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Minimal multi-scale dynamics of near-wall
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Recent numerical experiments have shown that the temporal dynamics of isolated
energy-containing eddies in the hierarchy of wall-bounded turbulence are governed by
the self-sustaining process (SSP). However, high-Reynolds number turbulence is a multi-
scale phenomenon and exhibits interaction between the structures of different scales,
but the dynamics of such multi-scale flows are poorly understood. In this study, the
temporal dynamics of near-wall turbulent flow with two integral lengthscales of motion
are investigated using a shear stress-driven flow model (Doohan et al., J. Fluid Mech., vol.
874, 2019, pp. 606-638), with a focus on identifying scale interaction processes through
the governing equations and relating these to the SSPs at each scale. It is observed that
the dynamics of the energy cascade from large to small scales are entirely determined by
the large-scale SSP and the timing of the corresponding inter-scale turbulent transport
coincides with the large-scale streak breakdown stage. Furthermore, the characteristic
timescales of the resulting small-scale dissipation match those of the large-scale SSP,
indicative of non-equilibrium turbulent dissipation dynamics. A new scale interaction
process is identified, namely that the transfer of wall-normal energy from large to small
scales drives small-scale turbulent production via the Orr mechanism. While the main
outcome of this driving process appears to be the transient amplification of localised
small-scale velocity structures and their subsequent dissipation, it also has an energising
effect on the small-scale SSP. Finally, the feeding of energy from small to large scales
is impelled by the small-scale SSP and coincides with the small-scale streak instability
stage. The streamwise feeding process seems to be related to the subharmonic sinuous
streak instability mode in particular and leads to the formation of the wall-reaching part
of high-speed large-scale streaks.

Key words:

1. Introduction

Turbulence is essentially a multi-scale phenomenon, in which eddies of various forms
over a wide range of length- and timescales non-linearly and non-locally interact with one
another. The Richardson-Kolmogorov energy cascade is perhaps the best-known multi-
scale feature of turbulence (Kolmogorov 1941) — turbulent kinetic energy (TKE) produced
at the (large) integral lengthscale is transferred to the smallest possible lengthscale (i.e.
the Kolmogorov lengthscale), at which dissipation primarily takes place. Turbulent flow
over a wall is not an exception to the energy cascade. However, in this case, even the
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integral lengthscale itself varies with the distance from the wall y. Therefore, the size
of the smallest energy-containing eddies in wall-bounded flows scales in inner units (i.e.
0, = v/u,, where v is the kinematic viscosity of the fluid and wu, is the friction velocity),
whereas the size of the largest eddies scales in outer units determined by the flow geometry
(say h; for example, the half-height of a channel, the radius of a pipe or the thickness
of a boundary layer). The friction Reynolds number is defined to be the ratio of the
outer to the inner lengthscale (Re, = h/d,), which characterises the separation between
the largest and smallest lengthscales. There is also a large number of energy-containing
eddies whose size lies in between the inner and outer units. The size of these eddies is
approximately proportional to the distance between their centre and the wall (Townsend
1980), the central feature associated with the formation of the logarithmic mean velocity
profile (Von Karman 1930).

The continuum of integral lengthscales from inner to outer units is well described by
the so-called attached eddy hypothesis, which asserts the existence of a hierarchy of self-
similar energy-containing eddies throughout the logarithmic region (Townsend 1980).
This concept can be generalised to include the near-wall and outer regions, and there has
been a growing body of experimental, numerical and theoretical evidence presented over
the past two decades: for example, the logarithmic growth of the near-wall streamwise
turbulence intensity with Reynolds number (Marusic & Kunkel 2003), the linear growth
of the spanwise characteristic lengthscale (Tomkins & Adrian 2003), the logarithmic wall-
normal dependence of the turbulence intensities of the wall-parallel velocity components
(Jimenez & Hoyas 2008; Marusic et al. 2013), experimental and numerical evidence of
the existence of self-similar energy-containing structures (Del Alamo et al. 2006; Hwang
& Cossu 20105, 2011; Lozano-Durdn & Jiménez 2014; Hwang 2015; Hellstrém et al.
2016; Hwang & Sung 2018; Cheng et al. 2019; Baars & Marusic 2020a,b), the linearly-
growing eddy-turnover time (Lozano-Durdn & Jiménez 2014; Hwang & Bengana 2016),
the self-similar invariant form of the mean transport equation (Klewicki 2013), self-
similar responses and modes of the linearised Navier-Stokes operator and their non-linear
coupling (Del Alamo & Jimenez 2006; Hwang & Cossu 2010a; Moarref et al. 2013; Hwang
& Bengana 2016; Vadarevu et al. 2019; McKeon 2019), self-similar wall-attached invariant
solutions of the Navier-Stokes equations (Eckhardt & Zammert 2018; Yang et al. 2019;
Doohan et al. 2019) and much more.

The distinguishing feature of the temporal dynamics of the energy-containing eddies
at each lengthscale is the existence of a self-sustaining mechanism that appears to be
independent of that at the other scales (Hwang & Cossu 2010b, 2011; Hwang 2015;
Hwang & Bengana 2016). This mechanism is often called the ‘self-sustaining process’
(SSP) (Hamilton et al. 1995; Waleffe 1997) and it describes the interactive dynamics of
long wavy streamwise velocity structures (streaks) and relatively short isotropic vortex
packets, statistically in the form of quasi-streamwise vortices. The self-sustaining process
is understood to consist of three sub-stages: (i) the amplification of streaks by quasi-
streamwise vortices via the ‘lift-up effect’ (Butler & Farrell 1993; Del Alamo & Jimenez
2006; Pujals et al. 2009; Hwang & Cossu 2010a; McKeon & Sharma 2010); (ii) the
subcritical instability of the amplified streaks (Hamilton et al. 1995; Schoppa & Hussain
2002; Park et al. 2011; Alizard 2015; Cassinelli et al. 2017; de Giovanetti et al. 2017);
and (iii) the non-linear regeneration of quasi-streamwise vortices (Hamilton et al. 1995;
Schoppa & Hussain 2002; Hwang & Bengana 2016). The early observations of this process
were made in transitional Couette flow (Hamilton et al. 1995) and the near-wall region of
low-Reynolds number channel flow (Schoppa & Hussain 2002). However, more recently, it
has been shown that this process is responsible for the sustainment of energy-containing
eddies in the outer region i.e. very-large-scale and large-scale motion (Hwang & Cossu
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Wall-normal location l € n l/n
Near-wall region Oy uf/éy Oy 1
Logarithmic region ul/y (yo2)t/4 Rei“(y/h)w4

ui/h (nop)* Re/*

>

Outer region

TABLE 1. Lengthscales in wall-bounded turbulence. Here, [ is the integral lengthscale at which
production takes place, € is the dissipation rate and 7 is the Kolmogorov micro-lengthscale.

2010b; Hwang & Bengana 2016), as well as for those in the form of the attached eddies
of Townsend (1980) in the logarithmic region (Hwang & Cossu 2011; Hwang & Bengana
2016).

The energy-containing eddies of various integral lengthscales evidently play the main
role in momentum transfer (de Giovanetti et al. 2016), as they carry most of the TKE.
However, if the energetics of turbulence is concerned, the turbulent dissipation must also
be taken into account. Indeed, the production and dissipation of turbulence are the two
key pillars of the energy balance, and they should be perfectly equal when integrated over
the flow domain of interest. Given that the integral lengthscale in wall turbulence depends
on the wall-normal location, the Kolmogorov lengthscale (n = (v/€)'/4, where € is the
dissipation rate) should also vary accordingly, as summarised in table 1. Furthermore,
emerging evidence primarily from other flow configurations suggests that the balance
between production and dissipation is not in equilibrium, in the sense that there exists a
dynamic interplay between the two processes (see the recent review by Vassilicos (2015)
and the references therein). Indeed, in spatially developing flows such as jets and wakes,
such non-equilibrium spatio-temporal energetics have been found to play an important
role in the downstream evolution of turbulence (e.g. Nedié¢ et al. 2013; Cafiero & Vassilicos
2019).

These recent observations of the self-sustaining process at each integral lengthscale
and the non-equilibrium turbulent dissipation dynamics suggest that wall-bounded tur-
bulence is a complicated entanglement of these dynamical processes involving the wide
range of lengthscales shown in table 1. Earlier studies demonstrated the existence of
scale interaction in the near-wall region, specifically between the self-sustaining inner
structures and the near-wall penetrating outer structures (e.g. Hutchins & Marusic 2007;
Mathis et al. 2009; Duvvuri & McKeon 2015; Agostini & Leschziner 2016; Zhang &
Chernyshenko 2016). However, more recent works, mainly based on the visualisation
of the statistical structure of such interactions, have shown that the scale interaction
processes in wall-bounded turbulence are actually dauntingly complex (Cimarelli et al.
2016; Kawata & Alfredsson 2018; Cho et al. 2018; Lee & Moser 2019). In particular, Cho
et al. (2018) found two new types of scale interaction processes that are highly active
in the near-wall region and the lower part of the logarithmic region i.e. the mesolayer
(Long & Chen 1981; Afzal 1984; Wei et al. 2005), namely the involvement of larger
eddies in the energy cascade of smaller eddies and energy transfer from small- to large-
scale structures in the near-wall region. The former process appears to be involved in
skin-friction generation (de Giovanetti et al. 2016; Cho et al. 2018) and the latter has
been shown to be responsible for the inner-scaling of the wall-reaching part of energy-
containing eddies residing in the logarithmic and outer regions (Hwang 2016; Cho et al.
2018).
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Despite this recent progress, the presence of eddies over a wide range of integral and dis-
sipation lengthscales in wall-bounded turbulence has impeded the precise understanding
of the aforementioned scale interaction processes. In particular, the interactive temporal
dynamics of eddies at multiple scales are not well understood. In order to address this
issue, the objective of the present work is to analyse the minimal unit of multi-scale
near-wall turbulence i.e. a flow domain just large enough to sustain motion at two
integral lengthscales, with spanwise wavelengths A\ ~ 110 (Jiménez & Moin 1991) and
AT =~ 220 (the superscript T denotes inner scaling). For this purpose, the ideal flow
configuration is the shear stress-driven flow model (Doohan et al. 2019), which has been
introduced recently. This model describes the dynamics of the inner-scaling part of near-
wall turbulence (i.e. the mesolayer) in the absence of outer flow, as the friction Reynolds
number Re, — co. Given a logarithmic mean velocity profile, it can be shown that the
inner-scaled wall-normal location of maximum Reynolds stress scales as y* ~ /Re,
(e.g. Long & Chen 1981; Wei et al. 2005), below which point the viscous wall effects
cannot be neglected. Therefore, as Re, — oo, the extent of the mesolayer increases
and it encompasses a hierarchy of scales, not just the self-sustaining near-wall structures
(Jiménez & Pinelli 1999). Hence, arbitrary values of the domain dimensions (L}, L, LY)
can be fixed in the high-Re, limit, under the assumption that L}, L;, LT < v/Re,;, and
the near-wall contribution of structures larger than the flow domain will be excluded.
Another benefit of using the shear stress-driven model is that it is applicable to the
near-wall region and lower logarithmic region of turbulent Couette, Poiseuille and Hagen-
Poiseuille flow, since as Re,; — oo, the effects of the flow geometry or curvature are not
felt. Therefore, the model allows for the most general analysis of multi-scale turbulence
near the wall.

In this study, shear stress-driven flow in the minimal unit of multi-scale turbulence is
considered. The velocity field is decomposed into large- and small-scale components, and
the momentum and energy balance equations at each scale are derived. The statistics and
dynamics of the non-linear turbulent transport terms are analysed, and the corresponding
scale interaction processes are identified and related to the self-sustaining processes at
each scale. Specifically, it is shown that the temporal dynamics of the energy cascade
are determined by the large-scale SSP, both in the timing of the energy transfer from
large to small scales and the characteristic timescales of its subsequent dissipation (§4).
Furthermore, wall-normal turbulent transport from large to small scales drives small-
scale turbulent production, indicative of a new scale interaction process (§5). Finally, it
appears that the energy transfer or ‘feeding’ from small to large scales is impelled by the
small-scale SSP and its streak instability stage in particular (§6). The aforementioned
scale interaction processes are analysed in detail in order to understand the general
dynamics of two-scale near-wall turbulence.

2. Problem formulation
2.1. Shear stress-driven flow model

The flow considered is that of an incompressible fluid in a rectangular domain over
a smooth wall, as described by the shear stress-driven flow model of Doohan et al.
(2019). The model is formulated in inner units, denoted by the superscript T, where
t* is time, x™ = (z*,y™, 21) are the streamwise, wall-normal and spanwise coordinates,
(Ly, L}, LY) the domain dimensions and ut = (u*,v*,w™) the corresponding velocity
components. The wall is located at the lower boundary of the domain at y* = 0. The
flow geometry is shown in figure 1. The velocity field can be expressed in terms of the



Minimal multi-scale dynamics of near-wall turbulence 5

YA

FIGURE 1. Geometry of the shear stress-driven flow model.

mean and fluctuating components
u(x*, 1) = UT(y", 1) +u F(xF,17), (2.1)

where Ut = (U, VT, W) = (ut),+ .+, u't = (a0 W) and (- )a+ .+ denotes
the average in the streamwise and spanwise directions. Within the mesolayer, the wall-
normal coordinate satisfies the relation y™ < v/Re, (e.g. Long & Chen 1981; Wei et al.
2005) and as Re, — oo, the turbulent mean velocity component satisfies the mean
momentum equation

—+
au TN
dyi — <U, +’U +>93+,z+ = 17 (22)
where - denotes the average in time while the flow remains turbulent. For example, in

Poiseuille flow, the —y*/Re, term that derives from the pressure gradient (e.g. Townsend
1980) will vanish in this limit, provided that Lﬁ < v/Re,. Hence, the right hand side
of the mean momentum equation reduces to unity for all parallel wall-bounded flows,
including Couette and Hagen-Poiseuille flows. The fluctuating velocity components are
then governed by the momentum equation

u (U V)u'* = (T V)UT = Vp T — (0 V)ut (0t V)u ) ) + V2T
(2.3)
where p/+ is the pressure fluctuation.

The no-slip condition u™t ‘y +_o = 0 is imposed at the lower boundary of the domain to
represent the stationary wall. At the upper boundary, a horizontally-uniform shear stress
is applied such that a prescribed bulk flow rate is maintained during the simulation.
Introducing the instantaneous bulk velocity U (%) = (ut(zF,y™, 27, t7)) 4 ,+ .+ and
the corresponding laminar bulk velocity Uy, the streamwise boundary condition can be
written as

out
oyt

out
th) = <
=G

where CT is a constant that maintains Ub+ (t*) close to Uy~ during the simulation. Since
the fluctuation of Ub+ (tT) about U is kept to a minimum, the flow is largely independent
of C* — indeed, the independence of the simulation results has been demonstrated
previously by considering a wide range of values of C*. In the present study, its value is
fixed at CT ~ 0.14, which is identical to that in Doohan et al. (2019) when normalised by

> )+ CHUF —UFEY), (24
yt=0/ xt 2+t
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Lty Lf Lf N, N, N. T+

640 180 220 64 105 64 >300000

TABLE 2. Simulation parameters of the minimal unit of multi-scale near-wall turbulence. Here,
Nz, Ny and N, denote the number of grid points in the streamwise, wall-normal and spanwise
directions respectively, and T is the duration of the flow simulation.

the size of the computational domain in any direction. The impermeability and stress-free
conditions

ow™
+ =0 and —— =0 (2.5a, b)

v . )
yt=Ly Y y+:L;r

are imposed on the wall-normal and spanwise velocity components respectively at the
upper boundary of the domain. Given boundary condition (2.5a) and that U," (t+) = U,
equation (2.4) implies that the time-averaged total shear stress is uniform across the wall-
normal domain, ensuring that the mean momentum equation (2.2) is satisfied. Periodic
boundary conditions are imposed in both the streamwise and spanwise directions. Further
details about the model and its validation are discussed in Doohan et al. (2019). The
numerical simulations in this study were carried out with the diablo Navier-Stokes
solver (Bewley 2014), which has been verified extensively (e.g. Hwang 2013). This code
employs the Fourier-Galerkin method in the streamwise and spanwise directions with
a 2/3 dealiasing rule, and a second-order finite difference scheme in the wall-normal
direction. The temporal discretisation is based on the fractional-step algorithm (Kim &
Moin 1985), with implicit treatment of wall-normal derivatives using the Crank-Nicolson
scheme and explicit treatment of the remaining terms using a low-storage third-order
Runge-Kutta scheme.

Given its formulation in inner units, the shear stress-driven model is governed by
the unit-Reynolds number Navier-Stokes equations (2.3) and the inner-scaled domain
dimensions (Lj,L;,Lj) take on the role of control parameters. In particular, due to
the periodic boundary conditions in the streamwise and spanwise directions, the domain
size can be used to determine the expected number of levels in the hierarchy of scales
of motion. As a first step in the study of the temporal dynamics of multi-scale near-wall
turbulence, the number of integral lengthscales is restricted to two. To this end, the
domain size is fixed at (L} = 640, L} = 180, L} = 220) and only the energy-containing
eddies with spanwise lengthscales A\ =~ 110 (Jiménez & Moin 1991) and A} ~ 220 will
be resolved, since the structures with larger wavelengths will be removed. In this way, the
model allows for the analysis of the temporal dynamics of near-wall turbulence sustained
at two integral lengthscales. The simulation parameters of the minimal unit of multi-scale
turbulence are displayed in table 2 and its spectral energetics are discussed in Appendix

A.

2.2. Multi-scale governing equations

Having introduced the shear stress-driven flow model, the task at hand is to describe
the temporal dynamics of minimal multi-scale near-wall turbulence. In a number of
previous studies, the characteristics of statistically steady multi-scale turbulence have
been explored through the spectral energy balance equation (e.g. Mizuno 2016; Cho
et al. 2018; Lee & Moser 2019). However, such an analysis involves a large number of
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FIGURE 2. Root mean squared velocity profiles (a) u),., (b) v, and (c) wi,, (solid

lines), decomposed into their large-scale components ((u;)2) i i /ufns, ((v;)2) 4 4 /Vihns

and ((w;")?) 4 .4+/whns (dashed lines), and small-scale components ((uj)Q)ﬁ’ﬁ/uims,

((vﬁ)2>w+’z+/vfms and ((w;r)2>m+7z+/w;~'mS (dash-dotted lines).

lengthscales, too many to consider simultaneously even in the present highly-simplified
system (see Appendix A). Therefore, a simpler approach is required. In this study, a
binary decomposition of the fluctuating velocity field is considered in order to separate
the energy-containing eddies at each integral lengthscale, namely ut = uf +uf, where

u = (u;f,v;", w;") denotes the large-scale structures and uf = (u}, v}, w}) the small-
scale structures. For this purpose, ul+ and ul are hereby defined as
T itmkt oot tnkt ot
uf = 30 D W I | ] £0, (2.60)
Im[<ma [n|<1
W T Y Tkttt 21

Im|<m, 2<|n|<n,

where - denotes the Fourier transform defined over the finite spatial domain considered,
k}, and k7, are the fundamental streamwise and spanwise wavenumbers, and m, and
n, are the number of harmonics in the streamwise and spanwise directions. This decom-
position is based entirely on the spanwise wavelength and all streamwise wavelengths
are included (apart from the spatial mean), since the size of energy-containing eddies in
wall-bounded turbulence is well characterised by the spanwise lengthscale and they are
comprised of structures of various streamwise lengthscales i.e. elongated streaks and short
quasi-streamwise vortices (Hwang 2015). The root mean squared velocity profiles and
their large- and small-scale components are shown in figure 2. The large-scale structures
are relatively uniform across the wall-normal domain (dashed lines) while the small-
scale structures are much more pronounced near the wall (dash-dotted lines), consistent
with Townsend’s hypothesis (Townsend 1980). Note that these results (and those in
subsequent sections) are plotted over the interval ¥ € [0,120] so as to exclude the flow
region immediately below the upper boundary (see Doohan et al. (2019)).

Though defined precisely in (2.6a) and (2.6b), the following analysis will hold for
alternative velocity field decompositions provided that ul‘" and ul are disjoint sets.
Substitution of u” and u} into (2.3) yields the large- and small-scale momentum
equations

auf
ott

+ (Ut - V)u = —(uf - V)U' — Vp + Vu,f
~P{(w - V)u

+ (0 - V)ul + (uf - V)u + (uf - V)ul} (2.7)
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and
duy + + + + + 2.+
o+ + (U ! v)us = 7(115 ! V)U - vps +V u,
~P{(uf - V)ul + (uf - V)ulJr + (ulJr -Vul + (ulJr . V)u;r , (2.8)

where p/+ = pl+ +p{ are the large- and small-scale pressure fluctuations, and P;{ - } and
Ps{ - } denote projection onto large and small scales respectively. Multiplying equation
(2.7) by ulJr and averaging in the streamwise and spanwise directions yields the large-scale
energy balance equation, which can be written in component form as

8E1Tl _ P+ T+ H+ T+ + 9
ott - ul+ ul + ul + v,ul + €uls ( 90‘)
aEmﬁ + + + + +

8t+ = Tp,vl+ Tvl + Hvl + Tu,vl + 6vl7 (29b)
anz;l + + + +

ot+ = Twl + le + Tu,wl + Cwl> (2‘96)

where

Ef = %<(“z+)2>m+,z+, EY = %<(Ul+)2>z+72+ and Ef, = %<(wl+)2>m+72+
(2.10a, b, ¢)
are large-scale streamwise, wall-normal and spanwise kinetic energy, PJE is large-scale
turbulent production,

Th =~ (0 - Vuf +uf - Vul +uf Vo +ulf - Vul))s e, (2110)
Ty == (0 - Vo +uf Vol +ul Vol +uf - Vol))es.e,  (2110)
T = —(w (uf -V +u - Vol +uf - V! +uf - Vwl))+ e, (2110
are large-scale streamwise, wall-normal and spanwise turbulent transport, IT jl, I 1'5 and

1I ;;l are large-scale streamwise, wall-normal and spanwise pressure strain, T; 1 18 large-
,

scale pressure transport, T: wl> T: i and T: w1 are large-scale streamwise, wall-normal
and spanwise viscous transport, and Eq—fl’ e:rl and ej;l are large-scale streamwise, wall-
normal and spanwise dissipation. In a similar manner, multiplying equation (2.8) by uf
and averaging in the streamwise and spanwise directions yields the small-scale energy
balance equation, in which E,, E} and E] are small-scale streamwise, wall-normal

and spanwise kinetic energy, P, is small-scale turbulent production,

T = —(uf(uf - Vuf +uf -V +uf - Vol +uf - Vo)) e, (2120
Th = (il vol +uf- va' + ul+ Vol + ul+ . va)>w+7z+, (2.12b)
Tt = —(wf(uf - Vw! +uf - wa' + ulJr -Vwl + ul+ . Vw?'))mﬂzh (2.12¢)

are small-scale streamwise, wall-normal and spanwise turbulent transport, II,\,, I}, and

T}, are small-scale streamwise, wall-normal and spanwise pressure strain, T, . is small-
scale pressure transport, T,f,, 1,7, and T,  are small-scale streamwise, wall-normal
and spanwise viscous transport, and €}, €, and €], are small-scale streamwise, wall-
normal and spanwise dissipation. The definitions of the terms in the large- and small-scale
energy balance equations are given in full in Appendix B.

The large- and small-scale energy balance equations contain both linear and non-linear
terms. Turbulent production is the linear mechanism through which the large- and small-
scale velocity fluctuations extract energy from the mean velocity, and PJ and P, are the
only terms in the energy balance equations that depend on U™. The turbulent dynamics



Minimal multi-scale dynamics of near-wall turbulence 9

at each scale are dominated by the interplay between production and dissipation, which
is also a linear mechanism. On the other hand, the pressure strain, pressure transport
and turbulent transport terms are all inherently non-linear. The non-linearity of the
pressure strain and pressure transport terms is implicit, originating from the ‘slow’ non-
linear term that drives the pressure Poisson equation (Kim 1989). Though the pressure
fluctuations are indeed non-linear, the energy flux through the pressure strain terms is
linear since they are linked by the continuity equation at each scale as —1IT ;[l =11 j} + 11 ;rl
and —IIY, = IIY, + II}},. Furthermore, it has been argued that the redistribution of
streamwise TKE to the wall-normal and spanwise components at the integral lengthscale
by the pressure strain terms is the signature of the self-sustaining process at each scale
(Cho et al. 2018), since the spectra of turbulent production and pressure strain are well
aligned (Mizuno 2016; Cho et al. 2018; Lee & Moser 2019). In §3, it will be demonstrated
that this is indeed the case. Finally, the turbulent transport terms are explicitly non-
linear and their role is to facilitate the transfer of TKE between structures of different
scales through their non-linear interaction.

Following a similar approach to Kawata & Alfredsson (2019), the turbulent transport
terms can be further decomposed into spatial transport and inter-scale transport terms.
Re-writing the first component of each term in equations (2.11) and (2.12), the intra-scale
spatial turbulent transport terms are defined as

Th_ = —(u (uf - Vu))pr v = =V - (G0 )t 2+, (2.13a)
T = =0 (0 - Vo ))ar v = =V (5020 )t v, (2.13b)
Ty = —(w (0 - Vw))pr .+ = =V - (Gw )P0 ) g 2+, (2.13¢)
Tr— = —(uf(uf - Vul))er oo = =V (Gud)?uf)os 2+, (2.13d)

o= —f(uf Vo)) o = =V (5(0])Pud) st (2.13¢)
Tho— = —(wif - Vul))pr .+ = =V (Gwh)ul)es 2o, (2.13f)

with subscript _. Each of the above terms is written as the divergence of a vector field,
the elements of which are functions of the velocity components at the same scale i.e.
large scale or small scale. Therefore, the terms in equation (2.13) can be interpreted as
the energy gain or loss resulting from the spatial transport of TKE induced by structures
of the same scale and so they do not represent scale interaction processes. In a similar
manner, re-writing the third and fourth components of each term in equations (2.11) and
(2.12), the inter-scale spatial turbulent transport terms are defined as

T, #= V- (%(ufr)Quj’)x+ o+ V- (Ufu"'u:)xﬂﬁ, (2.14a)
T u= -V G2 .o = V- (v vfuf) .o, (2.14b)
TuJ;rl,# ==V <%(wl+)2uj>x +at — V(W w+u Yat oo (2.14¢)
T u= =V G0 )or oo = V- (wfufuf ) e, (2.14d)
T:;,# = -V <%(U:_)2ul+>x+ 2+ — <Ul U+U-l Yat 2+ (2.14¢)
T, p ==V (w2 ) oo — Vo (wfwiu ), e, (2.14))

with subscript x. Again, each of the above terms is written as the divergence of a vector
field, however its elements are now functions of the velocity components at both large
and small scales. Therefore, the terms in equation (2.14) can be interpreted as the energy
gain or loss resulting from the spatial transport of TKE induced by the interaction of
large- and small-scale structures. Finally, the remaining components of each term in
equations (2.11) and (2.12) appear at large- and small-scales with opposite sign, and
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these inter-scale turbulent transport terms are defined as

T = (uf (- Vul))pr oo — (uf (uf - Vo)) o 2o, (2.154)
T;fi = <Uz+(uz+ 'VUJ)>3¢+,Z+ - (vj(uj . va)}xtzh (2.15b)
Ty = (w (- Vwd))os o+ — (Wi (0] - V) os oo, (2.15¢)

with subscript 4. Tli’ T;,_i and T :J',i appear in the small-scale energy balance equations,
while their negations appear in the large-scale energy balance equations (see equation
(2.16) below). Therefore, the terms in equation (2.15) can be interpreted as the energy
gain or loss resulting from the same-component inter-scale transport of TKE between
large and small scales defined in (2.6a) and (2.6b) i.e. between u;” and u}, v} and v,
and w;r and w. It is apparent that the interaction of large- and small-scale structures
results in both spatial turbulent transport and inter-scale turbulent transport through
the terms in equations (2.14) and (2.15) respectively. The large- and small-scale energy
balance equations are written in full as

8E:_l + + + + + + +
o Po =T+ T+ T Ty +T, 0+ € (2.16a)
+
OBy _ Tr, =TH+TY +Th , + I, +Tf  +¢€, (2.16b)
ot+ - Tpol v,3 vl,— vl # vl v,vl vl .
+
OEy _ ~Tr +TH  +ThH , + 05+ T +eb (2.16¢)
ott+ w,$ wl,— wl,# wl v,wl wl? .
OB, _ PHL 4T +T5 +TH ,+ I+ T, +e (2.164)
ot+ - us u,g us,— us,# us v,us us? .
O, =T T+ T +Th , + I, + T + e, (2.16¢)
8t+ - *p,vs v,3 vSs,— vs,# vs | 280K R .
OFE;
6#5 — le$ F T+ T+ IS+ T+ €l (2.16f)

and the definitions of the terms are given in Appendix B.

2.3. Mean multi-scale energetics

The governing equations derived in §2.2 allow for the analysis of the temporal dynamics
of multi-scale near-wall turbulence, however a few issues need to be addressed. Firstly, the
particular velocity field decomposition introduced in equation (2.6) must be investigated
in order to identify the processes that are likely to take place at each scale (e.g. the
self-sustaining process) and the transfers of energy that are expected to occur between
the large and small scales (e.g. the energy cascade). Secondly, the terms in the energy
balance equations (2.16) are functions of both wall-normal height y* and time T,
since homogeneity allows for averaging in the streamwise and spanwise directions. But
averaging in the wall-normal direction is also required in order to study the temporal
dynamics, hence any wall-normal anisotropy of the terms in (2.16) must be identified
to allow for the selection of appropriate integration limits. To this end, the statistics of
the terms on the right-hand side of the energy balance equations are analysed, which
balance each other in a statistically steady flow, and the results are shown in figure 3 as
a function of the wall-normal height y*.

The large-scale production term PJQ is almost uniform across the wall-normal domain
in figure 3(a) (red), while the small-scale production term P, exhibits an intense near-
wall peak at y™ ~ 12 in figure 3(b) (red). This is the effect of the no-slip boundary
condition, which mathematically constrains the peak to be located in the near-wall
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region, as discussed in detail by Yang et al. (2018) (§3.2 of that work). At this point, the
magnitude of P is almost five times greater than that of P} (see also figure 28(a) in
Appendix A). The streamwise pressure strain terms I7, :‘l and IT,, are negative across the
entire wall-normal domain in figure 3(a, b) (light green), while the wall-normal terms 7}
and I}, in figure 3(c, d), and spanwise terms II,}, and I}, in figure 3(e, f) are (mostly)
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positive, confirming that the pressure strain terms redistribute streamwise TKE to the
wall-normal and spanwise components. The wall-normal pressure strain terms I7 ;’; and
II}, are only negative below y* a 15, a manifestation of the so-called ‘splat effect’ in
which fluid moving towards the wall is forced to move parallel to the wall (e.g. Lee &
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Moser 2019). Apart from the splat effect in H:; , the large-scale pressure strain terms
are more uniform across the wall-normal domain, while the small-scale pressure strain
terms exhibit peaks closer to the wall. While the small-scale production and pressure
strain terms are inhomogeneous near the wall, all terms in the small-scale energy balance
equation are more homogeneous above y+ ~ 60 with minimal variation over yT. The
characteristics of turbulent production and pressure strain shown in figure 3 indicate
that the velocity field decomposition (2.6) indeed captures the energy-containing eddies

and self-sustaining processes at both large and small scales.

Turning to the turbulent transport terms (black), it appears that the wall-normal
position of minimum qul and T.F, almost coincides with the wall-normal position of
maximum P, and PJ, in figure 3(a,b), indicating that turbulent transport removes
energy at the same wall-normal locations where the generation of the energy-containing
eddies at each scale is most active. At large scale, the turbulent transport terms are mostly
negative above y ~ 25, except for the streamwise term which is close to zero (figure
3(a,c,e)). However, the streamwise and spanwise turbulent transport terms are positive
very close to the wall in figure 3(a, €), consistent with the observations of previous studies
of the turbulent transport spectra (e.g. Cho et al. 2018; Lee & Moser 2019) (see also figure
28(c,e) in Appendix A). It is also important to note that the peak in the streamwise
turbulent transport term has similar magnitude to the large-scale production term P;?.
This positive streamwise and spanwise turbulent transport seems to be balanced by the
corresponding dissipation and viscous transport terms, as has been shown in the case of
turbulent Poiseuille flow at Re, ~ 1700 (Cho et al. 2018). At small scale, the turbulent
transport terms for all three components are positive above y a 30 in figure 3(b, d, f).
In particular, above y* ~ 60, the streamwise turbulent transport term T, has similar
magnitude to the (relatively weak) small-scale production term P, in figure 3(b), and
the same can be said for the wall-normal and spanwise turbulent transport and pressure
strain terms in figure 3(e, f). For all three small-scale components, the positive terms
in the energy balance equations are primarily balanced by the corresponding dissipation
terms (see also figure 28(c,d, e, f) in Appendix A). The small-scale dissipation terms
also exhibit greater magnitude than the large-scale counterparts, implying the cascade
of energy through the turbulent transport terms.

As described in §2.2, the turbulent transport terms (2.11) and (2.12) can be decom-
posed into the intra-scale spatial, inter-scale spatial and inter-scale turbulent transport
terms in equations (2.13), (2.14) and (2.15) respectively. In particular, the inter-scale
spatial and inter-scale turbulent transport terms depend on both large- and small-scale
velocity components, and so they represent scale interaction processes. Further to the
above analysis, the statistics of the intra-scale spatial turbulent transport terms (solid
grey lines), inter-scale spatial turbulent transport terms (dash-dotted black lines) and
inter-scale turbulent transport terms (solid black lines) at both large and small scales
are shown in figure 4. The streamwise and spanwise inter-scale turbulent transport terms
T :i and T,:}',i are negative at large scale and positive at small scale above y* = 25 (figure
4(a,b, e, f)), while the wall-normal inter-scale turbulent transport term T;Ti is negative
at large-scale and positive at small-scale across the wall-normal domain (figure 4(c, d)).
This indicates that there is same-component energy transfer from large to small scales
ie. from ul+ to ul, vl+ to v, and wl+ to w}, reaffirming the classical role of turbulent
transport in the streamwise, wall-normal and spanwise energy cascades. Below y* ~ 25
however, the streamwise and spanwise inter-scale turbulent transport terms Tu+7$ and T;r)$
are negative at small scale and positive at large scale, with prominent troughs/peaks at
yt &~ 12 and y* ~ 10 respectively (figure 4(a, b, e, f)). This indicates that there is same-
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component energy transfer from small to large scales very close to the wall i.e. from u}

to ul+ and wl to wl+. In particular, these observations are consistent with those of Cho
et al. (2018), who demonstrated that positive turbulent transport in the near-wall region
is the manifestation of the transfer of energy from small to large scales.

On the other hand, the intra-scale spatial turbulent transport terms represent the wall-
normal transport of TKE resulting from the non-linear self-interaction of structures of the
same scale and their volume average is zero. The large-scale terms Tul =, TJr and T+
are very weak in magnitude (figure 4(a,c,e)) but there are deep troughs in the small—
scale streamwise and spanwise terms T;;ﬁ and TJSﬁ at y* = 11 and y™ = 8 respectively
(figure 4(b, f)). This is likely due to the velocity field decomposition in (2.6), in which
the small-scale energy-containing eddies and the small-scale eddies associated with the
energy cascade from both large and small integral lengthscales would be included in the
definition of ul, and so the resulting intra-scale energy flux in the wall-normal direction
is more pronounced. Furthermore, the small-scale intra-scale terms decay above y* ~ 45
and the inter-scale terms are dominant above this point (figure 4(b,d, f)). Finally, the
inter-scale spatial turbulent transport terms represent the wall-normal transport of TKE
resulting from the interaction of structures of different scales and their volume average
is also zero. It is apparent that the interaction of large- and small-scale structures can
produce significant wall-normal energy fluxes, especially those of streamwise TKE (figure
4(a, b)), and the inter-scale spatial turbulent transport terms are highly sophisticated.

2.4. Temporal dynamics

Following the statistical analysis of the two-scale energetics in §2.3, the temporal
dynamics of minimal multi-scale near-wall turbulence can now be investigated. The terms
in the large- and small-scale energy balance equations (2.16) are averaged in the wall-
normal direction and studied as functions of time t*. However, given that some of the
processes described in the previous section vary considerably across the wall-normal
domain, the limits of integration in y* must be chosen carefully. In subsequent sections,
the same notation is used to denote the y™—averaged terms but the corresponding limits of
integration are also indicated: for example, qu,i |i§0 is the streamwise inter-scale turbulent

transport term averaged over the interval y™ € [45,120], i.e. the streamwise energy
cascade. In order to establish relationships between the various terms, the temporal
cross-correlation function C(71) is introduced, where

Ut e [ )

(120 1 (120 ’
Vsl <t+>>2¢<eul o ()
for example, is the cross-correlation of large-scale turbulent production and streamwise
dissipation as a function of the time lag 7.

Given the scope of the present study, the properties of turbulent transport described in
§2.3 are examined under three general categories, with a particular emphasis on the inter-

scale processes: (i) the energy cascade from large to small scales over the interval y* €
120 120
T+

45 0 v, i 45
ii) the energy transfer from large to small scales over the interval y* € [0, 45]

T 120
Pul

C(rh) = (2.17)

[45,120], mediated by the inter-scale turbulent transport terms 7'" wt and
120

w $|45 ;
that results in increased small-scale turbulent production, mediated by the inter-scale

turbulent transport term T’ (iii) the energy transfer from small to large scales over

$‘45 ) o
the interval y* € [0,25], mediated by the inter-scale turbulent transport terms ij$|5

and T;’$|§5. In particular, the second process will be called the ‘driving’ of small-scale
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turbulent production and the third process will be called the ‘feeding’ from small to large

scales, to distinguish from the classical energy cascade from large to small scales.
Finally, it must be mentioned that the inter-scale turbulent transport terms T;“y T;ri

and TJ$ are derived from the horizontally-averaged turbulent transport terms (2.11) and

(2.12), in which the projections P;{ - } and Ps{ - } can be dropped. However, in order to
plot three-dimensional spatial visualisations of inter-scale turbulent transport, the terms

T = —uiPofu - Vu +uf - Vul +uf V'l (2.180)
T\ 4= —viP{ul - Vol (2.18b)

are introduced as proxies for the transfer of streamwise TKE from large to small scales
in §4, the transfer of wall-normal TKE from large to small scales in §5 and the transfer
of streamwise TKE from small to large scales in §6, respectively. In particular, it will
be shown in §5 that one component of the wall-normal inter-scale turbulent transport
term is particularly relevant to the driving of small-scale turbulent production. For all
other terms, the subscript g indicates that the corresponding observable is defined before
the ( - ),+ .+ averaging operation for visualisation purposes, specifically the small-scale
streamwise dissipation and turbulent production terms

€ZS,D = —Vuj' ’ VU;— and ]DJ;,D = _UJJFU:U: (2.190,, b)

in §4 and §5 respectively.

3. Self-sustaining processes

In this section, the dynamics of the large- and small-scale structures are studied
separately, whereas the interactions between the two scales are discussed in subsequent
sections. The decomposition of the velocity field into uf and u in (2.6) was intro-
duced under the premise that there are energy-containing eddies at each scale, which
is confirmed in the statistical analysis in §2.3. Given that the self-sustaining process is
understood to govern the dynamics at integral scales (Hwang & Bengana 2016), here it
will be briefly characterised at both large and small scales in order to establish its energy
transfer dynamics. For this purpose, the velocity components are further decomposed
into their x7-independent and -dependent parts, and the kinetic energies of large-scale
straight streaks (ss), wavy streaks (ws), straight rolls (sr) and wavy rolls (wr) are defined
as

1 120
Est,z(ﬁ) = §<<“z+>92¢+>z+ 0 (3.1a)
+ 1, 4 " 5 120
Ews,l(t+) = §<(ul - <ul >3¢+) >x+,z+ o P (31b)
1 120
Ej () = §<<Uz+>i+ + (W) e ) o+ 0 (3.1¢)
120
B (%) = 540 = @ o + = () )ar we| (3.1d)

respectively, while the kinetic energies of small-scale straight streaks, wavy streaks,
straight rolls and wavy rolls are defined as

1 45
E\;:,s(t+) = §<<uj>i+>z+ 0 ; (320’)
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1 45

Bl (tT) = §<(Uj — (U )4 )Y gt ot - (3.20)
1 45

E () = §<<U:>i+ +(wH2).+| (3-2¢)
1 45

Ef, tT) = 5((“? — (W)t )? + (wf = (W) )?)ar o+ ) (3.24)

respectively. The small-scale kinetic energy terms are averaged over the interval y* €
[0,45] in accordance with the turbulent production profile in figure 3(b) (red), since P,
exhibits a large peak close to the wall. Descriptions of the observables associated with
the large- and small-scale self-sustaining processes and their energetics are provided in
table 3 in Appendix C. Here, it should be noted that these observables are introduced
to describe the dynamics of the structural elements of the self-sustaining process (e.g.
streaks and rolls) and the corresponding energetics at each ‘integral’ lengthscale, i.e. large
and small. In particular, at small scale, it is conveniently assumed that production and
dissipation take place at the same scale (i.e. A} < 110), although in practice there is
some separation between the two lengthscales (see figure 28(a, f) in Appendix A).

The cross-correlation functions of a selection of the large- and small-scale kinetic energy
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terms are shown in figure 5(a) and 5(b) respectively. The correlations of straight rolls and
straight streaks (brown), straight streaks and wavy streaks (orange), and wavy streaks
and wavy rolls (purple) are left-shifted at both large and small scales, indicating that
the observables occur in the order E;’l — E;;,l — ELJ — Ejml and Ef. , — E;‘S’S —
Ejgw — E:Ur,,,s, consistent with the self-sustaining process (Hamilton et al. 1995; Hwang
& Bengana 2016). The large-scale kinetic energy terms remain correlated over longer
timescales and have ‘wider’ cross-correlation functions, reflecting that the large-scale
self-sustaining process is expected to occur over a longer timescale than its small-scale
counterpart (Hwang & Bengana 2016). To investigate the characteristic timescales of
these subprocesses in more detail, the temporal auto-correlation functions of the large-
and small-scale kinetic energy terms are shown in figure 5(c) and 5(d) respectively.
At large scale, the straight roll E;,l (brown) and straight streak E;;’l (orange) auto-
correlations are wider than the wavy streak E_, (purple) and wavy roll E , (pink)
auto-correlations, indicating that the ‘straight’ sﬁbprocesses occur over a sigrfiﬁcantly
longer timescale than the ‘wavy’ subprocesses. At small scale, the straight roll E:;,s
(brown) and straight streak E, . (orange) auto-correlations are much narrower than
those of the equivalent large-scale terms, indicating that the large-scale self-sustaining
process is indeed active over longer timescales. However, it is immediately obvious that
there is little separation between the timescales of the straight and wavy subprocesses at
the small scale, and the auto-correlation function of the wavy rolls Ef,. . (pink) actually
matches that of the wavy rolls at the large scale. This somewhat unexpected behaviour,
which is related to non-equilibrium turbulent dissipation, is further discussed in §4.

Next, the temporal dynamics of the terms in the large- and small-scale energy balance
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equations (2.16) are investigated. Since this section is limited to the energetics of
turbulence at each scale, only the turbulent production, pressure strain and turbulent dis-
sipation terms are considered. The time series of turbulent production (red), streamwise
pressure strain (green) and streamwise dissipation (blue) are shown in figure 6 at both (a)
large and (b) small scales. Again, the large-scale terms are integrated over the interval
yt e [0, 120] and the small-scale terms over y* € [0,45]. The turbulent production
terms P | 1o and Pl 35 fuel the self-sustaining processes at each scale by injecting
energy mto the streamwise velocity components. As expected, the streamwise pressure
strain terms H;rl o and IT} 35 increase in magnitude in response to the production
terms, redistributing streamwise TKE to the wall-normal and spanwise components at
each scale. The same behaviour is observed in the streamwise dissipation terms eul| ;20

’35 at each scale. The small-scale production term P 35 exhibits more rapid
fluctuation in figure 6(b) than its large-scale counterpart P, |320 in figure 6(a), consistent
with the shorter characteristic timescales observed in the small-scale auto-correlation

functions in figure 5(d).

and €,

However, it is the timing of the turbulent energetics in relation to the self-sustaining
process at each scale that is of most interest, requiring cross-correlation with the kinetic
energy terms defined in equations (3.1) and (3.2) above. The cross-correlation functions

of large-scale production P+| (1)20 vs. straight streaks Essl

(red) and large-scale wavy

streaks Ef s, vs. streamwise dissipation —eul|0 (blue) are shown in figure 7(a). Note
that the sign of the dissipation term (and subsequent dissipation terms) has been flipped,
representing an increase in dissipation in this case. The positively correlated left-shifted
peaks indicate that large-scale production drives the growth of straight streaks in line
with the lift-up effect (red), while the large-scale streamwise dissipation reaches its
maximum just after the kinetic energy of wavy streaks (blue). The equivalent small-scale
observables occur in the same order within the small-scale self-sustaining process as those
at large scale, as seen in figure 7(b). However, the cross-correlation function of small-scale

production quo vs. straight streaks Ef, , (red) has noticeably lower magnitude than
its large-scale equivalent in figure 7(a), the precise reasons for which are discussed in §5.

The cross-correlation functions of large-scale wavy streaks Em ; Vs. streamwise pressure

strain —IT ;rl (green) and small-scale wavy streaks E.f_ | vs. streamwise pressure strain

o

J‘S‘O (green) are shown in figure 7(c) and (d) respectively. Note that the signs
of the streamwise pressure strain terms have also been flipped, representing increased
redistribution of energy to the wall-normal and spanwise components in this case. Both
correlation functions peak at 77 a 0, indicating that streamwise pressure strain and
the kinetic energy of wavy streaks increase/decrease simultaneously, consistent with the
dependence of IT];, and ITf, on (u;"),+ and (u]),+ respectively (see Appendix B). The
cross-correlation functlons of large-scale wavy rolls E r1 V8. wall-normal and spanwise

vs. wall-normal

dissipation —e l|0 (blue) and small-scale wavy rolls Ef .

wl 0
and spanwise dissipation —e;, |0 - wS’O (blue) are also shown in figure 7(c) and (d)
respectively. The left-shifted peaks indicate that wall-normal and spanwise dissipation
occurs just after the kinetic energy of wavy rolls at each scale, in the late stages of streak
breakdown. The timing of each of the above terms is shown in the schematic diagram in

figure 8.
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4. Energy cascade dynamics

In the statistical analysis of the two-scale energetics in §2.3, the first scale interaction
process identified is the cascade of energy from large to small scales (figure 4), given
their definition in (2.6). This manifests as negative inter-scale turbulent transport at
large scale (figure 4(a,c,e)) and positive inter-scale turbulent transport at small scale
(figure 4(b,d, f)) above y* ~ 25 in the streamwise and spanwise terms, and across the
wall-normal domain in the wall-normal term (see also figure 28(c, d, e) in Appendix A).
The inter-scale turbulent transport terms T;,i’ T:“i and Tli are subsequently averaged
over the interval y* € [45,120] in order to study the temporal dynamics of the energy
cascade and descriptions of the associated observables are provided in table 4 in Appendix
C. In this study, the small-scale eddies associated with the energy cascade are called
‘detached’ eddies, as opposed to the energy-containing eddies that are attached to the
wall (Townsend 1980).
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FIGURE 10. Streamwise energy cascade: (a) magnification of figure 9(a) for t* € [3530, 3780];
(b,c,d, e, f) isosurfaces of u;” = £3.1 (pink/cyan), T = 0.24 (black) and e;ﬂ = —0.05 (blue)
at tT = 3573, 3622, 3650, 3666 and 3683, respectively.

The time series of the streamwise, wall-normal and spanwise inter-scale turbulent

1+ 1120 4 120
transport terms Tu,$|45 , Tv¢’45

(black), along with the corresponding small-scale detached-eddy dissipation terms €., |i§0,

and TJ“EO are shown in figure 9(a, b, ¢) respectively

ejs‘jéo and ej;syﬁ() (blue). Tt is immediately obvious that the small-scale dissipation
terms increase in magnitude in response to the corresponding turbulent transport terms,
which is the expected behaviour of the energy cascade. Given that the inter-scale
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turbulent transport terms are sinks in the large-scale energy balance (figure 4(a,c,e)),

it is of interest to relate T wl 41150’ $|120 and TJri|120 to the energy sources at large
scale. The large-scale turbulent productlon term P | 1o (red), and the wall-normal and
spanwise pressure strain terms II m o and IT +l’ o (green) are also plotted in figure

9(a, b, ¢) respectively, since these are the primary energy sources for the large-scale
streamwise, wall-normal and spanwise velocity components. In figure 9(a), the streamwise

inter-scale turbulent tranbport T i| 4 Aappears to increase in response to large-scale

turbulent production P,

ul’ o - resulting in the transfer of streamwise TKE from large

to small scales. The same behaviour is observed in Tv+¢|411§ and T+$| 45 1D response to
I ;’; (1)20 and IT +l‘ o Trespectively in figure 9(b, c). However, as seen in §3, the large-scale

turbulent production and pressure strain terms are intimately linked to the large-scale
self-sustaining process, hence the relationship between the energy cascade and the large-
scale SSP requires further investigation.

In order to investigate the spatio-temporal dynamics of the energy cascade, an intense
streamwise turbulent kinetic energy cascade event is identified in the time series in figure
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9(a) (grey box) and snapshots of the velocity field during this event are shown in figure 10.
The magnification of figure 9(a) for t* € [3530, 3780] is shown in figure 10(a). A peak in
large-scale turbulent production (red) appears to result in a large increase in streamwise
inter-scale turbulent transport (black) and a subsequent increase in the magnitude of
small-scale streamwise detached-eddy dissipation (blue). Figure 10(b — f) are snapshots
of the velocity field at times t+ = 3573, 3622, 3650, 3666 and 3683 respectively, indicated
by the dots in (a). The isosurfaces of high- and low-speed large-scale streaks uf =43.1
are shown in pink and cyan respectively, along with small-scale streamwise turbulent
transport TJS, §=0241n black and small-scale streamwise dissipation GIS,D = —0.05 in
blue. Note that the wall-normal range is y* € [45,120]. Well before the cascade event,
at tt = 3573 (figure 10(b)), the large-scale streaks are not particularly prominent and
the velocity field exhibits some weak turbulent transport and detached-eddy dissipation,
the isosurfaces of which appear to be isotropic in shape. By tT = 3622 (figure 10(c)),
the peak in turbulent production has fuelled the growth of the large-scale streaks, which
are elongated in shape (see §3). At this point, the isosurfaces of turbulent transport
have begun to increase in size but appear to form alongside the low-speed streak only
(cyan). The turbulent transport reaches its maximum around ¢+ = 3650 (figure 10(d)),
when the large-scale streaks appear to meander in the streamwise direction i.e. the
streak instability stage of the self-sustaining process. The turbulent transport isosurfaces
precede the formation of the detached-eddy dissipation isosurfaces, which have increased
considerably in size, and both appear to be very closely entwined. At the later times
tt = 3666 and 3683 (figure 10(e, f)), there is a substantial increase in the magnitude
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of dissipation during the late stages of large-scale streak breakdown and the velocity
field is dominated by the dissipation of the detached-eddies. Throughout this event, the
isosurfaces of turbulent transport and dissipation remain aligned with the low-speed
streak rather than the high-speed streak.

In figure 9, it was shown that streamwise, wall-normal and spanwise inter-scale tur-
bulent transport increases in response to large-scale turbulent production, wall-normal
pressure strain and spanwise pressure strain respectively. Furthermore, the streamwise
turbulent kinetic energy cascade observed in figure 10 reached its maximum as the large-
scale streaks began to meander in the streamwise direction. This suggests that the energy
cascade is related to the large-scale self-sustaining process and its streak instability stage
in particular. To investigate the precise timing of the cascade of energy from large to small

scales, the temporal Cross-c orrelation functions of the inter-scale turbulent transport
120 120

45 i‘
analysed The cross-correlation functions of large-scale turbulent productlon P+|

terms Tu 1 and T+$‘ 45 With the large-scale kinetic energy terms in (3.1) are

120

i| (red) and the kinetic energy of wavy streaks E 51 VS TJi ’ 15 (purple) are shown
in ﬁgure 11(a). Both correlations are very clearly left-shifted, indicating that streamwise
inter-scale turbulent transport increases just after the kinetic energy of large-scale wavy
streaks i.e. as the streaks begin to meander due to instability and/or transient growth.

The cross-correlation functions of the kinetic energy of Wavy streaks E s VS T:’i EO
(purple) and large-scale wall-normal pressure strain 17 ), }0 T;ri 4112 (green) are shown

in figure 11(b). Both of these correlations are also left-shifted, indicating that wall-normal
inter-scale turbulent transport increases in response to the kinetic energy of large-scale
wavy streaks and wall-normal pressure strain (the timing of which was studied in §3),
again during the streak instability stage of the large-scale SSP. A similar picture emerges
for the spanwise energy cascade. The cross-correlation functions of large-scale spanwise

pressure straln 11

wl| o VS T+i| 15 (green) and the kinetic energy of wavy rolls F

wr,l
Vs. T'%‘ 45 (pink) are shown in figure 11(c), and their left-shifted peaks indicate that
spanwise inter-scale turbulent transport increases in response to the kinetic energy of
wavy rolls during the late stages of large-scale streak breakdown. In any case, it is clear
that the cascade of energy from large to small scales fluctuates in line with the large-scale
self-sustaining process. It is also important to note that the timing of this energy transfer
does not seem to depend on the small-scale self-staining process, even though the inter-
scale turbulent transport terms T+$, T+$ and T+i in (2.15) depend on both the large-
and small-scale velocity components, and their dynamics show no correlation. However,
the small-scale energy-containing eddies are concentrated below y* =~ 45 (figure 3(a)),
hence it seems that only the large-scale self-sustaining process determines the timing of
the energy cascade above y™ ~ 45.

Given this regular transfer of energy from large to small scales, it is next of interest
to see how this affects the small-scale energy balance. As seen in figure 9, the small-
scale detached-eddy dissipation terms e ‘ sla5 2 € 41120 and €$5’i§0 appear to increase
in magnitude in response to the correspondlng inter-scale turbulent transport terms,
and this balance has also been observed in the small-scale statistics in figure 3(b,d, f).
However, the temporal dynamics of this response must be investigated. The tempo-

ral cross-correlation function of streamwise inter- scale turbulent transport T i|120
streamwise detached-eddy pressure strain HJ‘S 45 is shown in figure 12(a) (green).

Note that the sign of the streamwise pressure strain term has been flipped. The cor-
relation shows a moderate left-shifted peak, indicating that the energy transfer to the
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streamwise component u] results in increased redistribution of energy to the wall-normal
and spanwise components v and w{. The cross-correlation functions of streamwise
. + 1120 e 4 (120
inter-scale turbulent transport Tu7$| 45 Vs detached-eddy dissipation —eus| 45 0 wall-
120 e 120

‘ 45 V- detached-eddy dissipation —€ and

vs 45
spanwise inter-scale turbulent transport Tﬂj’i‘go vs. detached-eddy dissipation —e iio
are also shown in figure 12(a, b, ¢) respectively (blue). Note that the signs of the small-
scale dissipation terms have also been flipped, representing an increase in magnitude of
the dissipation. In each case, the correlation functions are left-shifted, indicating that
the cascade of energy from large to small scales indeed results in increased small-scale

detached-eddy dissipation for each velocity component.

normal inter-scale turbulent transport Tv+$

However, it is the widths of the cross-correlation functions in figure 12 that are most
noteworthy. Although all of the plotted correlations are between terms in the small-
scale energy balance equations, the long characteristic timescales observed are more
reminiscent of those of the large-scale structures. In order to investigate this further,
the temporal auto-correlation functions of various terms related to the large- and small-
scale self-sustaining processes are plotted in figure 13. The auto-correlation functions
of large- and small-scale turbulent production qu(lfo and Pjs}és are shown in figure

13(a, d) (solid red lines), large- and small-scale streamwise dissipation €, ’(1)20 and 6;;‘35
are shown in figure 13(b, €) (solid blue lines), and large- and small-scale wall-normal and

spanwise dissipation € |(1)20 +ef, 320 and €, ‘35 +e), ‘35 are shown in figure 13(c, f) (solid
blue lines). It is immediately obvious that the characteristic timescales of production and
dissipation of the large-scale self-sustaining process (figure 13(a,b,c)) are considerably
longer than those of the small-scale self-sustaining process (figure 13(d, e, f)), consistent
with the results of §3 (figure 5). However, the small-scale energy-containing eddies are
concentrated close to the wall y™ < 45, while the analysis of the energy cascade in this
section has focused on the interval y* € [45,120]. For reference, the auto-correlation

functions of small-scale detached-eddy dissipation over the interval y* € [45,120] are
also plotted; the streamwise dissipation ej;suio in figure 13(e) (dotted blue line) and

the wall-normal and spanwise dissipation e;u?o + ef[,su?o in figure 13(f) (dotted blue
line). It turns out that the characteristic timescales of detached-eddy dissipation in figure
13(e, f) (dotted blue lines) actually match those of the large-scale self-sustaining process
in figure 13(b, ¢) (solid blue lines), which are considerably longer than those of the small-
scale self-sustaining process in figure 13(e, f) (solid blue lines). The small-scale detached
eddies in the interval y* € [45,120] inherit the dissipation timescales of the large-scale
self-sustaining process, consistent with the previous observation that the instantaneous
dissipation rate depends on the integral lengthscale and velocity-scale of the system
(Goto & Vassilicos 2015), i.e. non-equilibrium turbulent dissipation. These observations
would also explain the long timescales of small-scale wavy streaks and rolls in figure
5(d). As mentioned in §2.3, both the small-scale energy-containing eddies and detached
eddies would be included in the definition of uf in (2.6), especially over the interval
y* € [0,45]. The eddies associated with the energy cascade are mostly isotropic and
rounded rather than elongated in shape (Kolmogorov 1941). Therefore, the detached
eddies would contribute to the kinetic energy of small-scale wavy streaks E{E&S and wavy
rolls E;f, , and would thus be expected to inherit the timescales of the large-scale self-
sustaining process, as is the case over the interval y* € [45,120] (figure 13).
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5. Driving of small-scale turbulent production

The analysis of the energy cascade in §4 was based on the wall-normal interval y+ €
[45,120], across which the small-scale energy-containing eddies are largely absent (figure
3(b)). However, the transfer of energy from large to small scales extends much closer to the
wall, with negative inter-scale turbulent transport at large-scale and positive inter-scale
turbulent transport at small-scale across the wall-normal domain for the wall-normal
term in particular (figure 4(c, d)). The question as to whether this energy transfer affects
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FIGURE 16. Driving: (a) magnification of figure 15 for t* € [8320, 8520]; (b, c, d, e, f) isosurfaces
of Tt , = 0.18 (black), P}, = 0.88 (red) and uf = 2.3 (yellow) at t* = 8417, 8439, 8450, 8456

and 8467, respectively.

the small-scale energy-containing eddies is now investigated. Having established that the
cascade of energy from large to small scales results in increased small-scale dissipation
and pressure strain (figure 12), the only appropriate measure of its (possible) effect on
the small-scale energy-containing eddies in particular is turbulent production. For this

purpose, the wall-normal inter-scale turbulent transport term T;ri and the small-scale

turbulent production term P,f, are subsequently averaged over the interval y* € [0, 45]
in order to study their temporal dynamics. The temporal cross-correlation function of
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T:$|§5 vs. Pl }35 is shown in figure 14(a). The left-shifted peak indicates that small-scale
turbulent production indeed increases in response to wall-normal inter-scale turbulent
transport, confirming the existence of a new scale interaction process that energises the
small-scale energy-containing eddies. However, there is no observed increase in small-scale
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turbulent production in response to positive streamwise inter-scale turbulent transport,
even though P also depends on u}. Given its definition in (2.15), it is of interest to see

which of the components of T;r$ has the greatest effect on P;.. Therefore, Tv+1 is further
decomposed into the terms

TSy =—(wf (] Vo ))pr o+ and Ty = (v (W - Voi))gs o+ (5.1a,b)

S

which are also averaged over the interval y* € [0,45]. It turns out that only T:‘$ 4 Seems
to contribute to the increase in small-scale turbulent production and the cross-correlation
function of T' :i d|35 vs. P |g5 is shown in figure 14(b), which exhibits a larger left-shifted
peak. This may not be particularly surprising since one of the subcomponents of T;ri d
itself is directly proportional to the small-scale Reynolds stress —ufvf. Furthermore,

the time series of T:$ d|35 (solid black line) compared to the full wall-normal inter-scale

turbulent transport term T;ri ’35 (dash-dotted black line) is plotted in figure 14(c) and the

+

close overlap suggests that T:‘i , 1s also the dominant component of 7T 1 In this work, the

v
increase in small-scale production P, in response to the wall-normal turbulent transport

term T’ ji 4 Will be called the ‘driving’ of small-scale turbulent production and its dynamics
are discussed in this section. i
The time series of the wall-normal turbulent transport term 7' ji d‘ o (black) and small-

scale turbulent production 107! P, éS (red) are shown in figure 15. It is immediately
obvious that the two are well correlated, albeit with a time lag, as seen previously in
figure 14(b). As mentioned in §4, wall-normal inter-scale turbulent transport is a sink
in the large-scale energy balance (figure 4(c)), hence vai d|35 should be related to the
wall-normal energy source, i.e. pressure strain. The time series of the large-scale wall-
normal pressure strain term IT ;Ll }(1)20 (green) is also plotted in figure 15 and its fluctuation

appears to stimulate that of Tii d’?f), as in the case of the energy cascade across the
interval y* € [45,120] (figure 11).

In order to study the process in more detail, a driving event is identified in the time
series in figure 15 (grey box) and snapshots of the velocity field during this event are
shown in figure 16. The magnification of figure 15 for ¢ € [8320,8520] is shown in figure
16(a). A peak in large-scale wall-normal pressure strain (green) appears to result in a large
increase in wall-normal inter-scale turbulent transport (black) and a subsequent increase
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in small-scale turbulent production (red). Figure 16(b — f) are snapshots of the velocity
field at times T = 8417, 8439, 8450, 8456 and 8467 respectively, indicated by the dots in

(a). The isosurfaces of small-scale wall-normal turbulent transport T, Ut 4 = 0.18 are shown

in black, small-scale turbulent production P;;’D = (.88 in red and small-scale streamwise
velocity ul = 2.3 in yellow. Note that the wall-normal range is y* € [0,45]. Before
the driving event, at t+ = 8417 (figure 16(b)), the velocity field features weak small-
scale streamwise velocity fluctuations and very small production isosurfaces. Though it is
largely absent in figure 16(b), there is a substantial increase in turbulent transport by t+ =
8439 (figure 16(c)), fuelled by the large-scale wall-normal pressure strain. The turbulent
transport isosurfaces are localised in both the streamwise and spanwise directions and
this behaviour persists for the duration of the driving event. The turbulent transport
reaches its maximum at t* = 8450 (figure 16(d)) and by this time, there has been
a noticeable increase in small-scale production. In particular, the turbulent transport
isosurfaces precede the growth of the production isosurfaces, which drive the growth of
the small-scale streamwise velocity fluctuations alongside them. At the later time tT =
8456 (figure 16(e)), there has been a further increase in production and the streamwise
velocity fluctuations have increased substantially in size, and by ¢+ = 8467 (figure 16(f)),
the production has reached its peak. At the end of the driving event, the small-scale
streamwise velocity fluctuations have been reinvigorated, although they appear to be
more localised in space rather than elongated in the streamwise direction.

In contrast with the streamwise turbulent kinetic energy cascade event observed in
figure 10, in which turbulent transport from large to small scales occurs all along the
low-speed streak, the driving event in figure 16 is highly localised. The isosurfaces of
wall-normal turbulent transport only form around the spanwise centreline at 2z = 110,
although they appear to stretch in the streamwise direction as time progresses. The
turbulent production isosurfaces form beneath the turbulent transport isosurfaces, which
are subsequently encircled by the streamwise velocity fluctuations. To investigate the
spatio-temporal dynamics of the driving process in more detail, the isocontours of small-
scale wall-normal turbulent transport Tvi 4 = 0.21 (black), small-scale wall-normal
velocity v} < —1.20 (cyan) and small-scale turbulent production P:'Sﬂ > 1.10 (red)
at the spanwise centreline 2™ = 110 during the driving event are plotted in figure 17(a),
corresponding to figure 16(c—e). It is apparent that the isocontours of turbulent transport
and the resulting isocontours of wall-normal velocity tilt in the downstream direction at
later times, likely due to the effect of the mean shear. Furthermore, the corresponding
production isocontours are largest at time ¢+ = 8439, when the turbulent transport and
wall-normal velocity isocontours are upright, but they begin to decay at later times t* =
8450 and 8456 as the inclination angle of the wall-normal velocity isocontours decreases.
This is remarkably similar to the Orr mechanism of transient growth (Orr 1907) i.e. the
transient amplification of energy caused by the sign of the Reynolds shear stress changing
from negative to positive during the downstream tilting of a given flow structure by the
mean shear, the role of which in wall-bounded turbulence has been highlighted recently
(Encinar & Jiménez 2020). In this case, it appears that there is amplification of the
streamwise velocity component by wall-normal turbulent transport from large to small
scales, as opposed to the amplification of the wall-normal velocity component, since it
has also been theorised that the Orr mechanism is responsible for the regeneration of
streamwise vortices in the self-sustaining process (Jiménez 2013, 2015).

However, the Orr mechanism leads to transient not indefinite growth and the turbulent
production isocontours in figure 17(a) decay again. Therefore, the precise effect of the
driving process on the small-scale energy-containing eddies must now be investigated. The
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temporal dynamics of isolated energy-containing eddies at a single integral lengthscale
are governed by the self-sustaining process (Hamilton et al. 1995; Hwang & Bengana
2016), which has also been observed at both large and small scales in the present two-
scale interaction system (figure 5). In particular, the structural elements of the small-
scale SSP are described by the kinetic energy terms in (3.2). However, the localised
wall-normal and streamwise velocity fluctuations generated during the driving event in
figure 16 would also contribute to the kinetic energy of small-scale wavy rolls Ef,
and wavy streaks E;'__ respectively, and so care is needed in their interpretation. The

ws,s

temporal cross-correlation functions of the wall-normal turbulent transport term T;ri 4 |§5

vs. EY . (pink) and qu:id|35 vs. B, . (purple) are shown in figure 17(b). The left-shifted

wr,s ws,s

peaks indicate that wall-normal turbulent transport from large to small scales is largely
in the form of localised wall-normal velocity fluctuations and the time lag suggests that
these subsequently generate localised streamwise velocity fluctuations through small-scale
turbulent production, consistent with the notion of the Orr mechanism. It is unclear
as to whether these highly localised wall-normal and streamwise velocity fluctuations
are related to the wavy rolls and wavy streaks of the small-scale self-sustaining process,
especially given that the order of appearance is reversed. The effect of the driving process
on the small-scale SSP would therefore be better measured by the response of the kinetic

energy of small-scale straight rolls Est,,s and straight streaks Ejs,s' The temporal cross-
+

id‘?JS vs. Ef . (brown) and TJrid|35 vs. B, . (orange) are

sr,s v, 58,8

correlation functions of Ty
shown in figure 17(c). There is a considerable increase in the kinetic energy of straight
rolls in response to wall-normal turbulent transport from large to small scales (brown)
and the peak of the correlation function is more left-shifted than that of the localised wall-
normal velocity fluctuations in figure 17(b) (pink), indicating that these wavy rolls can
indeed energise the straight rolls as per the usual progression of the small-scale SSP. The
response of the kinetic energy of small-scale straight streaks in figure 17(c) is more modest
(orange), which suggests that the localisation of the driving process hinders its ability to
generate these elongated structures. Nevertheless, the corresponding correlation function
is non-negligible and so the driving process does seem to have the ability to energise the
small-scale self-sustaining process somewhat.

However, much of the small-scale turbulent production generated during the driving
process appears to lead to the formation of localised streamwise velocity fluctuations
(figure 16, 17(b)), which may not be related to the small-scale self-sustaining process.
These observations suggest that the dynamics of the small-scale structures are governed
by the co-existence of the small-scale SSP, as seen in figure 5(b), and the transient
amplification of localised small-scale streamwise velocity fluctuations due to wall-normal
turbulent transport from large to small scales and the Orr mechanism. This driving
process would also explain why small-scale turbulent production is not as strongly
correlated with the kinetic energy of small-scale straight streaks in figure 7(b). In the
absence of any scale interaction, it is reasonable to expect that small-scale production
would fluctuate almost exactly in line with the small-scale SSP, as seen with large-scale
production and the large-scale SSP in figure 7(a). However, it has now been shown that
small-scale production is subject to the transient amplification described above and would
therefore be affected by the competing influences of the two dynamical processes.

Having observed the event in figure 16, the timing of the driving process must now be
investigated. As seen in the time series in figure 15, the wall-normal turbulent transport

45 . .
term T+i d’() appears to increase in response to the large-scale wall-normal pressure

U!

strain term IT, 3} |(1JQO, which itself fluctuates in line with the streak instability stage of the
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large-scale self-sustaining process (figure 7(c)). Furthermore, it has been shown that the
timing of the wall-normal energy cascade across the interval y* € [45, 120] coincides with

the breakdown of large-scale streaks (figure 11(b)). To determine whether this holds true

for the driving process, the temporal cross-correlation function of HJ} | 320 vs. Tji d|§5 is
plotted in figure 18(a) and its left-shifted peak indicates that this is indeed the case.

The cross-correlation functions of the kinetic energy of large-scale wavy streaks E;Esl

vs. small-scale turbulent production P |35 (purple) and the kinetic energy of large-scale

wavy rolls EL)Z VS. Pjs|§5 (pink) are shown in figure 18(b). Again, the left-shifted peaks
indicate that small-scale production increases during the late stages of large-scale streak
breakdown, albeit with a slightly longer time lag. Therefore, the timing of the driving
process is clearly determined by the large-scale SSP, which occurs over much longer
timescales (figure 5(c)). This is consistent with the fact that the wall-normal turbulent
transport term T;k , is directly proportional to Vo;" in (5.1), which is of course related to
the large-scale wavy rolls. Although it has been well documented that energy-containing
eddies at various integral lengthscales exhibit self-sustaining processes independent of
those at other scales (Hamilton et al. 1995; Hwang & Cossu 20100, 2011; Hwang 2015;
Hwang & Bengana 2016), the timing of the driving process (figure 18) and its energising
effects (figure 17(c)) clearly demonstrate that the large-scale SSP affects the small-scale
SSP, raising questions about their independence.

Finally, given this wall-normal turbulent transport from large to small scales and
the resulting amplification of small-scale turbulent production by the Orr mechanism,
it is of interest to see how this affects the small-scale energy balance. The temporal
cross-correlation function of wall-normal turbulent transport T:i 4 |§5 vs. small-scale wall-
normal dissipation —ejs‘gs in figure 19(a) is left-shifted with a very short time lag, indi-
cating that the magnitude of small-scale wall-normal dissipation increases immediately
in response to the transfer of energy from the large scale. The cross-correlation function

of T:i d|35 vs. small-scale streamwise dissipation fejs|g5 (blue) in figure 19(b) is even
more left-shifted, since there is a time lag between the wall-normal turbulent transport
and the resulting small-scale production in figure 14, which then enhances the streamwise
P . . . + 145 .
dissipation. The cross-correlation functions of T 1d | o Vs.small-scale streamwise pressure
L4

45 45
in _IT+ + i e
strain Hus}o (green) and T, d’ o Vs. small-scale spanwise dissipation —e|,

are

shown in figure 19(b, ¢) respectively. Both correlations show left-shifted peaks, indicating
that there is a subsequent redistribution of energy from the streamwise component
ul to the spanwise component w7 and an increase in the magnitude of small-scale
spanwise dissipation. Each of the correlation functions in figure 19 exhibit very short
time lags, indicating that there is a rapid increase in the magnitude of dissipation for
each small-scale velocity component in response to the driving process. This is in contrast
to the small-scale self-sustaining process, in which there is a noticeable time lag between
production and dissipation, as can be deduced from figures 5(b) and 7(b). Therefore, the
correlation functions in figure 19 are more likely a measure of the response to the transient
amplification of localised small-scale velocity structures as seen in figure 17(b), consistent
with the fact that the dissipation terms are proportional to the velocity gradients (see
Appendix B).
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6. Feeding from small to large scales

The second scale interaction process identified in the statistical analysis of the two-scale
energetics in §2.3 is the feeding of energy from small to large scales (figure 4), resulting
in the formation of the wall-reaching part of the large-scale energy-containing eddies (see
also figure 28(c, e) in Appendix A). These large-scale structures that reach the near-wall
region will be called the ‘inactive motion’, since they do not carry any Reynolds stress due
to the boundary condition at the wall (Townsend 1980; Cho et al. 2018). The feeding
process manifests as peaks of positive streamwise and spanwise inter-scale turbulent
transport at large scale (figure 4(a,e)) and negative streamwise and spanwise inter-
scale turbulent transport at small scale (figure 4(b, f)) below y* ~ 25. The streamwise
and spanwise inter-scale turbulent transport terms —TJi and —T:}:i are subsequently
averaged over the intervals y € [5,25] and y* € [0,25] respectively in order to study
the temporal dynamics of the feeding process, and the resulting large-scale structures are
measured through the kinetic energy of wavy streamwise and spanwise inactive motion

20 20
e = gl — (oo and B = 2 (0w = (w)as) Ve o]
(6.1a,b)
respectively. Note that the kinetic energy of straight streamwise and spanwise inactive
motion is not considered here, the precise reasons for which are discussed below. Descrip-
tions of the observables associated with the feeding process are provided in table 5 in
Appendix C.

The 2t5ime series of the streamwise and spanwise inter-scale turbulent transport terms

Tt

u, 15

and —T;“i|(2)5 (black) are shown in figure 20(a,b) respectively. In order to
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FIGURE 21. Streamwise feeding: (a) magnification of figure 20(a) for t* € [6440,6540];
(b,c,d, e, f) isosurfaces of uy = +2.5 (orange), Tij;,f = 0.45 (black) and u;" = +3.05 (pink/cyan)
at tT = 6470, 6486, 6503, 6508 and 6519, respectively.

highlight the transfer of energy between scales, the time series of the kinetic energy of
small-scale wavy streaks E;“,M (orange) is also plotted, along with the kinetic energy
of wavy (a) streamwise and (b) spanwise inactive motion E , and Ef . (pink),
respectively. In both figure 20(a) and (b), the three time series are correlated - there is
an increase in inter-scale turbulent transport in response to the small-scale wavy streaks,

which results in an increase in wavy inactive motion at large scale for both velocity
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components. Both the streamwise and spanwise feeding processes appear to fluctuate in
response to the small-scale wavy streaks, which requires further investigation.

In order to study the spatio-temporal dynamics of the feeding process, an intense
streamwise feeding event is identified in the time series in figure 20(a) (grey box) and
snapshots of the velocity field during this event are shown in figure 21. The magnification
of figure 20(a) for t* € [6440, 6540] is shown in figure 21(a). A peak in the kinetic energy
of small-scale wavy streaks (orange) appears to result in a large increase in streamwise
inter-scale turbulent transport (black) and a subsequent increase in the kinetic energy of
wavy streamwise inactive motion at large scale (pink). Figure 21(b — f) are snapshots of
the velocity field at times t+ = 6470, 6486, 6503, 6508 and 6519 respectively, indicated
by the dots in (a). The isosurfaces of small-scale streaks u} = +2.5 are shown in orange,
large-scale streamwise turbulent transport T;?’ F= 0.45 in black and high- and low-speed

large-scale streaks ulJr = +3.05 in pink and cyan respectively. Note that the wall-normal
range is y* € [0, 30]. Before the feeding event, at t* = 6470 (figure 21(b)), the near-
wall velocity field is dominated by the small-scale streaks, while turbulent transport and
the large-scale streaks are largely absent. There is a substantial increase in turbulent
transport by tT = 6486 (figure 21(c)), the isosurfaces of which form alongside the small-
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640

FIGURE 23. The streamwise velocity field and streamwise turbulent transport at y™ ~ §8;
positive/negative isocontours of u * (red/blue) and positive isocontours of TJL s (black) during
three streamwise feeding events.

scale streaks. These turbulent transport isosurfaces precede the growth of the large-
scale streaks, which have increased in size considerably by ¢t* = 6503 (figure 21(d)).
In particular, the turbulent transport seems to contribute more to the growth of the
high-speed large-scale streaks, since the corresponding black and pink isosurfaces are
well aligned. At later times t* = 6508, 6519 (figure 21(e, f)), the small-scale streaks and
turbulent transport isosurfaces begin to decay again, while the large-scale streaks increase
further in size. At the end of the streamwise feeding event, the near-wall velocity field is
dominated by strong large-scale streaks.

During the feeding event in figure 21, it was observed that the isosurfaces of large-
scale streamwise turbulent transport form alongside the small-scale streaks. Furthermore,
in the time series in figure 20, both the streamwise and spanwise inter-scale turbulent

25 25 . . .
5 and _TJ¢| , appear to increase in response to the kinetic

energy of small-scale wavy streaks Evjs)s in particular. This suggests that the feeding

processes fluctuate in line with the small-scale self-sustaining process but the precise
timing must now be investigated. The temporal cross-correlation function of small-scale

transport terms —Tji

turbulent production P, ‘35 vs. streamwise inter-scale turbulent transport —7 Ii‘? (red)
is shown in figure 22(a) and its left-shifted peak indicates that the streamwise feeding
process is driven by the small-scale turbulent production mechanisms. In particular, it
will be shown that the timescale of the streamwise inter-scale turbulent transport term
—TJ’$|§5 is quite short (figure 26(a)) compared to the characteristic timescale of the
driving process (figure 14(b)), indicating that streamwise feeding fluctuates in line with
the small-scale SSP rather than the Orr mechanism driven by the large scale. The left-
shifted cross-correlation function of small-scale wavy streaks E__ vs. streamwise inter-

ws,s
scale turbulent transport _TJ$|§Q (purple) further indicates that streamwise feeding is
most active during the streak instability stage of the small-scale SSP. The same can
be said for the spanwise feeding process, since spanwise inter-scale turbulent transport
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FIGURE 24. Proper orthogonal decomposition of the streamwise velocity field and streamwise
turbulent transport at y= ~ 8; rank-8 approximations to the two-point correlation structures of

(a,b) uf and T, ¢, and (¢,d) u and Tul*f

_T+$ }0 increases in response to small-scale wavy streaks E,f_ , and small-scale spanwise

pressure strain II |0 (which itself fluctuates in line with the breakdown of small-scale
streaks in figure 7(d)), as seen in the purple and green cross-correlations in figure 22(b)
respectively. This turbulent transport from small to large scales results in an increase in
the kinetic energy of wavy streamwise and spanwise inactive motion E] + , and Ejgw i
seen in the cross-correlation functions in figure 22(c, d) respectively. As observed in the
feeding event in figure 21, the isosurfaces of large-scale turbulent transport are highly

localised (see also figure 23) and would thus contribute to the growth of wavy rather
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and (c) IT}, ;20 (solid green line) and IT, j
than straight inactive motion. Therefore, the timing of both the streamwise and spanwise
feeding processes is determined by the small-scale self-sustaining process, in particular
the streak instability stage, and this results in the formation of wavy streamwise and
spanwise inactive motion at large scale.

Having established that the feeding process is related to the instability of small-scale
streaks (figure 22), it is of interest to study the velocity field structure in more detail.

Here, the focus is on the streamwise feeding process, since the streamwise inter-scale
turbulent transport term —TJ$ has greater magnitude than its spanwise equivalent in

)

figure 4(a,e) and would thus have more of an effect on the large-scale energy balance.
In order to identify some of the characteristics of streamwise feeding, the streamwise
velocity field o't and large-scale streamwise turbulent transport Tﬁ 5 at yt ~ 8 are
sampled during three feeding events, plotted in figure 23. At yT ~ 8, the streamwise
inter-scale turbulent transport term is positive at large scale (and negative at small-
scale) in figure 4(a), indicating that energy is transferred from small to large scales
on average, and so this is the target wall-normal height of the following analysis since
it is very close to the peak. The isocontours of the high-speed streaks are shown in
red, low-speed streaks in blue and positive large-scale streamwise turbulent transport in
black. It seems that the isocontours of turbulent transport are more correlated with the
high-speed streaks, while the low-speed streaks appear out-of-phase with each other in
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a symmetric manner during these feeding events. Furthermore, the localisation of the
streamwise feeding process is particularly apparent in figure 23, with numerous disjoint
isocontours of turbulent transport.

However, the snapshots in figure 23 are quite noisy, hence an alternative approach
is required to better reveal the velocity field structure. For this purpose, the near-wall
flowfield is analysed through proper orthogonal decomposition (POD) (Berkooz et al.
1993). The small-scale streamwise velocity field u}, large-scale streamwise velocity field
uf and large-scale streamwise turbulent transport Tﬁ j are sampled over a time period
of TT =~ 50,000, resulting in the collection of 9999 samples with temporal resolution
AtT = 5. At each sampling time, the data vectors

X = [uj,T/"_ 7 and x = [u?‘,T:If]T (6.2a,b)

ul, f

are constructed, where T' ;j F= le F (TJ f>x+, -+ 1s the large-scale streamwise turbulent

transport fluctuation and (-)7 denotes the transpose. The data vectors are then used to
form the two-point correlation tensors

Ry(Azxt, Azt) = (xg(at + Axt, 2t 4+ Aet)xT(xF, 21)) 1 Ly, (6.3a)
Ri(Axt, Az") = (xi(at + Azt 2t + Azt)x{ (at,27)) o 4, (6.3b)

the eigenvectors of which are the POD modes (as functions of Az and AzT). Due to the
periodic boundary conditions in the streamwise and spanwise directions, each POD mode
should be a plane Fourier mode. Therefore, the presentation of individual POD modes is
not very informative. Instead, ordering the normalised POD modes ¢; and 1; according
to the magnitudes of the corresponding eigenvalues, and multiplying the corresponding
POD modes and coefficients a; and b; (which incorporate the time dependence and the
square root of the eigenvalues) allows for the low-dimensional approximation to the small-
and large-scale streamwise velocity fields associated with the streamwise feeding process.
In particular, the rank-n truncations of each,

X~ Y _ajp; and x;~ Y by, (6.4a,b)
j=1 j=1

are used to approximate the the two-point correlation tensors R, and R;. The rank-
8 approximations to the small-scale streamwise velocity field u and the large-scale
streamwise turbulent transport fluctuation T;lff correlation structures at y* ~ 8 are
shown in figure 24(a) and (b) respectively. It has been found that the inclusion of higher-
order POD modes does not change figure 24 qualitatively. The small-scale streamwise
velocity field correlation structure is very similar to the subharmonic sinuous streak
instability mode (Schoppa & Hussain 2002), in which the low-speed streaks bend away
from the zT-symmetric high-speed streak. The corresponding approximation to the large-
scale streamwise turbulent transport fluctuation correlation structure shows that the
peaks in energy transfer from small to large scales correlate with the high-speed small-
scale streaks in figure 24(a), as observed in the snapshots in figure 23. It must be pointed
out that the large-scale streamwise turbulent transport term T;?’ s is comprised of the

fluctuating component (T;?'f) and the positive mean component ((TIZ f>$+,z+), which
does not alter the flow structures visualised in figure 24 because its contribution is
uniform in the z7-zT plane. Indeed, it can easily be shown that applying the POD
analysis to the total flow variables (including the mean and fluctuating components)
does not change the flow features of the leading POD modes in figure 24, because
both the Reynolds decomposition and POD are based on a ‘linear’ superposition. By its
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mathematical definition (Schoppa & Hussain 2002), the subharmonic instability of the
small-scale streaks would generate large-scale structures and the POD analysis suggests
that the subharmonic sinuous mode is the mechanism behind the streamwise feeding
process. The rank-8 approximations to the large-scale streamwise velocity field ulJr and
the large-scale streamwise turbulent transport fluctuation T;j:f correlation structures at
yT ~ 8 are shown in figure 24(c) and (d) respectively. The large-scale streamwise velocity
field correlation structure is very similar to the fundamental varicose streak instability
mode, in which both the high- and low-speed streaks are zT-symmetric (Schoppa &
Hussain 2002). The corresponding approximation to the large-scale streamwise turbulent
transport fluctuation correlation structure shows that streamwise feeding appears to
favour the formation of high-speed streamwise inactive motion at large scale, since the
positive isocontours in figure 24(c) and (d) are again correlated. This has also been
observed in the streamwise feeding event in figure 21. Lastly, it must be pointed out
that the POD analysis is applied to the correlation structure of the fluctuations of TJ f

(T, ;j'f) and so the structure identified is not necessarily directly related to the mean
energy transfer from small to large scales. However, at the sampling wall-normal height
of the analysis (y™ a 8), the mean streamwise inter-scale turbulent transport —Tj’i is
positive at large scale (figure 4(a)), indicating that the transfer of energy from small to
large scales is indeed dominant at this location. The POD analysis then identifies the
most prominent spatial correlation structures at the sampling wall-normal height and so
care must be taken in interpreting these results.

As an aside, it has recently been suggested by Lee & Moser (2019) that the energy
transfer from small to large scales near the wall may not actually be a scale interaction
process and could instead be the manifestation of a transfer in orientation, in particu-
lar between streamwise-elongated modes and spanwise-elongated modes i.e. large-scale
structures. However, the appearance of the subharmonic sinuous instability mode of the
small-scale streaks in the POD analysis (figure 24(a)) suggests an alternative mechanism
for the energy transfer from small to large scales and crucially, one that is consistent
with its previous interpretation as a scale interaction process (Cho et al. 2018). While
this ‘scale transfer in orientation’ phenomenon is indeed possible, more so in extended
flow domains, these findings suggest that the feeding from small to large scales in the
present highly-confined flow domain is related to the subharmonic sinuous instability
mechanism. Furthermore, it is worth mentioning that the interpretation of Lee & Moser
(2019) is based on the visualisation of the turbulent transport spectra, which may have
missed some non-local non-linear interactions that can be captured by analysing the
full non-linear triadic interactions. Indeed, the analysis of Cho et al. (2018) is based on
the visualisation of these triadic interactions, although it focuses on the energy transfer
between spanwise Fourier modes.

Given this regular transfer of energy from small to large scales, its effect on the large-
scale energy balance must now be investigated. The temporal cross-correlation function
of streamwise inter-scale turbulent transport _Tj,i ’;5 vs. large-scale streamwise pressure
strain —Hmio is shown in figure 25(a). Note that the sign of the streamwise pressure
strain term has been flipped. The left-shifted peak indicates that the streamwise TKE
transferred from small to large scales is redistributed to the wall-normal and spanwise
components vl"’ and wl+ There is a corresponding increase in the magnitude of large-scale
wall-normal and spanwise dissipation but it is very modest, as seen in the cross-correlation
function of fT::ﬂis vs. fe:'lﬁo - eIlﬁU in figure 25(b). The cross-correlation function

. 25 . .
of spanwise inter-scale turbulent transport —T;“$| o Vs. large-scale spanwise dissipation
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—et |i0 is shown in figure 25(c) and its left-shifted peak indicates that the spanwise TKE
transferred from small to large scales is dissipated at the large scale.
There is no observed increase in large-scale turbulent production in response to the

. . . 25 20 25
feeding processes — the cross-correlation functions of _T:$’5 VS. PJ; ’7 and _T&%’o vS.

P;l |i0 are not positive. It is expected that the spanwise feeding process would have little
effect, since the large-scale production term PJE is independent of wl+ However, there is no
observed increase in large-scale production in response to the streamwise feeding process
either, even though the peaks of —TUE and P;l have similar magnitude in figures 4(a) and
3(a) respectively. In the case of the driving process in §5, it has been demonstrated that
small-scale turbulent production increases in response to wall-normal turbulent transport
from large to small scales in figure 14 but there is also no observed response to streamwise
turbulent transport. This suggests that turbulent production is particularly sensitive to
the wall-normal velocity component and the transfer of wall-normal TKE between scales.
Crucially, no wall-normal feeding is observed in figure 4(c) and the wall-normal inter-
scale turbulent transport term only shows evidence of the cascade of energy from large to
small scales. Consequently, the streamwise and spanwise feeding processes only appear to
result in increased large-scale pressure strain and dissipation with little effect on turbulent
production, as has been theorised by Cho et al. (2018). It should be mentioned that these
observations do not necessarily preclude any possible role of the feeding processes in
turbulent production and the associated skin-friction generation: for example, it might
be possible that the large-scale structures generated during feeding events modulate
large-scale turbulent production. Therefore, these findings must be interpreted carefully.

Finally, each of the cross-correlation functions in figure 25 are quite narrow, indicating
that the effects of the streamwise and spanwise feeding processes on the large-scale energy
balance are short-lived. Furthermore, the feeding event in figure 21 also occurs over a very
short time interval, indicating that streamwise feeding is a fast and impulsive event. The
temporal auto-correlation functions of the streamwise and spanwise inter-scale turbulent
transport terms —Tii|§5 and _T$,$|§5 are shown in figure 26(a) and (b) respectively,
which confirm that the streamwise and spanwise feeding process are indeed fast. The auto-
correlation function of the resulting large-scale streamwise pressure strain I1 ;‘l |§0 (dotted
green line) is shown in figure 26(c), which has a much shorter characteristic timescale
than the streamwise pressure strain associated with the large-scale self-sustaining process
H:“l|(1)20 (solid green line).

7. Conclusions

In this work, the temporal dynamics of a turbulent flow with two integral lengthscales
of motion are investigated, with a focus on scale interaction. The flow considered is that
of the shear stress-driven model of independent near-wall turbulence as Re, — 0o, which
has been introduced recently (Doohan et al. 2019). This model is formulated in inner
units and governed by the unit-Reynolds number Navier-Stokes equations, which are valid
throughout the mesolayer. The domain size is fixed at (L} = 640, L7 = 180, L} = 220)
and due to the periodic boundary conditions in the streamwise and spanwise directions,
only energy-containing eddies with spanwise lengthscales A\J ~ 220 and A} ~ 110 are
resolved. The velocity field is decomposed into large- and small-scale components to
represent the energy-containing eddies at each integral lengthscale, and the momentum
and energy balance equations at each scale are derived. The statistics and dynamics
of the terms in the energy balance equations are analysed, with a particular emphasis
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FIGURE 27. Schematic diagram of the two-scale system.

on inter-scale turbulent transport, and the corresponding scale interaction processes are
related to the self-sustaining processes at each scale. A schematic diagram of the two-scale
system is shown in figure 27 and the main findings are summarised as follows:

(i) The dynamics of the energy cascade over the interval y* € [45,120] are entirely de-
termined by the large-scale SSP. In particular, the timing of streamwise, wall-normal and
spanwise inter-scale turbulent transport coincides with the large-scale streak breakdown
stage, leading to same-component energy transfer from large to small scales. Crucially,
the resulting small-scale dissipation inherits the characteristic timescales of that of the
large-scale SSP, indicative of non-equilibrium turbulent dissipation dynamics (Goto &
Vassilicos 2015).

(ii) A new scale interaction process is identified, namely that wall-normal turbulent
transport from large to small scales over the interval y* € [0, 45| drives small-scale tur-
bulent production via the Orr mechanism. The main consequence of the driving process
appears to be the transient amplification of localised small-scale velocity structures and
their subsequent dissipation, however it also has an energising effect on the small-scale
SSP. This wall-normal energy transfer is most active during the streak breakdown stage
of the large-scale SSP, as in the case of the energy cascade. Therefore, the dynamics
of the small-scale structures are a complicated entanglement of the small-scale SSP,
the dissipation of detached eddies associated with the energy cascade and the transient
amplification of localised small-scale velocity structures via the Orr mechanism.

(iii) The feeding of energy from small to large scales over the interval y* € [0,25] is
impelled by the small-scale SSP, and the timing of both the streamwise and spanwise
feeding processes coincides with the small-scale streak instability stage. The POD analysis
at yT ~ 8 suggests that streamwise feeding is related to the subharmonic sinuous streak
instability mode and that it leads to the formation of the wall-reaching part of high-
speed large-scale streaks in particular. The feeding processes result in increased large-
scale pressure strain and dissipation, however there is no observed increase in large-scale
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turbulent production. This suggests that while the large-scale SSP has an energising
effect on the small-scale SSP through the driving process, there is no evidence of the
latter affecting the former.

To our knowledge, this is the first exhaustive analysis of the temporal dynamics of
the interactions between structures of all possible scales, at least in the given flow
configuration. However, there are a number of limitations to the present study. The flow
domain in question is only twice the size of the minimal unit in each direction and thus
it only resolves energy-containing eddies at two integral lengthscales, i.e. the minimal
unit of multi-scale turbulence. Once the spanwise domain width exceeds L} ~ 300,
energy-containing eddies at three integral lengthscales (A} ~ 100, 150,300) would be
present, again due to the periodic boundary condition in the spanwise direction. As the
inner-scaled domain size increases further, which is equivalent to increasing the Reynolds
number, then the flow would encompass a hierarchy of scales — many more than two. In
such a flow domain, the structures at every level in the hierarchy would interact with
one another and the study of the corresponding scale interaction processes would become
much more complicated. It is unclear as to how/whether the dynamical description of
two-scale near-wall turbulence extends to flows with deeper hierarchies/higher Reynolds
numbers, since the increased number of scale interactions would alter the turbulent
dynamics. In such analyses, different flow decompositions may also have to be considered.
For example, one of the scale interaction processes identified in Cho et al. (2018) was
the involvement of large energy-containing eddies in the cascade of energy from small
energy-containing eddies to the adjacent smaller lengthscale, and studying the temporal
dynamics of this process would require a triple decomposition of the velocity field.
Consequently, there are many open questions in the study of the temporal dynamics
of multi-scale turbulence and this work is only one of the first steps in the endeavour.
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Appendix A. Spectral energy balance

The spectral energetics of minimal multi-scale near-wall turbulence are discussed in this
section, in order to identify the energy-containing eddies at each scale, the characteristics
of turbulent dissipation and the scale-interaction processes active in the near-wall region.
Following the approach of Cho et al. (2018), the energy balance equations of each
spanwise Fourier mode are considered, since this best characterises the size of the energy-
containing eddies (Hwang 2015). Introducing the index notation xj =zt y", 2T and
u;-Jr = ul+, v/+, w' T for 7 =1,2,3, the fluctuating velocity components are decomposed
into Fourier modes

’ e ikt 2t
uj+(x+, yt, 2T 1) = Z uj+(x+,y+, kF tT)el(nkzoz") (A1)
[n|<nz

where - denotes the Fourier coefficients, kjo is the fundamental spanwise wavenumber,

k} = nk], is the spanwise wavenumber and n, is the number of harmonics in the

spanwise direction. Then, taking the Fourier transform of (2.3), multiplying by the
—%

complex conjugate uj+ , and averaging in the streamwise direction and in time yields
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FIGURE 28. Premultiplied one-dimensional spanwise wavelength spectra of (a) turbulent
production Pt (b) streamwise pressure strain I}, (c) streamwise turbulent transport 7T/,
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dissipation €*.

the component-wise spectral energy balance equations

T — e
<8ET(+M> B <Re {—u’+ (Ko (kF )%D . -

Pyt k)




Minimal multi-scale dynamics of near-wall turbulence 45

+ <Re { P (kS )7(9“/;;]‘6;) }>

T (y+ b7

+<Re{517@»aixw+¢+@i»}>

J

T (y+ )

52 <1 — O+ (k) 8d+ (k)
+ (53 5wtk >> +< ;
<8y+2 2 o+ ox oy /.
Thu(yt k) & (yt k)
OEF (k) — out (k)
_— = '+ =\
< T >w+ Req p't(k3) 5+ (A 2b)
xt+

¥ (y+ k)

+ <Re {ayi (=P )0 () }>m+

T (yt+ k1)

+G@{waméiwﬂﬁ%%*>

T (yt+ k1)
52 (1 — P BuF(kF) v+ (kF)
" L) )> +< ,
<ay+2 2 o+ N
Tho (vt k1) e (ytokd)
OEL (k) — ——
w z _ /+ —+ .7 4+ 4 =+
<at+ > ) <Re {p (k) (ikd ™ () }>I+ (A2¢)
Il (y+ k)

+ <Re {—ﬁ*(kj)ai(w'+u;+(k?))}>

T (vt k)
L2 (L
yt? \ 2

w' (k)

2 ow+ (k) dw'+ (k¥)
AN Azt ozt ’
o+ J J o+

Thw(yt.kT) & (vt k)




46 P. Doohan, A. P. Willis and Y. Hwang

where Ef = |u'*|?/2, Ef = [v'+]?/2 and Ef = |w'*|?/2 are the streamwise, wall-
normal and spanwise turbulent kinetic energy components, and Re{ - } denotes the real
part. Here, only the dependence on the spanwise wavenumber k7 is written explicitly. The
terms on the right-hand side are the turbulent production 15+, streamwise, wall-normal
and spanwise pressure strain II,7, II," and I}, pressure transport 77, streamwise, wall-

normal and spanwise turbulent transport T+, T+ and T+ streamwise, wall-normal and

u v

spanwise viscous transport Tj w Tj » and Tj >, and streamwise, wall-normal and spanwise

dissipation €, € and €}. Note that the system of equations (A 2) is equivalent to the
system of equations (34) in Cho et al. (2018). The terms on the left-hand side represent
the rate of change of the TKE of each spanwise Fourier mode, which vanishes in a
statistically steady flow, hence the terms on the right-hand side must balance each other.
The one-dimensional co-spectra of the terms on the right-hand side of the spectral energy
balance equations (A 2) were computed over a time period of T+ > 300,000, a selection
of which are shown in figure 28. The spectra are only discussed briefly, since the spectral
energy balance equation has been analysed in detail in a number of previous studies (e.g.

Mizuno 2016; Cho et al. 2018; Lee & Moser 2019).

The premultiplied spanwise wavenumber spectra of turbulent production P+7 as a
function of the wall-normal height y™ and the spanwise wavelength A\, is shown in figure
28(a). At the larger integral lengthscale \J ~ 220, production is more uniform across
the wall-normal domain. However, it has a much more pronounced near-wall peak at
yT & 12 at the smaller integral lengthscale A] = 110 and is concentrated in the interval
yt < 45. Figure 28(b) is the streamwise pressure strain spectra I ., which shows negative
values across all spanwise wavelengths. The pressure strain terms, which are linked by
the continuity equation in the form IT + II.F + II} = 0, re-distribute the streamwise
TKE to the wall-normal and spanwise components (Mizuno 2016; Cho et al. 2018; Lee &
Moser 2019), and the wall-normal and spanwise pressure strain spectra exhibit positive
values of similar magnitude (not shown here).

While the two aforementioned spectra match in shape, they do not match in magnitude,
especially at the near-wall peak in production. This balance is provided by the streamwise
turbulent transport spectra Tj , which is shown in figure 28(c), and it shows both positive
(red) and negative (blue) values, representing regions of energy gain and energy loss. The
negative region of turbulent transport corresponds to the region where the turbulent
production is active, extending across the entire wall-normal domain for A} ~ 220 and
up to y* &~ 45 for A} ~ 110. For y* > 10, there is positive turbulent transport at
smaller wavelengths than negative turbulent transport. This indicates that there is energy
transfer from large to small scales i.e. energy cascade. However, there is also a region of
positive turbulent transport very close to the wall (y™ < 15), which has been identified in
previous studies (e.g. Cho et al. 2018; Lee & Moser 2019). In particular, Cho et al. (2018)
showed that this was the manifestation of the transfer of energy from small to large scales
and it is apparent from figure 28(c) that its magnitude increases as AT increases. The wall-
normal and spanwise turbulent transport spectra T, and T are shown in figures 28(d)
and 28(e) respectively. Again, there are regions of negative turbulent transport at longer
wavelengths where the pressure strain is most active and positive turbulent transport at
adjacent smaller wavelengths. In the wall-normal spectra, the energy cascade appears to
be the only scale interaction process, whereas in the spanwise spectra, there is also a very
weak region of positive turbulent transport very close to the wall, indicative of energy
transfer from small to large scales. Although this is practically invisible in the spanwise
spectra due to its very small magnitude, it is apparent in the statistical analysis in §2.3.

Finally, the spectra of total dissipation €™ = € + & + €} is shown in figure 28(f). For

w
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yT > 30, the trough in dissipation occurs at \J ~ 80, although the peak in turbulent
production appears at A\J ~ 220 (figure 28(a)). The difference between the spanwise
lengthscales of the peak in production and the trough in dissipation implies the cascade
of energy through the turbulent transport terms discussed above (figures 28(c,d,e)).
In contrast, for g™ < 30, the dissipation appears to be quite different to the previous
spectra and exhibits a bimodal distribution. The upper trough coincides with the peak
in turbulent production at y = 12, representing the dissipation that takes place at the
smaller integral lengthscale. However, it also shows substantial negative values at smaller
wavelengths, matching the regions of positive turbulent transport i.e. energy cascade. The
lower trough of the total dissipation spectra occurs very close to the wall, in the region
of positive turbulent transport coming from the transfer of energy from small to large
scales.

Appendix B. Terms in the energy balance equations

In this section, the terms in the large- and small-scale energy balance equations (2.16)
are written explicitly. They are as follows. At large scale:

U <ul Ul+>w+,z+ (B 1)
is turbulent production,
T = = (0 -V ))ur o+ = =V (300 ) ot 24, (B2a)
Ty = (v (0 - Vv )i o+ ==V (500 ) o+, (B2b)
TJZ7_ = 7<wl+(ul+ . Vw?')>z+’z+ =-V- <%(wz+)2ul+>z+’z+’ (B2¢)

are streamwise, wall-normal and spanwise intra-scale spatial turbulent transport,

TJE’# = — <%(u ) u+>z+ 4=V {u ?_u+u;f'>x+7z+, (B3a)
Ty = V- (0 ) uf)er v = V- (vfviul) s .o, (B3b)
TJZ,# =-V: <%(wl+)2u:_>z+,z+ -V <wl+w;~_uj>z+,z+v (BSC)

are streamwise, wall-normal and spanwise inter-scale spatial turbulent transport,

Tii = —(u (u - Vuj)>r+ A+ (uf(uf - vy Vat 2t (B4a)
T::i = _<Ul+(u+ : vv+)>z+,z+ + < (11 ’Ul+)>z+,z+7 (B4b)
qu;_,i - <wl ( vw )>m+ 2+ T < :(uj vwl_‘—»w*,z*a (B 46)

are streamwise, wall-normal and spanwise inter-scale turbulent transport,

qul = <pl+(ul+)w+>a:+,z+7 H£ = <pl+(7)l+)y+>z+,z+7 H:El = <pl+(wl+)z+>z+,z+7

(B5a,b,c)
are streamwise, wall-normal and spanwise pressure strain,
T;vl = _<(pl+vl+)y+>a:+,z+ (B 6)
is pressure transport,
+ Ll + L e + _ 1, 4
vyul = §<(ul )y+y+>z+,z+v Tu,'ul = §<(Ul )y+y+>m+,z+a Tu,wl = §<(wl )y+y+>m+,z+a

(BT7a,b,c)
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are streamwise, wall-normal and spanwise viscous transport, and

6ul = <vul V“f>m+,z+» E:;FI = _<VvlJr ) vvlJr>w+7Z+7 EJur;l = _<vwl+ ’ vwl+>w+7z+’

(B8a,b,c)

are streamwise, wall-normal and spanwise dissipation. At small scale:
ijrs = _U;Zr <ujvj>w+,z+ (B 9)

is turbulent production,

T+ = 7<uj(uj : vuj»m‘*‘,z‘*’ =-V. <%(U+) u+>m+,z+7 (B 100‘)
T:;, = _<U;—(uj— ' ij»ztﬁ ==V <%(Uj)2u:>m+,z+7 (B 10b)
Ts— = —(wi (uf - Vul))pr o+ = =V (F(wf)?uf)pr 2o, (B10¢)

are streamwise, wall-normal and spanwise intra-scale spatial turbulent transport,

T 4=V (A (ud)?a)pr o+ = V(W ufu) s o, (B1la)
TS p= =V G@u et o+ = V- (0 viwf ) o+, (B11b)
Top ==V (3@ uf)pr o+ = V- (wwiuf),s o+, (Bllc)
are streamwise, wall-normal and spanwise inter-scale spatial turbulent transport,
T o= b P V) — (Ul V) e (B12a)
T ¢ = (Vo o — (07 (uF - Vo) e (B120)
Ty = (w (0 - Vi))r o+ — (wf(uf - V")) o+, (B12¢)

are streamwise, wall-normal and spanwise inter-scale turbulent transport,

H;Ls = <p;r(uj)w+>w+,z+v H;rs = <ps ( )y+>x+ zty ijs = <p;r(wj)z+>x+,z+a

(B13a,b,c)
are streamwise, wall-normal and spanwise pressure strain,
Tervs = <(p9 s )y+>:1(:Jr zt (B 14)
is pressure transport,
1
lj,_us = §<(u;‘—2)y+y+>m+,z+7 le_’us = §<(U;‘r2)y+y+>z+,z+a sz,_ws = §<(w;‘—2)y+y+>x+,z+v
(B15a,b,c)
are streamwise, wall-normal and spanwise viscous transport, and
6’1_8 = —(Vuj ' vu:>r+,z+a 63_3 = _<VU:_ . V’U:_>m+,z+a 6;:5 = _<vw: : vw:>m+,z+a
(B16a,b,c)

are streamwise, wall-normal and spanwise dissipation.

Appendix C. Descriptions of observables

Descriptions of the observables associated with the large- and small-scale self-sustaining
processes, the energy cascade from large to small scales and the feeding from small to
large scales are provided in tables 3, 4 and 5 respectively.
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Scale Observable Description
Large j;l kinetic energy of straight streaks
ELJ kinetic energy of wavy streaks
E:; . kinetic energy of straight rolls
Ir,l kinetic energy of wavy rolls
120
:} turbulent production
0
120
11 jl streamwise pressure strain
0
120
€h streamwise dissipation
0
120
ejl wall-normal dissipation
0
120 . . . .
€$z‘ spanwise dissipation
0
Small Ejs s kinetic energy of straight streaks
EF s kinetic energy of wavy streaks
Ejr s kinetic energy of straight rolls
E$T’ s kinetic energy of wavy rolls
45
P turbulent production
0
45 ) )
I, streamwise pressure strain
0
45
€5 streamwise dissipation
0
45 . . .
e wall-normal dissipation
0
45
€5 spanwise dissipation

TABLE 3. Descriptions of the observables associated with the large- and small-scale
self-sustaining processes.
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Scale Observable Description
120 )
Large + wall-normal pressure strain
0
120
I . spanwise pressure strain
0
120 o
Small T:i‘ streamwise inter-scale turbulent transport
s
120
ji wall-normal inter-scale turbulent transport
las
120
Tiil spanwise inter-scale turbulent transport
a5
120
I streamwise detached-eddy pressure strain
45
120
€ streamwise detached-eddy dissipation
45
120
€5, wall-normal detached-eddy dissipation
45
120
€ws spanwise detached-eddy dissipation
45

TABLE 4. Descriptions of the observables associated with the energy cascade from large to
small scales.

Scale Observable Description
+ . . . . . .
Large Ewu’i kinetic energy of wavy streamwise inactive motion
+ . . . . . .
E i kinetic energy of wavy spanwise inactive motion
AES
T4 streamwise inter-scale turbulent transport
s
ES
=T 1 spanwise inter-scale turbulent transport
,
0
L]0
ul streamwise 1nactive-motion pressure strain
7
4|20
€1 wall-normal inactive-motion dissipation
7
20 . . . . . . .
ewl‘ spanwise inactive-motion dissipation
7
L8
Small 11, . spanwise pressure strain

TABLE 5. Descriptions of the observables associated with the feeding from small to large scales.
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