arise when the sample space is described by a unit circle. If compared

to a linear scale, the main features of circular observations are that the beginning

and the end of the measurement scale coincide, and their common location is called

the origin (or zero direction) which is arbitrarily chosen. Once the origin and the

sense of rotation have been chosen, any circular observation can be measured by

an angle ranging, in radians, from 0 to 2π . Circular data often arise in biology,

meteorology and geology; other examples include phenomena that are periodic in

time. For comprehensive accounts of statistics for circular data see, for example, [4]

and [5].
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In this paper we discuss the problem of nonparametrically estimating a circular

density when data are observed with error. Specifically, here we consider the case of

measurement errors described by circular random variables. This problem has been

studied by [3] who proposed an estimator constructed as a truncated development

of the density to be estimated represented by trigonometric basis where the theoret-

ical coefficients are replaced by empirical ones. Then [1], using a model selection

procedure, derived an adaptive penalized contrast estimator, and [6] proposed an

orthogonal series estimator optimal in the minimax sense.

In the Euclidean setting the problem of estimating a density in the context of

errors-in-variables has been widely pursued. The most popular method is a non-

parametric one based on kernel-type estimators. For an exhaustive treatment of den-

sity estimation with errors-in-variables and related topics see [2] and the references

therein. In the directional setting the kernel-based methods for errors-in-variables

problems seem to be substantially unexplored. In this article we propose to extend

this approach to the estimation of a circular density.

After recalling in Section 2 some preliminaries about Fourier series and nonpara-

metric estimation of circular densities in the error-free case, in Section 3 we discuss

the extension of the kernel-type density estimator to the case where variables are

observed with errors. Then, in Section 4 we present some simulation results, and in

Section 5 we end up with a real data application.

2 Preliminaries

In this section we provide some basic facts about Fourier series representation of

circular densities and recall the definition of the circular kernel density estimator.

2.1 Trigonometric moments and Fourier series

Let Q be a circular random variable and denote by fQ its probability density func-

tion. Due to the periodic nature of Q, its distribution is the same as the distribution

of Q+2π; this implies that the characteristic function of Q, which is

ϕQ(ℓ) = E[eiℓQ] =
∫ 2π

0
eiℓq fQ(q)dq,

is defined only at integer ℓs. Moreover, for any ℓ ∈ Z, one has

|ϕQ(ℓ)| ≤ 1, ϕQ(0) = 1, ϕ̄Q(ℓ) = ϕQ(−ℓ),

where ϕ̄Q(·) stands for the complex conjugate of ϕQ(·). Notice that the complex

numbers {ϕQ(ℓ), ℓ ∈ Z} are the coefficients in the Fourier series representation (in

complex form) of fQ and correspond to the trigonometric moments of Q about the
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mean direction, i.e., letting

αℓ = E[cos(ℓQ)], βℓ = E[sin(ℓQ)],

it holds that ϕQ(ℓ) = αℓ+ iβℓ; clearly, for any ℓ ∈ Z,

α−ℓ = αℓ, β−ℓ =−βℓ, |αℓ| ≤ 1, |βℓ| ≤ 1.

Then, assuming that fQ is a square integrable function on [0,2π), for q ∈ [0,2π),
one can recover fQ(q) from the Fourier coefficients by the expansion

fQ(q) =
1

2π

∞

∑
ℓ=−∞

ϕQ(ℓ)exp(−iℓq) =
1

2π

{

1+2
∞

∑
ℓ=1

(αℓ cos(ℓq)+βℓ sin(ℓq))

}

.

Above equation is the analogous of the inversion formula for characteristic functions

of real-valued random variable.

In the Euclidean setting, the smoothness of a density can be determined by the

rate of decay of the Fourier transforms: a polynomial decay characterizes ordi-

nary smooth functions, while an exponential decay characterizes supersmooth ones.

Analogously, for a circular density the smoothness can be defined according to the

rate of decay of the coefficients in its Fourier series representation.

Formally, following [3] the density of a circular random variable is supersmooth

if, for ℓ ∈ Z,

c0(|ℓ|+1)a0e−b|ℓ|a ≤ |ϕQ(ℓ)| ≤ c1(|ℓ|+1)a1 e−b|ℓ|a ,

and it is ordinary smooth if

c0(|ℓ|+1)−a0 ≤ |ϕQ(ℓ)| ≤ c1(|ℓ|+1)−a1 ,

where a, b, c0, c1 are positive constants and a0,a1 are real ones.

We recall that for a wrapped circular distribution, the trigonometric moment of

order ℓ ∈ Z corresponds to the value of the characteristic function of the unwrapped

random variable, say ϕX , at (integer) ℓ, i.e. ϕQ(ℓ) = ϕX (ℓ).
Examples of supersmooth densities include the densities of wrapped Normal and

wrapped Cauchy distribution; conversely, the wrapped Laplace and the wrapped

Gamma densities are examples of ordinary smooth ones. See Figure 1 for some

examples of density of wrapped distributions.

2.2 Circular density estimation in the error-free case

Given a random sample of angles Θ1, . . . ,Θn from an unknown circular density fΘ ,

the kernel estimator of fΘ at θ ∈ [0,2π) is defined as
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Fig. 1 Examples of wrapped densities sharing the values of mean and variance of their un-wrapped

versions (left) and corresponding Fourier coefficients (right).

f̂Θ (θ ;κ) =
1

n

n

∑
i=1

Kκ(Θi −θ),

where Kκ is a circular kernel, i.e. a periodic, unimodal, symmetric density func-

tion with concentration parameter κ > 0, which admits a convergent Fourier series

representation as follows

Kκ(θ) =
1+2∑

∞
ℓ=1 γℓ(κ)cos(ℓθ)

2π
.

Notice that, due to the symmetry, the Fourier coefficients of Kκ satisfy βℓ = 0 and

αℓ = γℓ(κ) for any ℓ.
Classical examples of circular kernels are the von Mises density with γℓ(κ) =

Iℓ(κ)/I0(κ), where Iℓ(κ) is the modified Bessel function of order ℓ; the Wrapped

Normal and Wrapped Cauchy densities where γℓ(κ) = κℓ2
and γℓ(κ) = κℓ, respec-

tively.

As it happens in the linear setting, the role of the kernel function is to empha-

size, in the estimation process, the contribution of the observations which are in a

neighbourhood of the estimation point. Here, the concentration parameter κ con-

trols the width of that neighbourhood in such a way that its role is the inverse of

the bandwidth in the linear case, in the sense that smaller values of κ give wider

neighbourhoods.
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3 Kernel density estimator in the errors-in-variables case

We consider the problem of estimating a density of a circular random variable Θ
which is observed with error. In particular, we deal with the measurement error case

where we wish to estimate the density fΘ of Θ but we observe independent copies

of the circular random variable

Φ = (Θ + ε)mod(2π),

where ε is a random angle independent of Θ , whose density fε is assumed to be a

known circular density symmetric around zero.

Notice that the density fΦ of Φ is the circular convolution of fΘ and fε , i.e., for

θ ∈ [0,2π),

fΦ(θ) =
∫ 2π

0
fΘ (ω) fε(θ −ω)dω, (1)

so, the estimation of fΘ reduces to a circular deconvolution density problem.

Similarly to the Euclidean case, equation (1) implies that, for ℓ ∈ Z,

ϕΦ(ℓ) = ϕΘ (ℓ)ϕε(ℓ),

then, a naive estimator of fΘ at θ ∈ [0,2π) could be

f̃Θ (θ) =
1

2π

∞

∑
ℓ=−∞

ϕ̂Φ(ℓ)

ϕε(ℓ)
e−iℓθ , (2)

where ϕ̂Φ(ℓ) = 1
n ∑

n
j=1 eiℓΦ j is the empirical version of ϕΦ(ℓ). Now, since

∫ π

−π

(

fΘ (θ)− f̃Θ (θ)
)

dθ =
1

2π

∞

∑
ℓ=−∞

(

ϕΘ (−ℓ)−
ϕ̂Φ(−ℓ)

ϕε(−ℓ)

)(

ϕΘ (ℓ)−
ϕ̂Φ(ℓ)

ϕε(ℓ)

)

we have that rapid decays of ϕε(ℓ) lead to big discrepancies between fΘ (θ) and

f̃Θ (θ) even in correspondence of small discrepancies between ϕΘ (ℓ) and ϕ̂Φ(ℓ).
Therefore, in order to regularize estimator (2), a possible remedy is to introduce the

characteristic function of a circular kernel Kκ , say ϕKκ (ℓ), as a damping factor, i.e.

f̃Θ (θ ;κ) =
1

2π

∞

∑
ℓ=−∞

ϕ̂Φ(ℓ)

ϕε(ℓ)
ϕKκ (ℓ)e

−iℓθ

=
1

2π

∞

∑
ℓ=−∞

ϕKκ (ℓ)

ϕε(ℓ)

1

n

n

∑
j=1

eiℓΦ j e−iℓθ

=
1

2π

1

n

∞

∑
ℓ=−∞

n

∑
j=1

ϕKκ (ℓ)

ϕε(ℓ)
e−iℓ(θ−Φ j),

which leads to the following circular deconvolution estimator of fΘ (θ) at θ ∈ [0,2π)
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f̃Θ (θ ;κ) =
1

2π

1

n

n

∑
j=1

(

1+2
∞

∑
ℓ=1

γℓ(κ)

λℓ(κε)
cos(ℓ(θ −Φ j))

)

, (3)

where γℓ(κ) and λℓ(κε), respectively are, the ℓth coefficients in the Fourier series

representation of Kκ and fε . Also, in order to guarantee that estimator (3) is well

defined, we assume that a) the error density is an infinitely divisible distribution,

i.e. it has nonvanishing Fourier coefficients |λℓ(κε)| > 0 for any integer ℓ, and b)
the kernel Kκ and f̃Θ (·;κ) are square integrable functions, i.e, using the Parseval’s

identity,

1

2π

(

1+2
∞

∑
ℓ=1

γ2
ℓ (κ)

)

< ∞ and
1

2π

(

1+2
∞

∑
ℓ=1

γ2
ℓ (κ)

λ 2
ℓ (κε)

)

< ∞.

4 Simulations

In this section we compare the performances of the deconvolution estimator and the

standard kernel density one in a simulation setting.

In particular, we consider the von Mises density (vM) with mean direction and

concentration respectively equal to π and 2 as the target density fΘ , and the wrapped

Laplace (wL), wrapped Normal (wN) or wrapped Cauchy (wC) with zero mean

direction and different values of the concentration parameter as the error density

fε . Notice that the concentration parameter takes non-negative real values for both

vM and wL but with opposite meaning in the sense that for latter lower values of

the concentration parameter give higher concentration. Differently, for both wN and

wC the concentration parameter ranges from 0 to 1 with the concentration increasing

with the value of the parameter.

The noise-to-signal ratio (NSR), which is defined as the ratio between the circular

variance of ε and that one of Θ , ranges from 16% to 47%. The three considered

settings are showed in Figure 2, where for ease of presentation the target density has

been represented with zero mean direction.

We generate 500 samples of size n = 100,200 and 400. We compare the estima-

tors in terms of averaged integrated squared error (AISE). In particular we calculate

the ratio AISEdec/AISEkde, where dec stands for f̃Θ (θ ;κ) and kde stands for the

standard circular kernel estimator f̂Θ (θ ;κ). The smoothing parameter κ has been

selected by using the least squares cross-validation. Results are summarized in Ta-

ble 1 and Figure 3. It can be seen that the deconvolution estimator outperforms the

standard one especially when the NSR is moderate or the error density is ordinary

smooth.
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Fig. 2 von Mises density with zero mean direction and concentration parameter equals 2 (continu-

ous) and error densities (dashed) which are wrapped Normal (left), wrapped Laplace (middle) and

wrapped Cauchy (right) with zero mean direction and concentrations respectively equal to 0.97,

0.33, 0.80.

NSR Target density Error density n=100 n=200 n=400

16% vM(π , 2) wN(0, 0.97) 0.755 0.782 0.769

44% vM(π , 2) wL(0, 0.33) 0.866 0.857 0.839

47% vM(π , 2) wC(0, 0.80) 0.966 1.015 1.085

Table 1 Comparison between the deconvolution estimator and the circular kernel density one

(AISEdec/AISEkde) over 500 samples of sizes 100, 200 and 400 drawn from the target population

contaminated by noise obtained by different error populations.
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Fig. 3 Comparison between the deconvolution estimator and the circular kernel density one in

terms of integrated squared errors (ISE) over 500 contaminated samples of sizes 100, 200 and 400

with a NSR equals to 16% (left), 44% (middle) and 47% (right).

5 Real data example

We consider the classical dataset described by [4] concerning the directions chosen

by 100 ants in response to an evenly illuminated black target placed at π . [4] showed

that classical parametric models, like von Mises, are not suited for these data. How-

ever, he concluded for an unimodal population. A nonparametric approach has been

suggested by [3], who, in the context of errors-in-variables modelling, concluded

for a certain evidence about multimodality. His approach is based on orthogonal



8 Marco Di Marzio, Stefania Fensore, Agnese Panzera, Charles C. Taylor

trigonometric series. The rationale behind the errors-in-variables hypothesis is that,

due to the typical jerky movement of the insect, the point where the ant intersects

the circle can be treated as indirect observation of the direction chosen by the ant.

We compare the standard circular kernel density estimator with our deconvo-

lution one. Specifically, we have assumed a wrapped Laplace error with zero mean

and concentration equal to 0.2, employing a wrapped Normal weight function whose

smoothing parameter has been selected by least squares cross-validation. As it can

be seen in Figure 4 the proposed deconvolution estimator reveals the presence of

three modes more efficiently than the standard method.
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Fig. 4 Ants data (left) and kernel density estimate (continuous) and deconvolution one (dotted) of

the directions of ants (right).
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