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Abstract 23 

A multi-degree of freedom mechanistic-chemometrics model for predicting the pitting 24 

damage of HP-13Cr stainless steel is developed by combining the mechanistic models 25 

and chemometrics method. The mechanistic model is reconstructed by considering the 26 

effect of single factors, such as high temperature, high CO2 pressure, flow rates and 27 

complex stress distribution. The single mechanistic models are combined together 28 

considering the weight coefficients of variable interaction using the chemometrics 29 

method. Finally, the predicted results are validated by six-year-served field data, 30 

which indicates that the newly developed mechanistic-chemometrics model is 31 

accurate and highly reliable.  32 

 33 
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1. Introduction  45 

The increasing demand for resources has shifted the exploration towards ultra-deep 46 

oil wells at Tarim oilfield in the Northwest of China. Due to the complicated 47 

downhole conditions and geological characteristics in Tarim area [1-3], Oil Country 48 

Tubular Goods (OCTG) are in the oilfield environment (as depicted in Fig. 1). Fig. 1 49 

represents the characteristics of complex oil-well environment, which is conducive to 50 

corrosion and can be described as [4]: 51 

 52 

(1) Super corrosive media: the well depth reached 8000 m, high temperature (95 - 53 

180 °C), high CO2 pressure (2.8 - 3.8 MPa). The measured water cut was more than 54 

30%. Moreover, the formation water contains high salinity (Cl- concentration is about 55 

60, 000 ppm). 56 

 57 

(2) Stress Corrosion Cracking (SCC) mechanism: A neutral point, with zero stress 58 

above the packer, exists due to the gravity and mechanical properties of the structure 59 

tubing. Meanwhile, the tensile stress is located above the neutral point, while the 60 

stress transforms into compressive stress between the neutral point and the packer. 61 

Later on, due to the gravity, the compressive stress transforms into tensile stress below 62 

the packer [5].  63 

 64 

HP-13Cr stainless steel (SS) is widely used as an OCTG in oil industry, as they offer 65 

improved CO2 corrosion resistance in relation to carbon steels, and offer lower costs 66 



than the duplex SS grades or Ni alloys [6-10]. However, the inspected field results 67 

have revealed that HP-13Cr SS suffers severe pitting corrosion. In general, the pitting 68 

corrosion can be divided into two processes, namely the pit initiation and the pit 69 

growth. The complex oilfield environment in terms of temperature, CO2 pressure, 70 

flow rate and stress can influence the pitting processes. Nesic et al. [11] reported that 71 

temperature and CO2 pressure accelerate the pitting corrosion by the electrochemical, 72 

chemical, and transport processes. Additionally, the effect of temperature and CO2 73 

pressure on the pitting corrosion has been studied on passive films and corrosion 74 

scales [6, 9, 10, 12-15]. The results illustrate that the enhanced pitting susceptibility of 75 

HP-13Cr SS can be attributed to the effects of temperature and CO2 pressure on the 76 

microstructure and composition of corrosion scales [14]. In addition, Zhao et al. [15] 77 

discussed the influence of temperature and CO2 pressure on the growth of pit on 78 

HP-13Cr SS. The results indicated that pit cavities grew deeper with the increase in 79 

temperature and CO2 pressure from 95 °C / 2.8 MPa to 180 °C / 3.8 MPa after being 80 

immersed for 30 days.  81 

 82 

Nesic et al. [11, 16] systematically studied the influence of flow rate on the carbon 83 

steel pipeline in the presence of CO2 corrosion. It has been acknowledged that, high 84 

flow rate affects the CO2 corrosion by increasing the mass transfer of corrosive 85 

species as well as damaging the corrosion scales. Schmitt et al. [17] indicated that 0.2 86 

Pa of wall shear stress was enough to induce pitting corrosion. Moreover, Xu et al. 87 

[18] reported that flow rate can suppress the development of potential pits by 88 



uniformly distributing ions at the interface of metal. Wharton et al. [19] reported that 89 

the flow rate (0.04- 2.7 m/s) had a negligible influence on pit nucleation and 90 

metastable pitting, whereas the growth of pits became obvious when the flow rate was 91 

slower than 1.5 m/s. Furthermore, these experimental results were confirmed by 92 

hydrodynamic and electrochemical noise measurements for AISI 304 SS. Wei et al. 93 

[20] proposed that the flow rate (0.5-2 m/s) accelerated the pitting corrosion by 94 

damaging the corrosion scales and inhibiting the formation of FeCO3 on the surface of 95 

X70 under supercritical CO2 environment. Recently, Zhao et al. [15] demonstrated 96 

that the flow rate altered the pitting geometry from bullet shape to shallow-disk shape 97 

at the flow rate of 3 m/s. 98 

 99 

Moreover, it has been reported that the applied tensile stress increased the pitting 100 

susceptibility, whereas the compression stress could reduce the pitting susceptibility 101 

[21-26]. Iwanaga et al. [26] performed polarization tests and reported that pitting 102 

susceptibility of stainless steels increased with the increase in tensile stress. Vignal et 103 

al. [27] demonstrated that the local tensile stress gradient played a key role in 104 

accelerating the pit initiation process. Additionally, Feng et al. [28] proposed two 105 

degradation modes for the passive film under tensile or compressive stress. The 106 

results suggested that tensile stress produced micro-cracks, which were perpendicular 107 

to the surface, whereas the compressive stress induced de-bonding of the passive film 108 

from the steel substrate [28]. Moreover, Guo et al. [29] and Fatoba et al. [30] reported 109 

that, based on Gutman model, the influence of tensile stress on the acceleration of 110 



metastable pit and pit growth based on Gutman model can be attributed to the 111 

mechanical-electrochemical effect at the local plastic deformation around the bottom 112 

of the pit [31].  113 

 114 

Significant progress has been achieved in understanding the effect of temperature, 115 

CO2 pressure, flow rate and stress on the pitting corrosion [32-33]. However, the 116 

synergistic effect of these factors on pitting corrosion of HP-13Cr SS has not yet been 117 

studied in detail. The development of a theoretical model to predict corrosion damage 118 

of HP-13Cr SS in the extremely oilfield environments has become necessary. In 119 

recent years, CO2 corrosion has been extensively investigated to understand the 120 

fundamental corrosion mechanism, whereas corrosion prediction models have also 121 

been developed to predict the CO2-induced corrosion for various steels [11]. The 122 

current prediction models, including empirical models [34, 35], semi-empirical 123 

models [36-38], and comprehensive mechanistic models [39-41], mainly focus on 124 

CO2-induced general corrosion of mild steel. It should be noted that the pitting 125 

corrosion plays a major role in the failure of wells. Therefore, a significant research 126 

effort has been devoted to predict the pitting corrosion using the stochastic model and 127 

deterministic model [42-46]. Recently, Zhang’ group [47] proposed a novel model to 128 

predict the pitting corrosion, which considers the influence of the initiation and 129 

growth of a pit. The proposed model was based on a combination of Sridhar model, 130 

Macdonald model, Weibull extreme value statistics and Gumbel extreme value 131 

statistics method. The proposed model was successfully applied to predict the 132 



development of pitting at various times for 304 SS. However, the modelling became a 133 

challenge for corrosion under complex coupling environments due to which, the 134 

model required further reconstruction.  135 

 136 

In addition, chemometrics method belongs to a discipline that provides an efficient 137 

approach through statistical or mathematical methods to investigate the effect of each 138 

variable and the interaction between variables [48-50]. A combination of chemometric 139 

method and the model proposed by Zhang’s group results in a novel 140 

mechanistic-chemometric prediction model, which is developed herein in order to 141 

incorporate the influence of temperature, CO2 pressure, flow rate and stress on the 142 

growth kinetics of pits. The model has then been used to perform pitting corrosion 143 

calculations. In order to verify the accuracy of mechanistic-chemometric model, the 144 

predicted results are compared with the field data of HP-13Cr SS well after being 145 

used for six years in the Tarim area. 146 

 147 

2. Experimental 148 

2.1 Materials  149 

HP-13Cr SS was used in the current study, and had the composition of (wt. %) Si 150 

(0.15), Mn (0.51), Cr (12.77), Mo (2.19), S (0.002), P (0.02), Cu (0.047), Ni (5.36), V 151 

(0.014), Al (0.037) and Fe (balance). The formation water was prepared by using the 152 

analytical grade reagents and distilled water. The compositions of various materials 153 

are listed in Table 1. The specimens of 50 mm × 5 mm × 3 mm (Fig. 2 (a)) were used 154 
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for the immersion and electrochemical tests under various temperatures and pressures. 155 

As shown in Figs. 2 (b-d), the specimen had the dimensions of 32 mm × 10 mm × 1 156 

mm and was designed to investigate the pit growth process under different flow rates, 157 

tensile stresses and compressive stresses. In addition, based on the factorial design 158 

method [51], heteromorphic electrode was used to determine the weight coefficient. 159 

Prior to the testing, the specimen surface was ground by silicon carbide (SiC) paper 160 

up to 2000 grit. The formation water was deoxygenated with N2 for 4 h. Then, 3.5 L 161 

formation water was introduced into the autoclave, sealed, and continuously bubbled 162 

with CO2 at ambient temperature and pressure for 2 h to remove oxygen in the 163 

autoclave. Subsequently, the autoclave was heated to the required temperature, and 164 

high-pressure CO2 was added to the autoclave using a booster pump. 165 

 166 

2.2 Computational fluid dynamics and stress distribution 167 

Herein, computational fluid dynamics (CFD) simulation of the flow distribution of 168 

heteromorphic electrode in the closed system was performed using the ANSYS 169 

FLUENT 14.0. A simulation geometry was constructed based on the dimensions of 170 

heteromorphic electrode and a tetrahedral computational 13000 element mesh was 171 

generated. Reynolds number (Re) is about 64,000 were in this experiment based on 172 

the fluid theory [52]. The SST k–ω turbulent model was used to approach the 173 

governing equations with an enhanced wall treatment. A uniform velocity-inlet 174 

boundary condition was selected, and a pressure-outlet boundary condition was set 175 

with a gauge pressure of zero for the closed system. The iterative calculations of the 176 
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semi-implicit method for pressure-linked equations (SIMPLE) algorithm were used to 177 

solve the momentum equations (N-S equations), which modified the pressure term in 178 

the discretized N–S equations and simultaneously renewed the velocity and pressure 179 

field. The simulations were converged when the minimum value reached less than 180 

5×10−4 [52-53]. 181 

 182 

In addition, the stress distribution was carried out using the COMSOL 183 

MULTIPHYSICS 3.5a. A static solid stress-strain isotropic elastic analysis module 184 

was used to simulate the stress distribution of high throughput tensile stress 185 

heteromorphic specimens. Based upon the literature, the maximum applied stress (350 186 

MPa) was lower than the yield strength (800 MPa) [5, 54].  187 

  188 

2.3 Methods 189 

The influence of each factor was quantified by 23 factorial design [54]. The lower and 190 

upper values for temperature/CO2 pressure, flow rate and stress were selected based 191 

on the depth of well (Fig.1), and are presented in Table 2. The values of -1 and +1 192 

indicated low and high levels for each factor. Meanwhile, after being immersed for 193 

720 h, the maximum pitting depth (Dmax) of HP-13Cr SS was taken as the response. 194 

The multiple regression analysis through least-squares method was used to describe 195 

the relationship between the factors (x) and responses (Dmax). Moreover, the analysis 196 

of variance (ANOVA) was performed to statistically evaluate the significance of 197 

various factors. ANOVA was also used to test the null hypothesis. This method is 198 
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based on the decomposition of total variability in the selected response (y) and 199 

assesses the relationship between the factors and the variability of responses. The 200 

significant factors or interactions can be identified as the ratio of the mean square of a 201 

factor or as an interaction and the residual mean square (F-value) [49-50]. If the 202 

F-value was less than 11.27, the factors were considered as negligible [55]. 203 

 204 

2.4 Electrochemical characterization  205 

The electrochemical measurements were carried out using a standard three-electrode 206 

system within the high-temperature high-pressure autoclave, as reported in some 207 

previous works [14-15]. HP-13Cr SS was used as a working electrode, whereas 208 

platinum was used as a counter electrode. Furthermore, an external pressure balanced 209 

Ag/AgCl was used as the reference electrode (0.1 M KCl solution). The electrode 210 

potentials were converted to standard hydrogen electrode (SHE) potential using 211 

Equation (1) [56]. 212 𝐸SHE = 𝐸obs + 0.2866 − 0.001(𝑇 − 𝑇0) + 1.754 × 10−7(𝑇 − 𝑇0)2 −  3.03 ×213 10−9(𝑇 − 𝑇0)3                             (1) 214 

where ESHE represents the electrode potential vs SHE, Eobs represents the measured 215 

electrode potential vs the Ag/AgCl reference electrode (V), T refers to the 216 

experimental temperature (°C) and T0 denotes the room temperature (25 °C).  217 

 218 

The specimens were potentiostatically polarized at -1.3 VSHE for 3 min to remove the 219 

surface oxide layer. The re-passivation potential (Erp) was measured using the cyclic 220 



potentiodynamic polarization measurements according to ASTM G61-86 [57]. The 221 

cyclic potentiodynamic polarization curves were recorded from a potential of -100 222 

mV vs the Open Circuit Potential (OCP). When the increased potential was up to a 223 

current density of 1 mA/cm2 with the scan rate of 1 mV/s, the scan was reversed to 224 

obtain the Erp. Then, the scan rates were changed through values of 0.5 mV/s, 0.333 225 

mV/s and 0.167 mV/s. The temperature and pressure of electrochemical tests were 226 

maintained at 95 °C/2.8 MPa, 120 °C/3.2 MPa, 150 °C/3.6 MPa and 180 °C/3.8 MPa. 227 

For each electrochemical test, the measurement was repeated at least three times. 228 

 229 

2.5 Immersion tests 230 

Immersion experiments were performed in a 5-L high-temperature and high-pressure 231 

autoclave. A schematic of the experimental setup can be viewed in our previous study 232 

[15]. Similar to the previous study [15, 47], the specimens were immersed in 6 wt. % 233 

FeCl3 solution for 20 s at 30 °C to eliminate the pit initiation time prior to immersion 234 

experiments according to the ASTM G48-2000 [58]. After the pre-initiated pits, the 235 

specimens were ultrasonically cleaned in acetone for 3 min and dried in cold air. The 236 

specimens were fixed to the rotating cage and immediately immersed into the 237 

autoclave. 238 

 239 

The heteromorphic electrode was designed to investigate the pit growth at various 240 

flow rates [59]. Fig. 3 shows the flow distribution at the surface of the heteromorphic 241 

electrode, whereas the corresponding results are presented in Table 3. When the flow 242 
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rate of the marked surface 6 was controlled at 1 m/s, the marked surfaces 1, 2, and 5 243 

experienced the flow rates of 0.31 m/s, 0.5 m/s and 0.72 m/s, respectively. The 244 

bump-shaped specimens were evenly arranged around the central axis of the rotating 245 

cage and mounted within the autoclave.  246 

 247 

A schematic of the corrosion rotating cage with various stress levels is displayed in 248 

Fig. 4. The calculated tensile stress distribution is shown in Fig. 5(a). The finite 249 

element analysis results showed that various tensile stresses for different width 250 

sections could be achieved. For the Surface-3, the tensile stress was fixed at 350 MPa, 251 

whereas the tensile stresses of 210 MPa, 175 MPa and 270MPa were set for 252 

Surfaces-1, -2, and -4, respectively. In addition, the tensile stress and flow rate 253 

distribution of T-type flat specimen are shown in Figs. 5(b) and 5(c). The constant 254 

tensile stress area exhibited a stable flow rate, which indicated that the T-type sample 255 

and the stress corrosion rotating cage could be used to simulate the stress, flow rate 256 

and the coupling experiments.  257 

 258 

According to the experimental design presented in Table 4, the immersion 259 

experiments were performed at various temperatures/CO2 pressures, flow rates, and 260 

stresses using the stress corrosion rotating cage with T-type tensile stress specimens 261 

for 30 days. Four independent specimens were used to measure the maximum pitting 262 

depth in each experiment. 263 

 264 



After the experiments, the specimens were ultrasonically cleaned in acetone for 5 min. 265 

Then, the specimens were dried using cold air and stored in a desiccator before 266 

measuring the pit depth. The morphology of the pits was determined using an 267 

OLS4100 confocal laser scanning microscope. The maximum pit depth was recorded. 268 

Meanwhile, the Gumbel distribution was used to model the behavior of maximum 269 

pitting depth. The cumulative probability F(Y) of the maximum pitting depth can be 270 

given by Equation (2) [47, 60]. 271 𝐹(Y) = exp{−exp [−(𝐷𝑚𝑎𝑥−𝜇𝜆 )]}                  (2) 272 

where Dmax represents the maximum pitting depth, 𝜇 refers to the central parameter 273 

(the most frequent value) and 𝜆 denotes the scale parameter. The two parameters 𝜇 274 

and 𝜆 are calculated from the relationship of reduced variant (Y) and Dmax, where Y 275 

can be calculated using the correlation: Y = -ln{-ln[F(Y)]}. 276 

 277 

2.6 Field data measurement 278 

The corroded tubing over the past six-years was collected in Tarim. Along the well 279 

profile, the maximum pit depth of HP-13Cr SS was monitored using a micrometer pit 280 

depth gauge attached to a bridging bar. The tubing was cut into small pieces (50 mm × 281 

50 mm). The specimens were ultrasonically cleaned in acetone for 5 min, and pitting 282 

depth was measured using the OLS4100 confocal laser scanning microscope. 283 

 284 

3. Results and discussion 285 

3.1 Pit initiation time 286 



According to a previously proposed pit initiation model [47], the schematic of the 287 

pitting corrosion is shown in Fig. 6. The tinit was related to the applied potential (Eapp), 288 

open circuit potential (Eocp) and the Erp, whereas it was equal to the intersection point 289 

of the Eapp-Erp and Eocp-Erp. 290 

 291 

3.1.1 Determination of Erp  292 

As reported in Zhang’s group previous work and Sridhar’s model, Erp can be regarded 293 

as the critical potential to predict the pitting corrosion. The relationship between 294 

pitting potential (Epit) [43, 47, 61], Erp and square root of the potential sweep rate (v1/2) 295 

was obtained through the cyclic potentiodynamic polarization tests. The potential 296 

sweep rate was nearly zero throughout the service-life of HP-13Cr SS. Therefore, at 297 

zero potential sweep rate, the Erp and Epit of HP-13Cr SS need to be corrected under 298 

different temperatures and CO2 pressures.  299 

 300 

Fig. 7 displays the cyclic potentiodynamic polarization curves for HP-13Cr SS under 301 

various temperatures and CO2 pressures. The curves were drawn under different scan 302 

rates and the values of Epit and Erp are summarized in Table 5. Both the Epit and Erp 303 

decreased with the increase of scan rate. Meanwhile, Epit and Erp shifted towards the 304 

cathodic direction with the increase in temperature and pressure. The minimum values 305 

of 152.66 ± 3.13 mVSHE and -212.38 ± 0.78 mVSHE were obtained at 180 °C/3.8 MPa. 306 

It can be noted that Epit and Erp linearly increased with the square root of sweep rate 307 

(v1/2) under various temperatures and CO2 pressures, as shown in Fig. 8. Meanwhile, 308 



the value of Epit and Erp at the sweep rate of 0 mV/s could be predicted [62], as 309 

presented in Table 4. 310 

 311 

3.2 Evolution of the OCP 312 

The monitored OCP for various immersion times can be used to predict the 313 

occurrence of pitting [43]. The OCP evolution with time can be described using 314 

Equation (3) [43, 63]. 315 𝐸 = 𝐸oc − 1𝛾 ln [−𝐵𝛾𝐴 𝑡 + exp[−𝛾(𝐸corr − 𝐸oc)]]           (3) 316 

where 𝛾 represents the Tafel constant for the cathodic electrode reaction, Eoc refers to 317 

the cathodic electrode reaction equilibrium potential, and 𝐴 and 𝐵 are the constants 318 

and their values are related to the naturally formed passive film.  319 

The equation proposed by Burstein et al. (Equations (4)-(5)) [64-65] indicates that the 320 

proposed OCP evolution (as given by Equation (3)) considers the nature of passive 321 

film formed on stainless steel. Therefore, the Equation (3) allows for extrapolation of 322 

passive film formed on HP-13Cr SS under various temperatures and CO2 pressures.  323 𝐸 = 𝐴1 ln 𝑡 + 𝐵1                          (4) 324 𝐸 = 𝐸oc − 𝐴2 − 1𝛾 ln𝑡                       (5) 325 

where A1 and B1 refer to the fitting parameters, which depend on the pH value, and A2 326 

is a constant. In order to predict the OCP evolution at various temperatures and CO2 327 

pressures, some critical parameters are listed in Table 6. The 𝛾  and io can be 328 

calculated from the cathodic polarization curves based on the Butler-Volmer equation. 329 

Additionally, the values of the electric field strength (𝜀𝐿), 𝐸oc and the Point Defect 330 



Model (PDM) parameters were taken from our previous work [14, 47]. Therefore, 331 

OCP changes with immersion time under various temperatures and CO2 pressures, as 332 

described by Equations (6)-(9). 333 

E (mVSHE)= -182.7 + 89.36 × ln(0.028 × t + 0.354)  (95 °C/ 2.8MPa)    (6) 334 

E (mVSHE)= -155.1 + 92.67 × ln(0.018 × t + 0.253)  (120 °C/ 3.2MPa)    (7) 335 

E (mVSHE)= -117.0 + 97.37 × ln(0.01 × t + 0.135)  (150 °C/ 3.6 MPa)    (8) 336 

E (mVSHE)= -72.8 + 91.07 × ln(0.072 × t + 0.051)  (180 °C/ 3.8 MPa)    (9) 337 

The calculated OCP values are displayed in Fig. 9. The values increase continuously 338 

over time, which is consistent with the measured data [66]. The results show that the 339 

OCP values exceeded Erp after 38.4 days, 22.2 days, 21.7 days, and 18.1 days under 340 

the temperature/pressure of 95 °C/2.8 MPa, 120 °C/3.2MPa, 150 °C/3.6 MPa and 341 

180 °C/3.8 MPa, respectively. 342 

 343 

3.3 Pit induction time (tind) above Erp 344 

The relationship between the pit induction time (tind) and the applied potential (Eapp) 345 

can be given by Equation (10) [47]. 346 𝑡ind = 𝑎 exp(−𝑏 · ∆𝐸) + 𝑐                  (10) 347 

where 𝑎, 𝑏, and 𝑐 are constants, and ∆E represents the difference between Eapp and 348 

Erp(v=0). Fig. 10 shows the time dependence of current density on a logarithmic scale 349 

for HP-13Cr SS immersed in the formation solution at various applied potentials. The 350 

turning point in Fig. 10 between the passive stage and the pit growth changed, 351 

suggesting that tind was highly influenced by temperatures and pressures. As shown in 352 

Fig. 10, tind decreased with the increase in the value of ∆𝐸. Fig. 11 indicates that the 353 



values of 𝑎, 𝑏, and 𝑐 decreased with the increase in temperature and CO2 pressure.  354 

However, the pit initiation time (tinit) cannot be regarded as a simple sum of 𝑡𝑂𝐶𝑃→𝐸𝑟𝑝 355 

and tind. Based upon our previous work [47], tinit can be obtained using Equation (11). 356 

{ 𝐸 = 𝐸oc − 1𝛾 ln [−𝐵𝛾𝐴 𝑡init + exp[−𝛾(𝐸corr − 𝐸oc)]]                                   𝑡init = 𝑡OCP → 𝐸rp + 𝑎exp[−𝑏 · (𝐸 − 𝐸rp(v=0))] + 𝑐      (𝐸 > 𝐸rp)  (11) 357 

 358 

Graphical method is used to calculate the value of tinit and the corresponding results 359 

under different temperatures and pressures are presented in Fig. 12. With the increase 360 

in temperature and pressure from 95 °C/2.8 MPa to 180 °C/3.8 MPa, the tinit values 361 

were 76.8 days, 39.7 days, 34.6 days, and 28.6 days, respectively. In addition, several 362 

researchers concluded that the flow rate and stress played a significant role in 363 

accelerating the tinit [11-30]. Moreover, the maximum tinit was far shorter than the 364 

required design service life-time (15 years) for HP-13Cr SS under the current 365 

conditions. The critical factor determining the life-time was the pitting growth process. 366 

Herein, the correction of tinit by the flow rate and stress could be neglected. Based 367 

upon Fig. 1, the temperature and CO2 pressure increased with the depth of the well. 368 

Therefore, the relationship between tinit and temperature/CO2 pressure can be 369 

transformed into tinit and the depth of well. The results are shown in Fig. 13, whereas 370 

nonlinear fitting equation is given by Equation (12). 371 

tinit = 30.20+130.61×exp(-1.29×Depth(km))           (12) 372 

 373 

3.2 Mechanistic model for the single factor 374 

For HP-13Cr SS, tinit of 76.8 days was obtained for 95 °C/2.8 MPa, which is too long 375 



to investigate the pit growth. In the present work, the pre-initiated pits on HP-13Cr SS 376 

were used to study the pit initiation time. The cumulative probability plot and the 377 

Gumbel plot of the maximum pit depth were drawn from 20 specimens after 378 

pre-initiated pits, as shown in Fig. 14. The fitted Gumbel distribution (red in Fig. 14) 379 

was fairly consistent with the experimentally measured maximum pit depth. The 380 

location parameter (𝜇) and the scale parameter (λ) were found to be 8.28 μm and 0.97, 381 

respectively. Moreover, the typical morphologies of the pits after pre-initiation are 382 

shown in Fig. 15. The growth of pit after pre-initiated pits on HP-13Cr SS can be 383 

described using Equation (13) [47]. 384 𝐷max = 𝐾[𝑡 + (𝑡0 + 𝑡init) − 𝑡init]𝜔 = 𝐾(𝑡 + 𝑡0)𝜔        (13) 385 

where to refers to the pit growth time. Furthermore, the mechanistic model for pit 386 

growth under various temperatures, CO2 pressures, flow rates, and stress levels will 387 

be discussed in detail in the following paragraphs. The morphologies of the maximum 388 

pit and the Gumbel plots under various condition are shown in Appendix 1. 389 

 390 

3.2.1 Mechanistic model for temperature/CO2 pressure 391 

Fig. 16 shows the Gumbel plots of the maximum pit depths measured for ten 392 

specimens at various temperatures and CO2 pressures. It is worth noticing that the 393 

fitted Gumbel distribution shifted to the right and rotated clockwise with the increase 394 

in immersion time, which is in good agreement with the previously reported data [67]. 395 

In addition, the local parameter (μ) and scale parameter (λ) are presented in Table 7. 396 

Moreover, the time-dependence of the averaged maximum pit depth under various 397 



temperatures and CO2 pressures is presented in Fig 17. The variation of the averaged 398 

maximum pit depth with time can be fitted using Equation (12). With the increase in 399 

temperatures and CO2 pressures, the pit proportionality (K) increased from 4.53 to 400 

13.46, whereas the pitting exponent (𝜔) increased from 0.417 to 0.487 (following Eq. 401 

14). Therefore, the results revealed that the growth rate of pit increased with the 402 

increase in temperature and CO2 pressure. Moreover, one should notice that 𝜔 was 403 

located within the range of 0.417 - 0.487. When the 𝜔 was about 0.5, the pit growth 404 

was controlled by diffusion [68]. The depth of pits increased with the increase in 405 

temperature and CO2 pressure, while the typical pit morphologies are shown in Fig. 406 

S1 (Appendix 1). In addition, the relationship between the pit growth parameters and 407 

the well depth are provided in Fig. 18. 408 {𝐾 = 4.46 + 0.26 × exp(0.44 × 𝑑𝑒𝑝𝑡ℎ)𝜔 = 0.37 + 0.05 × exp(0.12 × 𝑑𝑒𝑝𝑡ℎ)           (14) 409 

The maximum pit depth can be calculated using Equation (15). 410 

𝐷max = [4.46 + 0.26 × exp(0.44 × 𝑑𝑒𝑝𝑡ℎ)] × 𝑡0.37+0.05×exp(0.12×𝑑𝑒𝑝𝑡ℎ)  (15) 411 

 412 

3.2.2 Effect of the flow rate on the mechanistic model 413 

As shown in Fig. S2 (Appendix 1), the Gumbel distribution describes the maximum 414 

pit depth under various flow rates. Fig. 19 shows the development of averaged 415 

maximum pit depth, which was fitted from the Gumbel plots (as displayed in Table S1 416 

(Appendix 1)). It can be seen that the maximum pit depth gradually decreased with 417 

the increase in flow rate within the range of 0.31-1 m/s. Furthermore, the growth 418 

kinetics of pits was fitted using Equation (10), and the results show that the value of K 419 



decreased from 4.86 to 3.70 when the flow rate increased from 0.31 m/s to 1 m/s. The 420 

decrease in growth rate of the pit was mainly attributed to the vortex generated inside 421 

the pit, where the distribution of H+ and metal ion was inhomogeneous [15]. The pit 422 

morphologies are displayed in Fig. S3 (Appendix 1), indicating that the presence of 423 

vortex accelerated the pit growth in the horizontal direction and formed the 424 

shallow-disk shape pit on the surface of HP-13Cr SS.  425 

Fig. 20 exhibits the relationship between K and flow rate (V) using Equation (16). 426 𝐾 = −2.93 × exp(0.43 × 𝑉) + 8.15               (16) 427 

Then, the Dmax for the flow rate can be described using Equation (17). 428 𝐷max = [−2.93 × exp(0.43 × 𝑉) + 8.15] × 𝑡0.42        (17) 429 

 430 

3.2.3 Effect of stress on the growth of pit 431 

Based upon the results presented in Fig. 1, it can be noted that there was a transition 432 

between the tensile stress and the compressive stress along the well’s depth. The stress 433 

distribution can be calculated based on the pipe mechanics using Equation (18).  434 

{𝐹 = −0.088𝑑 + 425.93                              (tensile stress, 𝑑 ≤ 5000𝑚)𝐹 = −0.088𝑑 + 425.93     (compress stress, 5000𝑚 ≤ 𝑑 ≤ 7500𝑚)𝐹 = −0.078𝑑 + 624                 (tensile stress, 7500𝑚 ≤ 𝑑 ≤ 8000𝑚)  (18) 435 

The tensile stress and the compressive stress accompany a positive and a negative 436 

sign, respectively.  437 

 438 

Fig. 21(a) indicates that the maximum pit depth increased significantly with the 439 

increase in tensile stress due to the mechanical-electrochemical effect, which is 440 

consistent with some previous studies [30-31]. The relationship among K, 𝜔 and 441 



stress can be expressed using Equations (19) and (20). 442 𝐾 = { 0.016 × exp(−0.012 × 𝐹) + 5.47 (tensile stress)−0.09 × exp(−0.0056 × 𝐹) + 5.40 (compression stress)       (19) 443 𝜔 = {0.041 × exp(0.0026 × 𝐹) + 0.40 (tensile stress)                      0.44                  (compression stress)               (20) 444 

 445 

The pit morphologies are displayed in Fig. S5 (Appendix 1) and suggested that a large 446 

pit was formed on the surface under the effect of tensile stress. However, the increase 447 

in compressive stress within the range of 0-250 MPa represented a limited effect on 448 

the growth rate of a pit, as shown in Fig. 21(b). The values of K and ω with respect 449 

to the stress are presented in Fig 22. It can be noticed that the turning point appeared 450 

at F = 0 MPa (Fig 22(a)). However, the differences between the compressive and 451 

tensile stress values in terms of 𝜔 values can be neglected. For the compressive 452 

stress, 𝜔 remained around 0.44, whereas 𝜔 gradually increased from 0.453 to 0.493 453 

as the tensile stress increased from 175 MPa to 350 MPa. Therefore, the Dmax value 454 

under the impact of stress bounced back following Equation (13), and the relationship 455 

can be expressed using Equations (21) and (22). 456 

 457 

For tensile stress (0 - 350 MPa): 458 𝐷max = [0.016 × exp(−0.012 × 𝐹) + 5.47] × 𝑡0.041×exp(0.0026×𝐹)+0.40   (21) 459 

For compressive stress (0 - -250 MPa): 460 𝐷max = [−0.09 × exp(−0.0056 × 𝐹) + 5.40] × 𝑡0.44          (22) 461 

 462 

3.3 Multi-degree of freedom model for predicting pitting damage under complex 463 



oilfield environment 464 

The mechanistic-chemometrics model proposed in this work can be divided into two 465 

processes: (i) the mechanistic-model under different factors, (ii) Combining the single 466 

factor mechanistic-model using the weight coefficients of each factor and their mutual 467 

interactions. A combination of weight coefficients and sub-model to formulate the pit 468 

prediction model can be described using Equation (23). 469 𝐷max = ∑ 𝑓ii 𝐾i(𝑡 − 𝑡init)𝜔i                  (23) 470 

where i refers the influencing factors, and includes temperature, CO2 pressure, flow 471 

rate, stress and interaction of each factor with others. Moreover, 𝑓i represents the 472 

weight coefficient of ith factor, and 𝐾I and 𝜔I represent the pit proportionality and 473 

exponent of ith factor, respectively.  474 

 475 

3.3.1 Determination of the weight coefficient using chemometrics method 476 

Table 2 summarizes the designed experiments and presents the measured maximum 477 

pit depth on the surface of HP-13Cr SS after being immersed in CO2-saturated 478 

formation water for 30 days. The pit morphologies are displayed in Fig. S8 (Appendix 479 

1). The relationship between the maximum pit depth and the influencing factors using 480 

the statistical regression analysis can be given by Equation (24). 481 𝐷𝑚𝑎𝑥 = 13.09 + 6.52𝑥1 − 0.80𝑥2 + 3.50𝑥3 482 −0.54𝑥1𝑥2 + 2.39𝑥1𝑥3 − 0.18𝑥2𝑥3 483 −0.076𝑥1𝑥2𝑥3 484 

    (24) 485 



where 𝑥1 ,  𝑥2 , and 𝑥3  represent the influencing factors (temperature/pressure, 486 

flow rate, and stress, respectively), and 𝑥𝑖𝑥𝑗 (i and j = 1, 2, 3) represents the 487 

interaction terms. Moreover, the influence of various factors and the interactions 488 

on the maximum pit depth were further justified using the ANOVA analysis.  489 

As shown in Fig. 23, temperature/CO2 pressure is the most significant factor, 490 

followed by the stress and the combined influence of temperature/CO2 pressure 491 

and stress. The effect of a given factor became significant if its F-value was 492 

higher than the critical value of 11.26. The flow rate and interactions among 493 

factors were not significant for the pitting corrosion in the complex oil field 494 

environment. The regression model can be simplified as Equation (25). 495 𝐷𝑚𝑎𝑥 = 13.09 + 6.52𝑥1 + 3.50𝑥3 + 2.39𝑥1𝑥3         (25) 496 

The Pareto analysis is proposed as a quantitative method to determine the weight 497 

coefficients of the maximum pit depth, as given by Equation (26) [50]. 498 𝑃𝑖 = ( 𝑎𝑖2∑ 𝑎𝑖2𝑖≠0 ) × 100%                     (26) 499 

where Pi refers to the percentage effect of each variable on pit depth and ai represents 500 

the coefficient of each variable. The results of Pareto analysis are shown in Fig. 23. It 501 

can be noted that the temperature/pressure are the most significant factors, followed 502 

by stress, and stress interaction, with the corresponding weight coefficients of 52.54%, 503 

28.20%, and 19.26%, respectively. 504 

 505 

3.3.2 Validation of the model with field data 506 

Based on Equation (22), the mechanistic-chemometrics model can be described as 507 



Equation (27). 508 

 509 

{ 𝑡ind = 52.54% × 𝑡𝑇/𝑃 − 28.20% × 𝑡𝐹 − 19.26% × (𝑡𝑇/𝑃 ×  𝑡𝐹)𝐾 = 52.54% × 𝐾𝑇/𝑃 + 28.20% × 𝐾𝐹 + 19.26% × (𝐾𝑇/𝑃 ×  𝐾𝐹)𝜔 = 52.54% × 𝜔𝑇/𝑃 + 28.20% × 𝜔𝐹 + 19.26% × (𝜔𝑇/𝑃 × 𝜔𝐹)   (27) 510 

 511 

The maximum pit depths are summarized in Table 2. Valor et al. [65], Provan et al. 512 

[69], and Cavanaugh et al. [70] reported that the growth kinetics of pits can be 513 

simplified as 𝐷max = 𝐾𝑡𝜔, when the tinit is small compared to the immersion time, 514 

and suggested that the tinit can be neglected in predicting the long-term pit damage for 515 

HP-13Cr SS under complex oilfield environment. 516 

 517 

In order to verify the accuracy of the model for a complex oil environment, the 518 

maximum pit depth formed on HP-13Cr SS was measured after 6 years in service. 519 

The maximum pit depth along the depth of the well is displayed in Fig. 24. It can be 520 

seen clearly that the pit depth initially decreased with the increase in the depth of the 521 

well, followed by a sharp increase. The results also indicate that the maximum pit 522 

depths were found near the top and bottom of the well. As a comparison, the predicted 523 

maximum pit depth along the well profile is shown in Fig. 24. The proposed 524 

mechanistic-chemometrics model is highly reliable in predicting the pitting damage 525 

and can be utilized in current oilfield environments.  526 

 527 

4．Conclusions 528 



The multi-degree of freedom model has been developed to predict the pit behavior 529 

under complex oilfield environment using a combination of weight coefficients and 530 

sub-models of temperature/pressure, flow rate and stress. Based upon the results, 531 

following conclusions are drawn. 532 

 533 

(1) The tinit value decreased with the increase in temperature/CO2 pressure, and the 534 

correction of tinit by flow rate and stress could be neglected. Finally, the 535 

relationship between tinit and temperature/CO2 pressure can be applied to the 536 

whole depth of the well. 537 

 538 

(2) The growth rate of a pit is accelerated with the increase in temperature/CO2 539 

pressure, flow rate and tensile stress. Moreover, the compressive stress shows a 540 

negligible effect on the growth of pit.  541 

 542 

(3) For a chemometrics method, two-level factorial design is performed to identify the 543 

most significant factors and interactions influencing the pit depth formed on the 544 

HP-13Cr SS surface under complex oilfield environments. The temperature/CO2 545 

pressure, stress and their interactions were identified as the most significant factors 546 

in terms of pit depth, and the weight coefficients were determined to be 52.54%, 547 

28.20% and 19.26%, respectively.  548 

 549 

(4) The measured data from Tarim area. in China confirmed the reliability of the 550 



proposed model for predicting the pitting behavior of HP-13Cr SS oil tubes under 551 

complex oilfield environment. 552 

 553 
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Fig. 8 Epit (a) and Erp (b) at different potential scan rates (v) for HP-13Cr SS in 973 

formation water at different temperatures and CO2 pressures 974 
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Fig. 9 OCP evolution of HP-13Cr SS in formation water under various temperatures 982 

and CO2 pressures 983 
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Fig.10 Variation of current density (i) with stable pit formation time of HP-13Cr SS in 997 

formation water under various temperatures and CO2 pressures: (a) 95 oC / 2.8 MPa, 998 

(b) 120 oC / 3.2 MPa, (c) 150 oC / 3.6 MPa, (d) 180 oC / 3.8 MPa 999 

 1000 

 1001 

 1002 

 1003 

 1004 

 1005 

 1006 

 1007 



 1008 

65 70 75 80 85
0.0

0.5

1.0

1.5

2.0
t

ind
 =1.16×10

9
×exp(-E/4.85)+245.77

T
im

e
 (

K
s

)

E (mV)

95℃-2.8MPa(a)

 
65 70 75 80 85 90 95

0.0

0.2

0.4

0.6

0.8

1.0

1.2

t
ind

 =4.56×10
8
×exp(-E/4.99)+127.22

T
im

e
 (

K
s

)

E (mV)

(b)
120℃-3.2MPa

 1009 

65 70 75 80 85
0.0

0.1

0.2

0.3

0.4

0.5

0.6

t
ind

=2.59×10
8
×exp(-E/4.50)+50.61

T
im

e
 (

s
)

E (mV)

150℃-3.6MPa
(c)

 
55 60 65 70 75

0.0

0.2

0.4

0.6

0.8

1.0

t
ind

=3.01×10
5
×exp(-E/7.09)+0.76

T
im

e
 (

K
s
)

E (mV)

180℃-3.8MPa
(d)

 1010 

Fig. 11 Variation of pit induction time with ∆E (Eapp - Erp) of HP-13Cr SS under 1011 

various temperatures and CO2 pressures: (a) 95 oC / 2.8 MPa, (b) 120 oC / 3.2 MPa, (c) 1012 

150 oC / 3.6 MPa, (d) 180 oC / 3.8 MPa 1013 
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Fig.12 Pit initiation time of HP-13Cr SS in formation water under various 1024 

temperatures and CO2 pressures: (a) 95 oC / 2.8 MPa, (b) 120 oC / 3.2 MPa, (c) 150 oC 1025 

/ 3.6 MPa, (d) 180 oC / 3.8 MPa 1026 
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Fig.13 Variety of pit initiation time of HP-13Cr SS in formation water with well depth 1036 
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Fig. 14 Cumulative probability and Gumbel plot of maximum pit depth for HP-13Cr 1051 

SS after pre-initiated pits 1052 
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Fig. 15 Typical morphologies of maximum pits for HP-13Cr SS after pre-initiated. 1067 
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Fig. 16 Gumbel plots of maximum pit depth for HP-13Cr SS under different 1085 

immersion time after pre-initiated pits at various temperature and CO2 pressures: (a) 1086 

95 oC / 2.8 MPa, (b) 120 oC / 3.2 MPa, (c) 150 oC / 3.6 MPa, (d) 180 oC / 3.8 MPa 1087 
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Fig. 17 Time evolution of the mean maximum pit depth fitted Gumbel distribution at 1097 

different temperatures and CO2 pressures 1098 

 1099 

 1100 

 1101 

 1102 

 1103 

 1104 

 1105 

 1106 

 1107 

 1108 

 1109 



0 2 4 6 8

4

6

8

10

12

14

0 2 4 6 8
0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49
R2=0.997

K=4.46+0.26×exp(0.44×depth)

 P
it

ti
n

g
 p

ro
p

o
rt

io
n

a
li
ty

 K

Depth (Km)

R2=0.857

ω=0.37+0.05×exp(0.12×depth)

p
it

ti
n

g
 e

x
p

o
n

e
n

t 
ω

 1110 

Fig. 18 The function of pitting growth kinetics parameters K and 𝜔 with the well 1111 

depth 1112 
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Fig. 19 Time evolution of the mean maximum pit depth fitted Gumbel distribution at 1127 

different flow rates 1128 
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Fig. 20 Variety of pitting growth kinetics parameters K with flow rate 1141 
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Fig. 21 Time evolution of the mean maximum pit depth fitted Gumbel distribution at 1156 

various (a) tensile stresses, and (b) compressive stresses  1157 
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Fig. 22 The function of pitting growth kinetics parameters K (a) and 𝜔 (b) with the 1163 

stress 1164 

 1165 

 1166 

 1167 



 1168 

 1169 

0

20

40

60

80

100

120
 

W
e
ig

h
t 

(%
)

Factors

0%

20%

40%

60%

80%

100%

T/P and FF

80.74

 C
u

m
u

la
ti

v
e

 F
re

q
u

e
n

c
y

52.54

100

T/P

 1170 

Fig. 23 Pareto histogram for weighing the effects of each of the factors on maximum 1171 

pit depth 1172 
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Fig. 24 Six-year-served field data and mechanistic-chemometrics model prediction 1177 

results for HP-13Cr SS along the well profile. 1178 
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Table 1 Chemical composition of formation water 1204 

Composition HCO3
-
 Cl- SO4

2-
 Ca2+ Mg2+ K+ Na+ 

Content (mg L-1) 189 60000 430 8310 561 6620 76500 
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Table 2 Factor values used for factorial design including uncoded and coded form and 1243 

Dmax as the response. 1244 

Experiment 

sequence 

Factor A 

(T / P) 
Factor B 

(V) 
Factor B 

(F) 
Response 

(Dmax) 

 oC / MPa m/s MPa μm 

1 95/2.8 (-1) 0.3 (-1) -250 (-1) 5.59 5.84 5.32 5.74 

2 95/2.8 (-1) 0.7 (+1) -250 (-1) 5.25 5.02 5.65 5.27 

3 95/2.8 (-1) 0.3 (-1) 350 (+1) 7.25 7.94 8.94 8.06 



4 95/2.8 (-1) 0.7 (+1) 350 (+1) 7.07 7.21 7.66 7.32 

5 180/3.8 (+1) 0.3 (-1) -250 (-1) 13.26 14.82 15.33 15.74 

6 180/3.8 (+1) 0.7 (+1) -250 (-1) 12.28 13.06 12.08 13.28 

7 180/3.8 (+1) 0.3 (-1) 350 (+1) 25.03 27.28 28.82 27.22 

8 180/3.8 (+1) 0.7 (+1) 350 (+1) 23.37 24.46 25.36 22.44 

where temperature / CO2 pressure represented by T / P, flow rate represented by V, stress 1245 

represented by F, and the maximum pitting depth represented by Dmax. Also, -237 MPa in factor 1246 

represented compress stress, and 350 MPa represent tensile stress. 1247 

 1248 
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Table 3 Flow rate for each surface of the bump-shaped specimen 1265 

 1 2 3 4 5 6 

Flow rate (m/s) 0.31 0.72 0.85 0.66 0.50 1 
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Table 4 The immersion condition of HP-13Cr SS under extremely oilfield 1303 

environments 1304 

Num
ber 

Temperature (℃)/ 
Pressure (MPa) 

Velocity 

(m/s) 
Stress 

(MPa) 

1 95 oC/2.8 MPa 0 0 

2 120 oC/3.2 MPa 0 0 

3 150 oC/3.6 MPa 0 0 

4 180 oC/3.8 MPa 0 0 



5 120 oC/3.2 MPa 0.31 0 

6 120 oC/3.2 MPa 0.50 0 

7 120 oC/3.2 MPa 0.72 0 

8 120 oC/3.2 MPa 1 0 

9 120 oC/3.2 MPa 0 175 

10 120 oC/3.2 MPa 0 210 

11 120 oC/3.2 MPa 0 270 

12 120 oC/3.2 MPa 0 350 
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Table 5 The value of Epit and Erp at different potential sweep rate (v) under various 1325 

temperatures and CO2 pressures 1326 

 v (mV/s) 95 oC/2.8 MPa 120 oC/3.2 MPa 150 oC/3.6 MPa 180 oC/3.8 MPa 

Epit 

(mVSHE) 

1.000 32.04 ± 10.29  -28.08 ± 8.03  -83.69 ±11.5  -117.39 ±4.42  

0.500 28.08 ± 12.26 -32.03 ± 8.34 -95.2 ±2.48 -133.53 ±13.99 



0.333 17.98 ± 5.39 -36.94 ± 3.89 -98.37 ±5.06 -136.57 ± 6.27 

0.167 10.89 ± 9.58 -39.61 ± 8.89 -108.63 ±2.32 -152.66 ±3.13 

0 -2.92 -48.60 -126.53 -175.95 

Erp 

(mVSHE) 

1.000 -88.67 ± 7.83 -150.96 ± 2.05 -193.01 ± 4.29 -201.21 ± 3.31 

0.500 -107.28 ± 3.25 -160.34 ± 1.42 -199.73 ± 4.07 -208.48 ± 3.39 

0.333 -121.07 ± 3.91 -164.05 ± 5.52 -204.37 ± 0.81 -209.89 ± 2.62 

0.167 -125.07 ± 2.34 -183.1 ± 4.21 -205.51 ± 3.74 -212.38 ± 0.78 

0 -150.18 -192.60 -218.04 -223.65 
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 1343 

Table 6 Electrochemical parameters to calculate the OCP evolution of HP-13Cr SS 1344 

under various temperature and CO2 pressure 1345 

 𝛾 (mV·dec-1) io (A·cm-2) 𝐸oc (mV) 𝜀𝐿(V·cm-1) Ecorr (mV) 

95 oC / 2.8 MPa -89.36 4.93×10-5 -182.7 7.38×103 -275.6 

120 oC / 3.2 -92.67 5.99×10-5 -155.1 6.04×103 -282.4 



MPa 

150 oC / 3.6 

MPa 

-97.37 4.11×10-5 

-117.0 

4.96×103 

-312.1 

180 oC / 3.8 

MPa 

-91.07 2.28×10-5 

-72.8 

84 

-344.5 
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 1375 

Table 7 Gumbel distribution fitting parameters for HP-13Cr SS at different immersion 1376 

time after pre-initiated pits under various temperature and CO2 pressure 1377 



Temperature and 

CO2 pressure 
Time (day) Scale parameter (𝜆) Local parameter (μ) μm 

95 ℃ / 2.8 MPa 

10 0.67 11.85 

20 1.66 14.82 

30 1.56 19.36 

45 1.47 23.34 

60 2.50 27.13 

120 ℃ / 3.2 MPa 

10 0.98 15.10 

20 1.27 20.27 

30 1.39 24.47 

45 2.22 30.22 

60 2.08 34.46 

150 ℃ / 3.6 MPa 

10 1.67 18.13 

20 2.00 25.92 

30 2.33 31.51 

45 2.50 37.95 

60 3.13 44.78 

180 ℃ / 3.8 MPa 

10 0.25 33.53 

20 3.57 53.29 

30 4.55 71.50 

45 6.67 91.6 

60 8.33 100.25 
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