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Abstract. Feature selection, the process of identifying relevant features to be incorporated into a

proposed model, is one of the signi¯cant steps of the learning process. It removes noise from the data to
increase the learning performance while reducing the computational complexity. The literature review

indicated that most previous studies had focused on improving the overall classi¯er performance or

reducing costs associated with training time during building of the classi¯ers. However, in this era of big

data, there is an urgent need to deal with more complex issues that makes feature selection, especially
using ¯lter-based methods, more challenging; this in terms of dimensionality, data structures, data format,

domain experts' availability, data sparsity, and result discrepancies, among others. Filter methods identify

the informative features of a given dataset to establish various predictive models using mathematical
models. This paper takes a new route in an attempt to pinpoint recent practical challenges associated with

¯lter methods and discusses potential areas of development to yield better performance. Several practical

recommendations, based on recent studies, are made to overcome the identi¯ed challenges and make the

feature selection process simpler and more e±cient.

Keywords: Feature selection; ¯lter methods; machine learning; data imbalance; ranking methods.

1. Introduction

The curse of dimensionality is one of the challenges that domain experts often face

when dealing with massive amounts of data (Town and Thabtah, 2019). Feature

selection is a critical processing step that directly a®ects the success of machine

learning algorithms by reducing space dimensionality through identifying the rele-

vant set of features to be used (Hall, 2000). It also involves simplifying the classi-

¯cation process by strengthening the decision rules of the feature selection algorithm

(Kamalov and Thabtah, 2017). Feature selection plays a vital role in classi¯cation

because a robust feature selection mechanism can reduce the computational com-

plexity associated with the learning process and improve its generalisation capa-

bilities (Maldonado et al., 2014). Domains characterised with a large number of

features and a small number of samples bene¯t immensely through feature selection

mechanisms. For instance, domains such as biochemistry, bioinformatics, text

mining, medical diagnosis, and biomedicine require robust feature selection
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algorithms to improve the performance and comprehensibility of the models; these

are often established based on a few samples and a large number of features (Yu and

Liu, 2004a; Saeys et al., 2008; Thabtah and Peebles, 2019).

Filter, wrapper and embedded are the three primary types of feature selection

methods used for learning purposes. The ¯lter method is the most common and

involves selecting features without utilising a classi¯cation algorithm. Basically, this

method involves ¯ltering out irrelevant features using various selection principles

such as information gain (IG) (Rajab, 2017). Filter methods use selection criteria to

assign scores for the available features in the training dataset and then invoke a

ranker search method to rank each individual feature based on the computed scores

(Tang et al., 2014). Informative features usually gain higher scores and uninfor-

mative features gain lower scores. Finally, the complete features, ranked on com-

puted scores, are o®ered to the end user for subset selection. Based on the selection

principles used, there are various ¯lter-based feature selection methods such as IG

(Quinlan, 1986), Pearson's correlation (Hall, 1999) and Fisher's score (Gu et al.,

2012), among others. Wrapper methods consider using a machine learning algorithm

to identify classi¯ers for each possible subset in the input dataset. Hence, this kind of

feature selection o®ers the best outcome yet su®ers from a lengthy, exhaustive

search, particularly when the input data are highly dimensional (Thabtah et al.,

2018). Lastly, embedded methods use a combination of ¯lter and wrapper methods

to select an ideal set of features. This research is concerned only with ¯lter-based

methods.

Several research studies have evaluated ¯lter-based methods, i.e. Thabtah et al.

(2011, 2018), Rajab (2017), Zhang et al. (2014), Estevez et al. (2009), Hall (2000),

Zhao et al. (2018), Kamalov and Thabtah (2017), and Hancer et al. (2017). However,

most of these investigated functional issues with ¯lter methods such as the impact on

predictive performance, or enhancing training e±ciency; few covered practical

challenges related to the basis on which features are selected and how results can be

interpreted (Cherrington et al., 2019). For example, a drawback of the ¯lter meth-

ods, such as result dependencies, which make it hard for the end user to decide which

features to choose prior to the learning process, has been investigated by few scho-

lars. These combine results of multiple ¯lter-based methods to reduce results vari-

ability, i.e. Labani et al. (2018); Gao et al. (2018); Rahmaninia and Moradi (2017).

Despite this e®ort, recent research (Cherrington et al., 2019) pinpointed that there is

a need for a domain expert to manually check the outcomes of ¯lter-based methods

to recommend the ¯nal set of features needed; this can be resource-demanding. More

importantly, the authors indicated that there is no ¯ne line to discriminate among

features in the results sets which can also be a serious issue. Hence, this research

covers practical challenges in ¯lter-based methods and presents viable recommen-

dations to overcome these issues. Particularly, this research builds upon previous

e®orts and critically analyses crucial possible research directions rarely covered

including feature ranking, results discrepancies, thresholding, feature-to-feature

correlation, domain expert involvement, and data imbalance.
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The paper consists of ¯ve main sections. The Introduction section provides an

overall understanding of the feature selection process, ¯lter-based methods, aims,

objectives, and the outline of the paper. The second section further explains the

research problem and previous related work by various scholars. Discussion, the

third section, critically analyses the potential challenges of ¯lter-based feature se-

lection methods with practical recommendations to overcome identi¯ed challenges.

The conclusion wraps up the information provided with suggestions on future work.

2. Problem and Literature Review

Filter-based feature selection is a research topic that has attracted the attention of

many scholars and experts in multiple domains. Figure 1 shows ¯lter methods in the

learning process. The ¯lter method involves carrying out feature selection as a pre-

processing step without an induction algorithm. Training data are processed through

a mathematical criterion to compute and assign scores to features in the training

dataset; then a feature score is used to rank the features. These feature scores vary

based on the type of the ¯lter method used, and all the feature scores/rankings are

o®ered to the end-user to make relevant decisions. Domain experts, or the end-user,

decide the features to be used in the learning process based on their computed scores.

The optimum threshold between selected and eliminated features is determined by

the end-user based on knowledge and experience. Finally, a machine learning ap-

proach is employed to process the results set of the features and produce the clas-

si¯er. The accuracy and the performance of the established classi¯er are evaluated by

applying the model on sample data.

Fig. 1. Filter method as part of the learning process.
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Thabtah et al. (2019a) introduced an observed frequency-based feature selection

method called Least Lost (L2) to reduce the dimensionality of data by eliminating

noisy data from the datasets while maintaining a healthy classi¯er performance. It is

a more simpli¯ed and in-built approach that involves ranking of each variable in

ascending order based on the L2 distance between observed and expected variables

and class labels. The scores are computed based on observed and expected proba-

bilities of the available features. Tests conducted using datasets from the University

of Irvine Repository (UCI) reported that L2, when applied in the pre-processing

phase, results in fewer features being obtained. When these are further processed by

a machine learning algorithm, they derive competitive classi¯ers in terms of accu-

racy. L2 implementation in Java can be accessed at https://github.com/suhel-

hammoud/L2.

Zhao et al. (2018) proposed the redundant penalty between the feature mutual

information algorithm (RPFMI), a ¯lter-based feature selection mechanism, to

identify optimal features in terms of redundancy, relationship between classi¯er and

the selected features, and the correlation between selected features and the class

labels and small data samples. The experimental results of the study suggested that

the proposed RPFMI is highly e®ective in selecting an optimal set of features for

intrusion detection as it demonstrated a high accuracy.

Gao et al. (2018) introduced the dynamic change of selected feature (DCSF), with

the class a linear ¯lter feature selection method, which takes dynamic information

changes of the selected features with the class labels into account in the feature

selection process; this to yield more accurate and e±cient results. This novel model

uses conditional mutual information between candidate features and class labels to

identify the most informative features; the other conventional ¯lter methods use

mutual information to compute the relevancy of the candidate features to the select

optimal feature subset. The experimental results implied that DCSF has the highest

average classi¯cation accuracy of all the other compared methods.

Another ¯lter mechanism presented by Hancer et al. (2017) is quite unique. These

authors focus on selecting features based on their true rankings obtained by applying

ReliefF (Robnik-Šikonja and Kononenko, 2003) and Fisher Score (Bishop, 1995)

rather than focusing on their mutual redundancies. MIRFFS (Mutual Information,

ReliefF, and Fisher Score), the proposed mechanism, used di®erential evolution

(DE) (Marinaki and Marinakis, 2013) as the search strategy and it has two parts:

one mechanism to be applied on single-objective problems and the other on multi-

objective problems.

Labani et al. (2018) introduced multivariate relative discrimination criterion

(MRDC), a novel ¯lter-based feature selection mechanism to enhance the perfor-

mance of the text classi¯cation process. This is accomplished by diminishing the

dimensionality in feature space using minimal-redundancy and maximal-relevancy

(mRmR) (Peng et al., 2005). MRDC involves identifying the most relevant features

using relative discrimination criterion (RDC) (Rehman et al., 2015). Since RDC is
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not capable of classifying the irrelevant features, it utilises the Pearson correlation

matrix to perform that task.

Kamalov and Thabtah (2017) used three robust ¯lter methods in combination to

produce a new feature selection mechanism (vectors of scores/V -score) to select the

most relevant features of a given dataset while eliminating the shortcomings and

maximising the advantages. They used information gain (Quinlan, 1986), chi-

squared statistic (Liu and Setiono, 1995), and inter-correlation methods (CFS)

(Hall, 1999) together to stabilise each feature's ranking score; they were able to reap

more accurate prediction results rather than when applying them individually.

OSFSMI (Online Stream Feature Selection Method based on Mutual Informa-

tion) and OSFSMI-k is another mutual information-based online streaming feature

selection method, presented by Rahmaninia and Moradi (2017), to distinguish be-

tween the most informative and uninformative features. This is done by computing

the correlation between features and their relevancy to the class labels where the

number of instances increases exponentially (for example, social networks, ¯nance

analysis applications, and tra±c network monitoring systems). The general frame-

work followed by the proposed OSFSMI model comprises two unique phases: online

relevancy analysis to compute the relevancy of each newly arriving feature, and

online redundancy analysis to estimate the e®ectiveness of each selected feature and

eliminate any with e®ectiveness below the average. OSFSMI-k is a modi¯ed version

of OSFSMI, developed to address the issues arising due to the continuously in-

creasing nature of features. To end this, OSFSMI-k keeps selecting the correlated

features until the size of the selected feature subset reaches a constant value (k).

A research by Estevez et al. (2009) proposed a normalised mutual information

feature selection (NMIFS), to evaluate the relevancy and redundancy in the features

of a given dataset. Researchers have used three mutual information-based feature

selection methods: Battiti's mutual information feature selector (MIFS), MIFS-U

(Battiti, 1994), and min-redundancy max-relevance (mRMR) (Peng et al., 2005)

criteria to develop NMIFS by enhancing their individual strengths and minimising

their weaknesses. They also present the Genetic algorithm, guided by mutual in-

formation for feature selection (GAMIFS), a hybrid version of both the ¯lter and

wrapper methods that combines NMIFS and genetic algorithms to ¯ne-tune their

performance.

3. Filter Methods Challenges

High dimensional data have made feature selection di±cult as it necessitates dealing

with a large number of features during data processing creating multiple challenges

related to e±ciency and quality. These challenges can be opportunities to learn and

investigate new intelligent techniques to generate a meaningful concise set of fea-

tures. In this section, we discuss various challenges that researchers and domain

experts may face when designing, employing, or developing ¯lter methods for data

processing.

Filter Methods for Feature Selection
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3.1. Results discrepancies

Results discrepancy is one of the obvious challenges in ¯lter methods as di®erent

results may be obtained from the same dataset when applying di®erent methods. To

demonstrate this issue, we applied three di®erent ¯lter methods: IG, Correlation,

and ReliefF (keeping Ranker as the search method) on a nursery database (Bohanec

et al., 1997) using WEKA 3.8 (Hall et al., 2009). Table 1 shows the features

extracted by the three considered ¯lter methods and their ranks based on the

assigned weights.

Table 1 clearly shows di®erences in the results generated by the ¯lter methods,

especially the ranking. For instance, if we consider the results derived by the IG and

correlation methods, after the third ranked feature, there is a discrepancy in the

results for the remaining features ranked 4–8. This discrepancy arises mainly because

of the di®erent mathematical models used by the considered ¯lter methods to

compute the weights per feature in the dataset. All these mathematical models

primarily employ a contingency table that holds the frequency of the feature and

that of the feature-class together, besides observed and expected probabilities,

among others. For example, IG uses entropy as a base metric to compute the

weights; this relies on the information of the feature and the class in the dataset,

whereas the chi-square method uses the observed and expected probabilities. These

di®erences in computing the weight assigned to each feature in the mathematical

model can clearly impact the order in which the ¯nal features sets are o®ered to the

end-user. Consequently, when these features sets are processed by the learning

algorithm, performance may also be impacted such as the predictive accuracy of the

models derived.

Few studies have addressed this issue and presented viable solutions to stabilise

the knowledge discovery process through robust feature selection methods. For

example, Kamalov and Thabtah (2017) pinpointed the results discrepancy in ¯lter

methods and showed that this problem can lead to selecting the wrong feature

subsets, thus impacting the performance of the classi¯cation models derived by the

learning algorithm. The authors suggested a ¯lter mechanism that involves com-

bining and normalising IG, inter-correlation, and CHI feature scores to produce one

Table 1. Ranking results generated by each feature selection method.

Ranking IG features Correlation features ReliefF features

1 Health Health Health

2 Has nurs Has nurs Has nurs

3 Parents Parents Parents
4 Social Housing Housing

5 Housing Social Social

6 Children Finance Finance

7 Form Children Form
8 Finance Form Children
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uni¯ed score that can be assigned to each available feature. The term \normalising"

refers to the introduction of one uni¯ed feature score range instead of several that

vary according to the feature selection method used. For instance, feature selection

methods like IG produce data scores ranging from 0 to 1, whereas methods like CHI

produce feature scores between (�1) and (þ1). The experimental results demon-

strated that the normalisation of feature scores, and then integrating these into one

uni¯ed score, is highly e®ective in reducing the volatility in the feature selection

outcomes.

A similar approach that deals with the results discrepancy of ¯lter methods was

proposed by Rajab (2017). The author presented a method that combines the score of

IG and CHI after normalising the initial scores computed by both methods. The new

feature selection method was applied on a cybersecurity application for detecting

phishing websites and contrasted with other common ¯lter methods. Results reported

that Rajab's (2017) method indeed reduced the dimensionality of the dataset and

selected features sets, and when processed, using decision tress and rule induction

classi¯cation techniques, improved the detection rate of phishing websites.

3.2. Feature ranking

Feature ranking refers to the process of selecting \n" number of features based on

their computed weights/scores. The weights are normally computed based on a

feature's relevancy to the class variable. According to Duch et al. (2003), feature

ranking is an independent evaluation process of the available features as per their

importance to eliminate potentially irrelevant features. All ¯lter-based feature

selection methods use a \Ranker" to evaluate the features based on scores computed

using statistics, information theory, or some functions of the classi¯er's output. IG,

gain ratio (GR), symmetrical uncertainty (SU), CHI, IG and ReliefF methods are

examples of ¯lter methods that use Rankers in feature selection. IG ranks the fea-

tures based on amount of information relevant to the class variable, re°ected by each

candidate feature, whereas GR uses the prediction capabilities of each candidate

feature to determine their individual rankings (Novakovic et al., 2011).

Feature ranking is used by domain experts as a basic way of determining the best

feature subsets; however, Ranker search methods do not provide the number of

features to be selected, instead leaving the domain expert to decide. Most existing

ranking search methods employ an elementary approach to display features along

with their rank. More importantly, they leave the decision of which features to select

up to the users' experience and knowledge, which subsequently requires time, care,

and accuracy. Therefore, there is a need to develop a new intelligent Ranker search

method that speci¯cally recommends the features that should be chosen and the ones

to ignore. The new Ranker should act as a recommendation to the feature selection

process, be totally independent, and not ¯lter-based method-speci¯c. This will en-

able the Ranker to be embedded with any ¯lter methods without dependency or data

sensitivity and thus act as a generic search method.

Filter Methods for Feature Selection
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A number of research studies have evaluated the performance of available feature

ranking methods. Most concluded that there is no one Ranker method that is

intelligent enough to distinguish in°uential features from redundant ones without

domain expert involvement (Hu et al., 2003; Duch et al., 2004; Novakovic et al.,

2011; Cherrington et al., 2019). Further, none of the studies found an intelligent

solution for ranking within ¯lter methods; hence, more research and investigation is

needed to develop more advanced Rankers that can be used e®ectively with any

feature selection method.

3.3. Optimum threshold and domain expert involvement

Determining the optimal threshold between good and useless features is another

vital issue related to feature selection. Most of the available ¯lter methods do not

distinguish the cut-o® value which could help these methods provide a small subset

of features rather than relying on the domain expert. Distinguishing between fea-

tures is a di±cult task because of the diverse nature of datasets, their characteristics,

and ¯lter methods' mathematical metrics used to calculate weights for each feature,

among others (Thabtah et al., 2018). This di±cult task relies on the knowledge of

the domain expert, requiring additional time, care, and resources.

Let us assume that there is a dataset with over 1,000 features, and IG or CHI is

used to determine the in°uential features. Both these ¯lter methods will return a

feature set of 1,000 ranked on the assigned weights of the ¯lter methods. Then, the

user will have to choose possibly the top 5, top 10, top 30, top 100, etc. based on his/

her requirements and experience, the process of selecting which features is lengthy

and di±cult with a high chance that the user may miss prominent features. Having

an automated threshold embedded within the ¯lter method to o®er the domain

expert a small subset of features would be advantageous. This threshold is important

as it represents a boundary between features to be selected and features to be

eliminated. Using irrelevant features and eliminating relevant features would neg-

atively impact the performance of learning algorithms and possibly lead to confusing

and false predictions.

More research and development is recommended to establish an automated fea-

ture selection technique that has an inbuilt metric to identify the optimal threshold

between informative and uninformative features without having to rely on a domain

expert, dataset characteristics, and mathematical equations as used in the ¯lter

method.

3.4. Feature-to-feature correlation

Most of the available feature selection-based ¯lter methods do not consider feature-

to-feature correlation when determining the optimal subsets during feature analysis.

Valuating this is important as it helps to reduce the number of features and then

o®ers a set that does not overlap in data instances and is di®erent from each other

yet correlated with the class. One of the successful methods that dealt with this issue

M. Rajab and D. Wang
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was mRMR (Peng et al., 2005) and its extensions. mRMR ranks each candidate

feature based on its relevancy to the class identifying the redundant features (those

correlated with each other). According to Cai et al. (2012), mRMR de¯nes relevant

features as those with minimum redundancy with each other while maintaining the

maximum relevance with the class label. Mutual information (MI) is the parameter

used by mRMR to measure the mutual dependencies between features and class

labels to identify the redundant and the relevant features. Fast-mRMR and mRMRe

(Jay et al., 2013; Ramírez-Gallego et al., 2016) are extensions of mRMR that were

developed to overcome computational complexities of traditional mRMR and make

it more e±cient.

Limited research investigations have been conducted to highlight the importance

of identifying feature-to-feature correlation to enhance the performance of the

overall feature selection process. The study by Yu and Liu (2004a) is one such

attempt that addressed the need to incorporate a redundant feature analysis process

as relevancy is insu±cient to determine the best subsets. The authors introduced a

novel mechanism called fast correlation-based ¯lter (FCBF). This involves ¯rst

selecting relevant features and then identifying predominant features from the se-

lected set to enhance the selection process through a relevance and redundancy

analysis. Yu and Liu (2004b) also discussed the importance of identifying and

eliminating redundant features in gene expression microarray data analysis to

classify diseases or phenotypes accurately.

Various studies have used di®erent mathematical metrics to identify the inter-

correlation among the features to produce optimal feature subsets. Radovic et al.

(2017) proposed the temporal mRMR (TmRMR), a ¯lter approach which uses the

value of F -statistics across di®erent time steps as the parameter to compute the

temporal information and relevancy among feature; this is by applying a dynamical

time-warping approach to handle temporal gene expression data in an e®ective

manner. F -statistics values determine redundant features by identifying features

with small and large inter-class variances.

Another research by Gu et al. (2012) presented a novel approach called more

relevance less redundancy (MRLR) that uses mathematical metrics such as infor-

mation amount, conditional mutual information, and relevance degree to eliminate

redundant features. Mutual information is one of the most common parameters

used in identifying feature-to-feature correlation in most of the literature. Cai et al.

(2012) also used the mutual information value to rank features and identify

redundant features. In a former study by Yu and Liu (2004a,b), the linear corre-

lation coe±cient is suggested as a viable mathematical metric to determine the

goodness of the features. The authors describe this as a successful method as it

helps to identify the features with near zero correlation with the class and it helps

to eliminate the redundant features through identifying those with high correlation

to each other. Table 2 shows mathematical metrics used to identify feature-to-

feature relevancy.
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3.5. Data imbalance

The class imbalance is a critical challenge observed in datasets with extremely

di®erent class distributions, often encountered in the classi¯cation tasks, which may

result in generating results that favour the dominant class in the dataset (the class

label with higher frequency) (Japkowicz and Stephen, 2002). Data is said to be

imbalanced when the majority of the classi¯cation instances belong to one class and

only a few instances belong to a minority class, especially in medical applications

(Thabtah et al., 2019b). For instance, if we have data of 1,000 instances, where only

10 of them have been diagnosed with autism, if we consider \Autism" and \No

Autism" as two class values, this dataset is highly imbalanced. It will be imperative

to distinguish the features that are related to autism in this dataset, which is di±cult

as most instances belong to the \No Autism" class. Hence, scholars proposed a

solution that is mainly data-driven to balance the data before feature selection and

learning phases such as under-sampling and oversampling (Wasikowski and Chen,

2010; Yin et al., 2013).

Machine learning algorithms are sensitive to data with imbalanced class labels

since they produce classi¯ers that are biased to the majority class and overlook the

minority class label. This is because data instances fed into the learning algorithm

tend to assume the unavailable points to make predictions by generalising the

available points to the entire population. Because of that, the classi¯er would

demonstrate a poor prediction accuracy on the minority class (Wasikowski and

Chen, 2010).

A study byWasikowski and Chen (2010) compared di®erent schemes that include

sampling and feature selection techniques to evaluate which technique performed

better in dealing with imbalanced class data. The study revealed that feature

selection with signal-to-noise correlation coe±cient (S2N) (Gailey et al., 1997) and

feature assessment by sliding thresholds (FAST) (Chen and Wasikowski, 2008)

techniques are highly e®ective on class imbalanced data. But feature selection

methods used for balanced data may not perform as well on the imbalanced data, so

Table 2. Mathematical metrics used in feature selection approaches to derive feature-to-feature

correlation.

Literature Filter

method

Mathematical metrics Equation

Radovic et al. (2017) TmRMR F -statistics F ðgj; cÞ ¼
1
T

PT
t¼1 F ðg

ðtÞ
j ; cÞ

Gu et al. (2015) MRLR Information amount,

conditional mutual

information, and relevance

degree

NMIðfi; fsÞ ¼
MIðfi ;fsÞ

minfHðfiÞ�HðfsÞg

Cai et al. (2012) mRMR Mutual information IðX;Y Þ ¼
R R

pðx; yÞ log pðx;yÞ
pðxÞpðyÞ

Yu and Liu (2004a,b) FCBF Linear correlation coe±cient
r ¼

P

i
ðxi�xi Þðyi�yi Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

i
ðxi�xi Þ 2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

i
ðyi�yi Þ2

p
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the feature selection method should focus more on identifying features that help to

predict the minority classes rather than the majority classes. A major issue that is

encountered is locating a threshold to distinguish between relevant and irrelevant

features. In feature selection, various ratios are used to rank the features based on

their relevancy to the target class labels, but when most of the data belongs to one

class, the results tend to be biased towards the features relevant to the majority

class, ignoring those with more potential to predict the minority classes (Pant and

Srivastava, 2015).

Many studies have been conducted on determining the most appropriate feature

selection method to be used on class imbalanced data to yield a better classi¯er

performance (Japkowicz and Stephen, 2002; Wasikowski and Chen, 2010; Yin et al.,

2013; Maldonado et al., 2014; Thabtah et al., 2019b). Most of them investigated the

impact of class imbalance data on classi¯er performance, but little research addresses

the impact on the feature selection process of imbalanced classes. Yin et al. (2013)

addressed this problem and presented two feature selection approaches to overcome

the issue. One approach is based on class decomposition (Maimon and Rokach,

2002), which involves the partition of majority classes into small class subsets before

feature selection, and the other is based on Hellinger distance (Beran, 1997); this

measures the distribution divergence of each class to evaluate its goodness for feature

selection. The results showed that the proposed two approaches outperformed most

of the available conventional feature selection methods. In an experiment carried out

on protein function data, Al-Shahib et al. (2005) showed that under-sampling the

majority class prior to feature selection signi¯cantly increases the classi¯er perfor-

mance on imbalanced data.

4. Recommendations and Conclusions

A high level of noise is a major problem that makes managing data di±cult, and

most often this noise is generated from the technology used in collecting data or the

source of data itself. Dimensionality reduction through ¯lter-based feature selection

is a commonly used solution to eliminate this problem. However, in the era of big

data in which we have di®erent feature types, sparse data, and unstructured data,

among others, ¯lter methods face practical challenges that have been rarely

addressed in recent research. This paper critically analysed challenges of ¯lter-based

methods associated with results quality and performance including results

discrepancies, ranking of features in the results set, absence of clear threshold

between good and bad features, handling imbalanced data, and feature-to-feature

correlation.

Di®erent feature selection methods deliver di®erent selection outcomes as a result

of the mathematical models used to compute the feature scores based on feature-to-

feature frequencies, feature-to-class frequencies, and expected and observed fre-

quencies of the features. Therefore, if two di®erent feature selection methods are

employed on the same dataset, the end user can get two di®erent outcomes for the
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most relevant feature subsets. The paper highlights the importance of addressing

this challenge as the credibility and reliability of the ¯nal learning algorithm depend

enormously on the feature subsets selected through the employed ¯lter method. Use

of normalised feature scores is recommended to yield more static, reliable, feature

selection outcomes. Further research to develop more normalised advanced feature

scoring mechanisms is vital.

All the ¯lter methods use simple rankers to weigh the features based on their

importance or the relevancy to the class labels. These rankers are very primitive and

do not provide information on how many features are to be selected or eliminated.

Therefore, the number highly depends on the end-user's knowledge and level of

expertise, requiring an excessive amount of time, e®ort, and care. Hence, there is a

need for an advanced Ranker that intelligently o®ers the subset of features by

creating a ¯ne line to di®erentiate good features from useless ones. Hence, the end

user will not have to scan the entire features within the results set, rather just take

that o®ered by the Ranker.

Absence of a clear threshold between good and bad features is also another

challenge pinpointed in the paper that makes conventional ¯lter-based feature

selection over-dependent on the end-user/domain experts' involvement. Determining

the cut-o® between relevant and irrelevant features is essential as using irrelevant

features in induction models can hinder the learning process signi¯cantly. Hence, the

importance of developing an automated threshold embedded into traditional ¯lter

methods is emphasised.

Disregarding the feature redundancies is one of the main drawbacks of ¯lter-based

feature selection. Identifying the feature-to-feature correlation is of utmost impor-

tance as it helps to eliminate features that overlap. Therefore, to overcome this

challenge, a viable approach that determines the feature-to-feature correlation and

automatically eliminates the redundant features should be embedded into existing

¯lter methods.

Some data characteristics such as uneven distribution can also make the feature

selection process biased and inaccurate. Feature selection requires data that is per-

fectly balanced to generate unbiased accurate results. But it is not always practical

to have perfectly balanced data, therefore, the paper highlighted the need for a valid

mechanism to balance imbalanced data prior to the feature selection process to yield

better results. Smart automated sampling techniques are recommended to be inte-

grated into ¯lter methods to identify class imbalanced data and to balance this

without changing the original data.

Further research and investigation are advised to produce more intelligent au-

tomated feature selection techniques that mitigate the identi¯ed challenges and

make the feature selection process more e®ective and e±cient. In the near future, we

are going to examine a number of ¯lter methods on pathological datasets related to

dementia in order to determine high e®ective attributes that may have correlations

with dementia at di®erent levels. Feature selection can provide a bottom-up

approach of exploring datasets to reveal hidden useful patterns; in the case of
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diagnosing dementia, features that are hidden from the eyes of a pathologist but

have clear impact on detecting dementia can be identi¯ed. This bottom-up approach

of recommending features to domain-experts, such as pathologists, must also dem-

onstrate that the features are interpretable to clinicians and can reduce observer

bias. Features that achieve this are much more likely to be adopted by the clinical

community and used as valuable biomarkers for diagnosing and stratifying patients

into subgroups. Further work is needed to investigate the determinants of in°uential

features, especially within application domains to pinpoint factors that in°uence

feature interpretability and bias. While we highlight general best practices for fea-

ture ¯ltering, understanding their impact in di®erent research domains will be

critical for these to have true value.
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