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3Dbioprinting is a technology that combines computing science, biology andmaterial engineering. It has beenex-

tensively explored to fabricate 3D vascularized constructs for tissue engineering. This scalable, reproducible and

highly precise fabrication technology offers great potential to achieve vascularization in printed tissues, which

is an important milestone towards organ printing in the foreseeable future. A successful vascularized tissue inte-

grates a range of hierarchical, perfusable channels within the mechanically supportive biomaterials. This review

summarises the recent advances in the 3D bioprinting of vascularized tissues. Firstly, the common biomaterials

usedasbioinks for 3Dbioprinting are introduced.Whilenatural polymers aremore suitable tomimic extracellular

matrix resulting in effective cell growth, synthetic polymers offer tailorablemechanical properties and printabil-

ity. Afterwards, the main 3D bioprinting techniques and their most recent practical applications in fabricating

perfusable vascular networks are described. Furthermore, the future trends and prospects are also discussed.

© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).
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1. Introduction

3D printing was firstly introduced by Charles Hull in 1983 [1]. With

the assistance of digital 3D computer aided design (CAD), the pre-

designed 3D structures at the desired scale can be precisely fabricated

in a bottom-up and layer-by-layer manner. As 3D printing offers great

geometric accuracy, it has found extensive applications in the fabrica-

tion of 3D structures with complex internal architecture and unique

external features without employing excessive tooling which can

incur high manufacturing costs, wastage of valuable time and ineffi-

ciency of human resources. These applications include a wide range of

areas such as aerospace engineering [2,3], automotive industries [4,5],

electronics manufacturing [6–8], tissue engineering [9–18], regenera-

tive medicine [19–21], food industries [22–24], drug delivery [25–28],

cancer research [29–33], high-throughput screening tests [34–36],

self-propelled microdevices [37–39], joint replacement implants

[40–42], prosthetics [43,44] and bio-robot models [45].

3D bioprinting is the process that patterns and assembles living and

non-living biomaterials via a 3D structural organization using com-

puter-aided transfer processes [46–48]. Because of its superior precision,

fast production and easy manipulation, bioprinting has been intensively

explored for fabricating cell-laden tissue scaffolds for tissue engineering

with the ultimate goal of organ printing [49–57]. Traditionally, the re-

placement of defected tissues/organs relies on transfer of the autologous

andallogeneic ones.However, theextreme lackof donors is themain lim-

itation which delays the effective treatment for patients [58]. To address

this issue, bioprinted tissues/organs with tissue-specific cells and cus-

tomized sizes can be the promising substitutes for the autologous/alloge-

neic treatment [59]. The advantage of using 3D bioprinting to fabricate

tissues/organs is theflexibility of usingdifferentbiomaterials and specific

cells and, thus, a multi-scale and multi-material fabrication process can

be achieved [60]. By simultaneously printing biocompatible materials as

matrices, tissue-specific cells and bioactive growth factors, following a

predesigned order of different layers, the printed 3D constructs can pro-

mote tissue regeneration and restore their functions effectively [61–63].

Natural vascular tissues/organs have a range of vessel networkswith

different structures and size range frommicrometre-sized capillaries to

millimetre-sized vessels [64,65]. Capillaries have a monolayer of endo-

thelial cells (ECs) while larger vessels have three layers: (1) an inner

EC layer; (2) a middle layer which is composed of smooth muscle cells

(SMCs), elastic tissue and collagen fibres; (3) an outer layer which is

composed of elastic tissue and collagen fibres [66]. Moreover, different

sized vessels have different types of ECs, and the following three types

of ECs are commonly used in tissue engineering applications: human

umbilical vein endothelial cells (HUVECs), human microvascular endo-

thelial cells (HMVECs), and induced pluripotent stem cell-derived

endothelial cells (iPSC-ECs) [66]. Amongst them, HUVECs are the most

frequently used endothelial cell type for bioprinting vessels. HMVECs

have great potential to form microvascular networks as they are origi-

nally obtained from micro-vessels. As iPSCs are capable of self-

renewal and multi-lineage differentiation, ECs derived from iPSCs are

an ideal autologous alternative to primary ECs [67]. Additionally, as

human iPSCs (hiPSCs) reprogrammed from patients’ specific cells do

not cause immunological response, the hiPSC-ECs have gained exten-

sive attention for 3D bioprinting of customized vascularized tissues/or-

gans [68–70]. On the other hand, SMCs play an important role in vessel

structure and function in physiological and pathological conditions.

In terms of vessel formation, vasculogenesis and angiogenesis are

the two most studied models. Vasculogenesis triggers the formation of

primitive vascular plexus during embryonic development. It also hap-

pens in the process of EC differentiation from endothelial progenitor

cells. Angiogenesis is the process in which ECs sprout and form new

blood vessels from pre-existing vessels. It normally has two stages:

sprouting and intussusception. Sprouting needs the assistance of

growth factors such as vascular endothelial growth factor (VEGF),

angiopoietin-2 (Ang2), and fibroblast growth factor (FGF) to trigger

the proangiogenic gene in quiescent vessels to form interstitial col-

umns/tubes. Intussusception is the process in which the interstitial cel-

lular columns are inserted into the pre-existing vessels followed by the

growth of those columns to form new vessels [66].

Although current 3D bioprinting has achieved a remarkable break-

through in fabricating a small range of vascular networks in vitro,

there is still a gap between clinically implantable vascularized tissues/

organs and the capabilities of the current techniques. One of the vital

challenges of 3D bioprinting of vascularized tissues is to create a range

of hierarchical and perfusable channels with specifically allocated bio-

materials and cells to allow the access of cells to nutrients and oxygen,

and removal of wastes [71–75]. Lack of suitable vasculature in the

bioprinted tissues has limited its applications in the area of tissue regen-

eration [76,77]. Manufacturing of personalised tissues/organs would be

the ultimate goal of 3D bioprinting, as patients can be treated more ef-

ficiently and effectively by transplanting customised tissues/organs in-

stead of the allogeneic ones [78]. Overall, a successful 3D bioprinted

tissue should have the following typical characteristics: (1) replicate

the tissue-specific vascular networks in a certain size range; (2) possess

sufficient mechanical properties which match the host tissue; (3) inte-

gratewith the body vascularization system tomaintain tissue functions.

This review summarises the recent advances in the 3Dbioprinting of

vascularized tissues. The commonly used biomaterials, 3D bioprinting

techniques and their most recent practical applications in fabricating

perfusable channels/vascularized constructs are described. Further-

more, the future trends and prospects are also discussed.
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2. Biomaterials used in vascular bioprinting

Biomaterials and cells are the most important components used in

vascular bioprinting. It has recently been defined by Groll et al. [79]

that a 'bioink' is a formulation of cells that may also contain biologically

active components and biomaterials and is suitable for processing by an

automated biofabrication technology. On the other hand, a formulation

containing only biomaterials and/or bioactive components was defined

as 'biomaterial inks' [79]. The ideal biomaterials used in bioinks or

biomaterial inks for fabricating vascularized tissue should not only be

capable of forming 3D structures with high resolution, appropriate me-

chanical properties and biodegradability to act as a supportive frame,

but also possess good biocompatibility and low cytotoxicity to facilitate

cell growth. Natural polymers such as fibrin, collagen, gelatin and algi-

nate possess excellent biocompatibility which allows them to be com-

monly formulated with cells to form bioinks. Besides, they are suitable

to mimic extracellular matrix (ECM) environment, leading to effective

cellular growth and function, hence resulting in effective tissue regener-

ation. However, these biomaterials usually encapsulate and confine

cells, which results in limited cell-to-cell interactions [80]. Furthermore,

natural polymers commonly have poor mechanical properties and un-

desirable fast degradation rates which limit their applications in

bioprinting. Therefore, synthetic polymers have been increasingly

used or combined with natural biomaterials to print 3D constructs for

tissue engineering as they can offer excellent mechanical property to

match the loading requirements of native tissues or organs. Moreover,

synthetic polymers have tailorable processability which is beneficial to

the resolution of 3D bioprinting [81]. Therefore, composite materials

composed of both synthetic polymers and natural biomaterials are the

best promising candidates for 3D bioprinting in the future.

2.1. Natural polymers

2.1.1. Collagen

Collagen is themain component of ECMwhichmakes it an excellent

candidate for supporting cell growth for tissue regeneration. Type I col-

lagen hydrogels are the most frequently used collagen protein type for

3D printing of vascularized tissues as they provide an ideal microenvi-

ronment for angiogenesis. In order to facilitate the formation of specific

vasculature, the concentration of collagen needs to be carefully selected.

Collagen gels with concentrations between 1.2 to 1.9 mg/mL support

stable sprout formation as they allow the EC proliferation andmigration

[82]. Collagen has been primarily used for extrusion-based bioprinting

as it offers quick gelation rate under suitable conditions and acceptable

mechanical properties after gelation. The gelation kinetics of collagen

hydrogels are dependent on pH and temperature, with a maximum

storagemodulus recorded at pH8 and 37 °C, respectively [83]. However,

lack of sufficient mechanical properties is the main limitation of apply-

ing collagen-only hydrogels as load-bearing tissue scaffolds [84]. There-

fore, synthetic polymers with better mechanical properties were

combined with collagen to support the structure of the final constructs.

In order to improve the printability of collagen gels, biocompatible

and non-toxic crosslinkers, such as tannic acid, can be adopted [85].

With the assistance of crosslinker, a 3D structure of intestinal villi

with an endogenous capillary network has been reported recently

[86]. In addition to a suitable crosslinker, materials with relatively fast

gelation rate can be blended with collagen to optimise the printability

of collagen hydrogels. Alginate has been used for blendingwith collagen

to accelerate the gelation process and achieve a better shape fidelity.

After gelation, alginate was removed from the structure by chelation,

leaving a collagen-only 3D structure. Although collagen has been prom-

isingly used for 3D bioprinting, its inferior printability hinders its appli-

cation for printing vessels with high resolution. Other than blending

with different materials to improve the printing resolution of

collagen-based hydrogels, using suitable printing techniques may be

another solution to address this issue.

2.1.2. Gelatin

Gelatin is a fibrous protein derived from collagen by irreversible

hydrolysis. Gelatin has the advantages of high water-absorbing ability,

excellent biocompatibility, non-immunogenicity and complete biode-

gradability. Aqueous gelatin is thermosensitive and forms hydrogel

through hydrogen bonding at low temperatures (< 35 °C), whereas at

37 °C, the solid gelatin can turn into viscous liquid and easily be printed

using extrusion-based printing. As pure gelatin dissolves completely

within 24 hrs, it is usually used as a sacrificial support material which

is removed after printing, leaving hollow channels for obtaining

vascularized tissues. As mentioned above, as HUVECs are the main en-

dothelial cell type used to form vessels. HUVEC-laden sacrificial gelatin

bioink has been increasingly used to fabricate vascularized tissues.

After removing gelatin from the matrix, which is usually collagen, the

inner surfaces of the hollowed channels get lined with HUVECs which

promote the vessel formation by angiogenesis. Although researchers

have endeavoured to improve the printability and stability of gelatin-

based bioinks, for example, by using thickeners (e.g. nanoclay) and

transglutaminase to increase the shape fidelity of final gelatin 3D struc-

tures [87,88], low printing resolution (> 100 μm) is themain obstacle in

using gelatin-based bioinks as matrix materials for 3D bioprinting.

To address this issue, gelatin has been methacrylated which can be

covalently cross-linked to forma strongermaterial (i.e. GelMA)with de-

cent biological and physicochemical properties for 3D bioprinting.

GelMA has excellent processability and can be reversibly crosslinked

byheat and irreversibly stabilized byUV [89,90].Moreover, thephysico-

chemical properties of final products can be tuned by crosslinking den-

sity of methacryloyl group. Therefore, GelMA is a promising biomaterial

that can preserve the integrity of the final bioprinted constructs and

maintain a good cell viability, proliferation and spreading for 3D

bioprinting of vasculature [91]. In order to directly print perfusable

channels, GelMA has been increasingly combined with alginate for co-

axial extrusion-based printing.With the assistance of rapid-gelling algi-

nate, the shape fidelity of the coaxially printed tube can be well

preserved. Again, ECs, such as HUVECs, and growth factors, such as

VEGF, can be blended into those bioinks to form vessels in the final

structures with good cell viability. Additionally, the mechanical prop-

erties of GelMA-based hydrogels can be tuned according to the req-

uirement of specific tissues. Soft GelMA-based hydrogels promote

vasculogenesis and capillary formation of human dermal microvascular

ECs, while stiffer GelMA-based hydrogels support osteogenesis and

bone formation. Themain disadvantage of usingGelMA asmatrixmate-

rial for bioprinting is the UV-dependent gelation process. UV exposure

and toxic photoinitiators have been reported that negatively affect

cell-viability. Therefore, crosslinking using blue light (405 nm) is more

preferred.

2.1.3. Decellularized extracellular matrix

Decellularized extracellular matrix (dECM) is the cell-removed tis-

sue which retains the ECM frameworks. As ECM is amixture of different

components, such as collagen, elastin and growth factors, dECM is a cell-

friendlymaterialwhich offers excellent biological activity, easy process-

ability and tailorable degradation rates [92,93]. These advantages make

dECM a promising candidate for 3D bioprinting of vascularized tissues

without an excessive number of steps for blending different ingredients.

Moreover, as each tissue or organ has its specific ECM components,

using dECM of targeted tissue offers better cellular growth and function

than using other biomaterials [94]. Additionally, tomatch the stiffnesses

of different tissues, the mechanical properties of printed dECM constr-

ucts can be tailored by incorporating crosslinkers such as PEG-based

crosslinkers or methacrylating dECM to make it UV-crosslinkable

[95,96]. As the components of different tissues support different biolog-

ical functions, it is ideal to use dECMwhich is derived from natural vas-

cular tissues, such as ethically derived aorta and venae cavae, as the

biomaterial for bioprinting of vascularized tissues. Furthermore, consid-

ering the potential immune response and accidental pathogen transfer
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induced from the non-autologous dECM, it is ideal to use patient-

specific tissue derived dECM as the biomaterial for printing vascularized

tissues [97,98].

However, a relatively slow gelation process hinders the use of dECM

for 3D bioprinting as the shape fidelity is poorly preserved. This disad-

vantage can be improved by incorporating fast-gelling materials such

as alginate. Furthermore, making dECM UV-crosslinkable provides the

potential to use laser-assisted printing techniques to increase the print-

ing resolution of the final 3D structures.

2.1.4. Fibrin

Fibrin is the main extracellular constituent of blood clot and pos-

sesses inherent cell-adhesion capabilities on account of its multiple

cell-adhering motifs [99,100]. Fibrin helps EC proliferation by directing

associated cells to growth factors, such as VEGF and FGF, to promote an-

giogenesis [101,102]. Fibrin also supports the growth of ECs as a scaf-

folding material and exhibits shear-stiffening property under high

strains, which canmimic the non-linear elastic behaviour of soft tissues.

Therefore, fibrin has been widely used for wound healing and tissue

remodelling [103–105].

However, lack of decentmechanical property and rapid degradation

are the main limitations of using fibrin as a 3D bioprinting material.

Therefore, blending fibrin with more printable polymers to make me-

chanical property and degradability more tunable could be a solution

to address this issue. Another possible option is to chemically modify fi-

brin, for example, by conjugating fibrin with PEG to better control the

mechanical properties while maintaining good bioactivity of fibrin.

2.1.5. Alginate

Alginate, which is renewably sourced from brown algae, forms hy-

drogel through ionic crosslinking in the presence of divalent cations,

such as Ca2+, Mg2+ and Ba2+. The cross-linked alginate hydrogel is

composed of hydrophilic polymer chains which have a large water-

holding capacity. Moreover, its porous internal structure plays an

important role in the diffusion of nutrients and gases for cellularmetab-

olism and removal of the resultant wastes. Therefore, alginate hydrogel

has been widely used as scaffolding material for tissue engineering. As

alginate possesses rapid gelation capability, which improves the shape

fidelity, tailored degradability and shear-thinning characteristic which

minimises the effect of shear stress on cells, it has been extensively

used in inkjet and extrusion-based 3D bioprinting [91,106]. For inkjet

printing, the viscosity of inks is mainly affected by concentration and

molecular weight of alginate, cell density and temperature, with too

viscous inks (> 20 mPa s) being not able to be jetted out [107]. Pre-

crosslinking is usually applied before extrusion-based printing to

provide sufficient deposition quality followed by exposing the printed

scaffolds to high concentration crosslinker to achieve full crosslinking.

In addition to being a matrix material, alginate has also been used as a

sacrificial material to help achieve a high shape fidelity in perfusable tu-

bular structures [108]. The removal of the ionically cross-linked alginate

hydrogels from a construct can be achieved by releasing the divalent

ions crosslinkers via exchange reactions with monovalent cations pres-

ent in the surrounding medium [109].

Although ECs have been incorporated with alginate to form bioinks

for 3D bioprinting of vascularized tissues, the viability of ECs in alginate

hydrogels was only around 71% with alginate hydrogels not supporting

vascular morphogenesis, which is not ideal compared to that of other

aforementioned biomaterials [110]. In order to improve its biocompati-

bility and bioactivity, incorporating more cell-friendly biomaterials,

such as collagen and fibrin, and/or proangiogenic growth factors, such

as VEGF, have been approved as good approaches to facilitate the vascu-

lar network formation [111]. Furthermore, as alginate does not have

RGD molecules, which are responsible for cell attachment, synthetic

peptideswith RGDmolecules are incorporatedwith alginate to improve

cell growth [112].

2.2. Synthetic polymers

Synthetic polymers, such as poly(ethylene glycol) diacrylate

(PEGDA), and poly(ethylene glycol)-tetra-acrylate (PEGTA), have been

used for 3D bioprinting of vascularized constructs on account of their

tailorable mechanical properties, processability and biocompatibility.

PEGDA and PEGTA are PEG derived photocrosslinkable polymers

which contain acrylate groups for photopolymerization. Therefore,

PEGDA and PEGTA are commonly used for UV/visible light assisted

printing techniques. The crosslinking rate of these two polymers ranges

from several seconds to minutes depending on the type and concentra-

tion of photoinitiators [113]. The printability is affected by rheological

propertieswhich are dependant onmolecularweight and concentration

of polymers. As PEG itself is not an ideal material for cell growth due to

the lack of cell-adheringmoieties, PEGDA and PEGTA are normally com-

bined with other cell-friendly materials such as GelMA to improve their

cell response. PEGDAacts as a better scaffold for cell growth and spread-

ing due to its branched tetravalentmolecular structure andmultiple ac-

tive crosslinking sites which allow formation of more porous and stiffer

structures [114,115].

Pluronic® is another frequently used synthetic polymer for 3D

bioprinting of vascular networks. It is a polyoxyethylene–polyo-

xypropylene–polyoxyethylene (PEO–PPO–PEO) amphiphilic triblock

copolymer which possesses thermoreversible gelation behaviour. Be-

cause of this characteristic, Pluronic® is usually used as a sacrificial bio-

material which can be removed leaving behind patterned vascular

networks. By incorporating ECs and cell-friendly biomaterials such as

GelMA, fibrin and collagen, vascular networks (5-500 μm) with an-

giogenic sprouting can be obtained [116–118]. However, the main

disadvantage of using Pluronic® is the need for a low temperature

(< 4oC) to liquefy this polymer, which limits its application in other

high-resolution printing techniques other than extrusion. Therefore,

capillary-scale networks cannot be bioprinted by using Pluronic®.

3. Bioprinting techniques

3.1. Inkjet bioprinting

While inkjet printers have been ubiquitously used in offices and

homes to print 2D texts and images on paper, researchers are more in-

terested in exploring further potential functionalities of such printers to

fabricate 3D biological constructs which require a precise deposition of

biomaterials as droplets and high-resolution patterning on a specific

substrate. Inkjet printing can work either with a single-ink system or a

multiple-ink system, both approaches can precisely print single/multi-

ple materials at micrometre resolution with essentially no restrictions

on the geometric complexity of the spatial arrangement. Therefore,

this technique has the potential to create constructs or cell scaffolds

with complex internal structures, such as connected channels and

pores, which are of great importance for cell growth. There are two

main types of inkjet printing: (1) Continuous inkjet printing (CIJ) and

(2) Drop-on-demand inkjet printing (DOD). However, CIJ has a few crit-

ical limitations, such as the risk of contamination of final products, the

obligatory use of electrically conductive inks and low printing resolu-

tion. Therefore, DOD is the most common inkjet printing technique

which has been extensively used for 3D bioprinting.

DOD inkjet printing generates droplets only at required places by

propagating a pressure pulse in a fluid filled chamber. Because droplets

are only ejected when required, the material waste is minimal com-

pared to CIJ. DOD inkjet printing also minimises the risk of contamina-

tion of product because a recycling system is not needed, which

means the ink used is always fresh. DOD inkjet printing can be further

divided into two sub-types as shown in Fig. 1: (1) piezoelectric DOD

inkjet printing, in which the formation of droplets occurs bymechanical

actuation of a piezoelectric material which surrounds the ink chamber,

this sudden volume change of the ink chamber generates droplets.
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(2) Thermal DOD inkjet printing, in which a vapour bubble is generated

by a heater/resistor which can vaporise a small volume of the ink caus-

ing a droplet to be ejected.

As mentioned earlier, different materials can be printed through in-

dividual channels using DOD inkjet printing, which allows for reactive

inkjet printing, in which a droplet of one ink can be accurately printed

on top of a deposited droplet of another ink, causing reactions and for-

mation of product material at the specified positions [119]. Reactive

inkjet printing is usually used to print materials which are insoluble or

barely soluble to form printable liquid inks but can be formed through

reaction with different liquid reactant materials. This approach opens

a new window for printing materials and solidification mechanisms,

thus facilitating formation of 3D constructs with tricky outer and inner

structures.

Inkjet printing has been successfully used to print cell-laden mate-

rials with high post-printing cell viability which is the first step towards

bioprinted 3Dvascularized tissues [121,122]. As vascular networks have

complex branches, one of the challenges is to print overhanging

structures, especially without a supporting material. Improving the

quality of overhanging structures and fully addressing this challenge is

essential to the success of fabricating vascular networks. After the first

successful tubular structure fabricated by inkjet printing in 2009 [123],

Christensen et al. [120] reported that two vessel-like tubular structures

with bifurcations were fabricated using reactive inkjet printing with

alginate hydrogel. Fig. 2(a, b) schematically illustrates two setup config-

urations, in horizontal and vertical directions, for printingwhich can ad-

dress the challenge of non-printability of overhanging structures. Fig. 2

(c-h) shows different views of inkjet-printed alginate tubular structures

with or without cells. It was noticed that structures printed without

cells had higher feature resolution than those printed with cells. This

difference in resolution was due to the presence of cells in the bioink

causing a poor quality of droplet formation andwider deposition trajec-

tories during printing. The cell viability was tested to investigate the ef-

fect of the printing process on the living cells (NIH 3T3 mouse

fibroblasts). It was found that the viability of the cell within the post-

printed structure was 92.4% right after printing and 90.8% after 24

hours of incubation, indicating negligible effect of the printing process

on the viability of the printed cells. However, the perfusion performance

under long-term cell culture environment is missing in this early re-

search. Another limitation is that this work did not integrate the

bioprinted tubular structures with the parenchymal tissue for fabricat-

ing a functional vascularized tissue model as the 3D structures were

printed directly into a crosslinker pool which did not have necessary

constituents for cell culture and growth.

The main advantages of using inkjet printing as a 3D bioprinting

strategy are: (1) using as low as pico-litre volume of materials which

can dramatically save the costs of biomaterials, such as growth factors,

hormones and enzymes, which are very expensive [124]; (2) precise

control of deposition of droplets allowing a high, micrometre scale res-

olution [125]; (3) the non-contact characteristic of inkjet printing min-

imises the risk of cross-contamination of the final product, and the

waste of material is minimised; (4) it is easy to introduce gradients in

concentration or number of biomaterials or cells by altering the droplet

size and frequency [126]. However, it also has intrinsic drawbacks:

(1) limited choices of printable materials due to the specific require-

ments of viscosity and surface tension; (2) the mechanical stress and

heat during jetting process may affect the activity of cells and sensitive

biomaterials [124]; (3) the nozzle geometry may affect printing pat-

terns at high resolution [125]; (4) clogging of the nozzle leading to ir-

regular droplet sizes and directionality [124]; (5) difficulty in

achieving large scale constructs due to the slow fabrication speeds of

droplet-based printing; (6) cell aggregation and sedimentation in ink

reservoir. However, inkjet printing offers the potential to fabricate

multi-material and multi-scale constructs with complex vascular struc-

tures at a high printing resolution, as its building block, i.e. jetted drop-

let, has a very small volume in picolitre range [127].

Fig. 1. Schematic illustrations of drop-on-demand (DOD) piezoelectric and thermal inkjet

printing.

Fig. 2. (a, b) A schematic showing the inkjet printing systemand the processwith different printing directions. (c, d) Top and global viewof a bifurcated structure using horizontal printing

(without cells). (e, f) Top and global view of a bifurcated structure using vertical printing (without cells). (g, h) Global view of inkjet-printed structure with both horizontal and vertical

bifurcations with (g) and without (h) cells. Scale bar, 3 mm. (images adapted from ref. [120] Copyright © 2014 Wiley-VCH)
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3.2. Extrusion-based bioprinting

In the extrusion-based bioprinting, (bio)inks are dispensed by a

deposition system which allows the precise deposition in the form of

cylindrical filaments. The deposited (bio)inks require suitable solidifica-

tionmechanisms to achieve good stability after printing. The key advan-

tage of extrusion-based bioprinting is the high printing speed which

allows large scalability in a short period of time. Additionally,

extrusion-based bioprinting is also capable of printing cell-laden mate-

rials with high cell density which is essential for any potent post-

biofabricated tissues/organs [128–131]. However, extrusion-based

bioprinting also has its intrinsic drawbacks: (1) the resolution is nor-

mally low. Typically, the minimum size of final product is over 100 μm

[132], resulting in the lack of precise patterning and organizing of

cells; (2) the materials used in extrusion-based printing require the

shear thinning ability to overcome their surface tension to ensure

proper extrusion in the form of cylindrical filaments; (3) for cell-laden

bioinks, the shear stress or the solidification methods may harm the

viability of living cells.

3.2.1. Mechanical extrusion bioprinting

The bioinks used formechanical extrusion-based bioprinting are for-

mulated in semi-liquid or hydrogel form. The bioinks are then pushed

out through a nozzle using either pneumatic pressure or a piston or a

constantly forward-rotating screw inside the ink reservoir. Fig. 3(a) il-

lustrates the pressure-driven and screw-driven extrusion printing. The

piston-driven extrusion provides faster and better controllability over

ink deposition in comparison to the pneumatic extrusion where the

changes made in the gas volume takes longer time to show effect on

the ink dispensing. Screw-driven extrusion are better suited for very

high viscosity hydrogels. They are, however, less suitable for cell-laden

hydrogels as the relatively higher pressure and shear stress may nega-

tively affect the viability of the embedded cells. The rate of extrusion de-

pends on the required geometric complexity and resolution of the

construct being fabricated and on the physiochemical properties of

the (bio)inks such as the solidification time and tolerance to shear

stress. Tomaintain a self-standing structure, inks with higher viscosities

than those used in droplet-based printing are used [133].

3.2.2. Thermal extrusion bioprinting

Fused deposition modelling (FDM) is a variant of extrusion-based

printing. It is capable of fabricating 3D structures by depositing ther-

mally softened materials, such as thermoplastics and sugars, through a

heated nozzle as illustrated in Fig. 3(b). In FDM, solid state materials

(e.g. filament, powder, pellet) are heated to a temperature near their

specific melting point, and are then extruded out of a heated nozzle as

semi-molten strings following predefined CAD based patterns to form

layers. Once a layer is completed, the substrate/platform moves down

in Z direction by a predefined distance (layer thickness) to start printing

the next layer. Some commercial FDM machines can process multiple

materials at a time, allowingmore than onematerial to be deposited si-

multaneously, forming multi-material constructs, or using the second

material as supporting or sacrificial material which can be easily re-

moved after printing.

As aforementioned, a successfully engineered tissue/organ requires

the fabrication of vascular networks with hierarchical and perfusable

channels [134]. Currently, there are two approaches, which are direct

and indirect printing, to achieve perfusable channels. Direct printing

uses cell-laden or cell-compatible materials as (bio)inks which are re-

quired to possess relatively fast solidification rate to form a stable con-

struct. However, direct printing of hollow channels has strict

requirements in terms of materials, solidification mechanism, etc.

which narrow down the choices of printable materials and printing

methods. In order to address this challenge, the indirect printing

approach prints sacrificial mold together with other supportive bioma-

terials to fromamulti-materialmatrix system [135,136]. Once theprint-

ing process is finished, the sacrificial mold is removed to form the

hollow structures. This method has been recently explored to better

mimic native organ-specific tissues in terms of mechanical properties,

geometries and biocompatibility [98,137–139].

Coaxial extrusion printing has been increasingly explored for direct

3D bioprinting of vascular constructs on account of their simplified

printing process and scalability [140–144]. By precisely printing specific

cell-laden bioinks according to the native blood vessel structure, the

emulated vascular constructs can be achieved. Jia et al. [115] designed

a multi-layered coaxial extrusion bioprinting system and successfully

fabricated a range of cell-laden vascular constructs using a biocompati-

ble hydrogel mixture containing GelMA, alginate and PEGTA. The solid-

ification of the cell-laden hydrogel mixture was achieved by two-step

crosslinking: ionical crosslinking of alginate and photo-crosslinking of

GelMA and PEGTA as shown in Fig. 4(a). The printability of the mixture

and themechanical properties of the crosslinked construct can be tuned

by altering the ratio between GelMA and PEGTA. The size of the

vascularized constructs can be manipulated by using different designs

of multi-layered coaxial nozzles (Fig. 4(b)). As can be seen from Fig. 4

(c), vascularized constructs with different sizes were successfully fabri-

cated. Moreover, the biocompatibility of the bioprinted vascularized

constructs was validated as the embedded endothelial and stem cells

Fig. 3. Schematic illustrations of (a) mechanical extrusion, which has three main types according to the mode of operation; and (b) Fused deposition modelling (FDM).
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performed a good spreading and proliferation. Similarly, instead of

printing the ECs together with the hydrogel to form the channel wall di-

rectly, Cui et al. [145] recently used the same method to fabricate self-

standing and small-diameter vascularized constructs which is inte-

grated with the SMCs and ECs to replicate the complexity and

functionality of natural blood vessels. By coaxial printing of the inner

(endothelial cell-loaded slurry) and outer (smooth muscle cell-loaded

catechol-functionalised GelMA, GelMA/C) chambers followed by post

crosslinking, the vascularized constructs with ECs were achieved with-

out collapse as shown in Fig. 4(e-k). The authors claimed that the needle

Fig. 4.Coaxial 3D extrusion bioprinting of vascular constructs. (a) A schematic showing the bioprinting process of thehollowchannelswhichwere achievedby two-step crosslinking of the

cell-laden hydrogel mixture where alginate was crosslinked by CaCl2; GelMA and PEGTA were crosslinked by UV. (b) The designed multi-layered coaxial nozzles and schematic diagram

showing fabrication of perfusable hollow tubes with constant diameters and changeable sizes. (c) Fluorescence microscope images of the hollow channels fabricated by coaxial extrusion

printing with different sizes. (d) Fluorescence microscope image of a perfusable vasculature which was illuminated by green fluorescent beads. The inset is the enlarged image of the

perfusable hollow channels which were illuminated by red fluorescent beads. (images adapted from ref. [115] Copyright © 2016 Elsevier Ltd.) (e) A schematic showing the

vascularized construct fabricated by coaxial 3D extrusion printing. (f) Photo image of the extrusion bioprinter. (g) The side view of the bioprinted vascular construct. (h) The top view

of the vascular construct after 24h of perfusion culture. (i) Microscopic images and 3D optical maps of the bioprinted vasculature in straight and bifurcated regions. (j) SEM image of

the cross-sectional morphology of bioprinted hollow channel. (k) Enlarged SEM image of the cross-sectional surface of the bioprinted hollow channel. (images adapted from ref. [145]

Copyright © 2019 IOP Publishing Ltd.)
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(printhead) gauge can be easily replaced to fabricate vascularized con-

structs with different sizes to mimic the hierarchical vascular networks

in native tissues. In order to increase the cell affinity, which results in

improvement in generation of functional tissues, Gao et al. [146] used

vascular-tissue-specific bioinks, i.e. combinations of vascular-tissue-

derived extracellular matrix and alginate with ECs and vascular smooth

muscle cells, respectively, to fabricate vascularized constructs by using

coaxial extrusion printing. The advantage of this work over others was

the in vivo study which showed excellent patency, well-retained endo-

thelium, matured smooth muscles, and integration with host tissues.

These pioneer works showed that the coaxial extrusion printing pos-

sesses the great promise of fabricating vascular constructs with high as-

pect ratio. The flexibility of dimensions, such as diameter and length,

makes coaxial extrusion printing highly suitable for fabricating tubular

constructs. However, using coaxial extrusion printing to print branched

structures is yet to be achieved.

Although fabrication of vessel-like hollow channels has been suc-

cessfully achieved as mentioned above, printing multi-scaled heteroge-

neous constructs is still required to match the native tissues. Most

recently, Kang et al. [147] successfully fabricated a heterogeneous,

multi-cellular, and multi-material construct which was aiming to

mimic the liver unit, i.e. hepatic lobule, by using extrusion bioprinting

of alginate and gelatin. Fig. 5(a) schematically shows the setup of the

multi-scaled extrusion bioprinting. It can be seen that the fabricated he-

patic lobule was composed of ECs, hepatocytes and lumen (hollow

channel). By simultaneous printing of the three materials, a multi-

scaled and vascularized biomimetic construct was obtained (Fig. 5

(b)). Fig. 5(c) shows the well-preserved structural integrity of the con-

struct, fabricated by using the pre-set cartridge, after in vitro culture for

7 days, whereas the mix-printed sample showed inconsistencies in the

structure. This is attributed to the spatial cell arrangement and en-

hanced cellular organization of each cell type.

However, the directly printed vascular constructs without suppo-

rting materials are prone to deform or collapse when printing tissues,

especially organs with significantly larger dimensions and higher com-

plexity. Therefore, an alternative 3D extrusion printing strategy has

emergedwhichdirectly prints the large-sized constructs in a supporting

medium. Noor et al. [98] used this method to successfully print a

cellularized human heart with major blood vessels using cardiac and

endothelial cell-laden hydrogels as shown in Fig. 6. The left and right

ventricles of the printed heart were injected with red and blue dyes,

respectively, in order to demonstrate hollow chambers and the septum

in-between them as shown in Fig. 6(e). Similar method has been

recently adopted to fabricate tumor models (glioma) to evaluate the

mechanism of angiogenesis and tumor vascularization, which provides

a feasible approach for fabricating microenvironment for vascul-

arization [148].

Anothermethod to address the issues associatedwith direct printing

of vascularized constructs is indirect printing where a sacrificial mold is

used. Recently, personalized thick and vascularized cardiac tissue has

been fabricated using indirect 3D extrusion bioprinting. The bioink

contained cardiomyocytes and ECs which were differentiated from

Fig. 5. (a) Schematic illustration of the pre-set extrusion bioprinting technique for hepatic lobule printing. (b) Averagewidth of the printed construct. (c) Structural integrity inspection by

immunostaining of CD31 (red), albumin (green), MRP2 (green), and nucleus with DAPI (blue) on day 7 post-printing. (images adapted from ref. [147] Copyright © 2020 Wiley-VCH).

Y. Zhang, P. Kumar, S. Lv et al. Materials and Design 199 (2021) 109398

8



patient’s reprogrammed hiPSCs. Therefore, the final printed constructs

fully match the immunological, biochemical and anatomical properties

of the patient [98]. Skylar-Scott et al. [139] also used hiPSCs and indirect

3D extrusion printing to successfully fabricate a vascularized cardiac tis-

sue. As sacrificial material was used to create hollow vascular channels

whichwere embedded in thematrix, the authors named this biomanuf-

acturing method as sacrificial writing into functional tissue (SWIFT) as

shown in Fig. 7(a). In order to investigate the effect of the vascular net-

works on the cell viability after printing, a perfusable tissue with high

cell density and vascular channels was fabricated as shown in Fig. 7(b,

left). After removing the sacrificial ink, gelatine, the vascular channels

were perfused with hyperoxygenated medium (95% O2, 5% CO2) at a

flow rate of 250 μL/min for 12 hours. It can be seen from Fig.7(b,

right) that the printed vascular channels remained as hollow channels

and cells remained viable. To demonstrate the ability of fabrication of

organ-specific tissue by using SWIFT, a cardiac structurewith an arterial

vascular network geometry was fabricated as shown in Fig. 7(c). The

most advantageous development of this work over other embedded

printing for organ-specific tissue fabrication is the long-term perfusion

test and the prolonged cell viability in vitro. This work paves the way

towards the fabrication of personalised organ-specific tissues with

high cell density and vascular networks for therapeutic applications.

Using thermal extrusion bioprinting to fabricate vascularized con-

structs was firstly introduced byMiller et al. [149] using an FDM printer

in 2012. The concept was to print a sacrificialmold (carbohydrate glass)

whichwas subsequently cast with cell-laden hydrogels such as alginate,

PEG, agarose and Matrigel. After casting, the sacrificial mold was re-

moved from the cell-laden hydrogels to create perfusable channels as

shown in Fig. 8(a, b). The author claimed that the channel networks

can be perfused within minutes and support the lining of the ECs

(Fig. 8(c)). However, it is difficult to create complex sacrificial molds

without printing support materials. In order to create complex vascular

networks, Pimentel C. et al. [150] employed Poly(lactic acid) (PLA) as

the support material to generate Poly(vinyl alcohol) (PVA) sacrificial

molds using FDM, as shown in Fig. 8(d). After printing, the Poly(lactic

acid) (PLA) was removed leaving behind the water-soluble PVA sacrifi-

cial mold (Fig. 8(e-g)). Like Miller’s work, the sacrificial mold was

subsequently cast with a cell-laden ECM followed by a thorough perfu-

sion to remove the sacrificial PVAmold. However, therewas difficulty in

creating hollow channels with diameter less than 1 mm due to the

Fig. 6. (a) Schematic illustration of 3D constructs fabricated in a supporting medium usingmechanical extrusion printing. (b) The human heart CADmodel. (c, d) A printed heart within a

supportingmaterial bath. (e) A printed heart withmajor blood vessels after crosslinking. Blue and red dyes demonstrate the hollow chambers created in the heart. (f) 3D confocal image of

the printed heart (cardoimyocytes (CMs) in pink, endothelial cells (ECs) in orange). Scale bar, 1 mm. (g) Cross-sections of the heart immunostained against sarcomeric actinin (in green).

Scale bar, 1 mm. (images adapted from ref. [98] Copyright © 2019 American Association for the Advancement of Science)
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weakness of PVA, indicating that a stronger sacrificialmaterial is needed

if creatingminute capillary networks. Additionally, the fabricated vascu-

lature cast in a soft hydrogel could maintain its structural integrity after

two weeks’ perfusion, which facilitated the long-standing in vitro bio-

logical tests. Excellent cell viability was also achieved, whichwas attrib-

uted to the good perfusability of the vascularized construct.

While extrusion-based bioprinting is capable of fabricating complex

vascular networks in the relatively large sized constructs through direct

or indirect printing, 3D vascular networks with hierarchical sized ves-

sels have not been reported yet. Furthermore, using current extrusion-

based bioprinting technique to fabricate micrometre-scale capillaries

is not feasible due to its inherent low printing resolution.

3.3. Stereolithography (SLA)

In stereolithography (SLA), photochemically reactive inks, which

can be cross-linked with infra-red, UV and high-intensity laser, are

used for fabrication of 3D structures with micron-scale resolution. In

SLA, light acts as an etching agent to remove inks from certain locations

for obtaining the desired structure on the substrates. Fig. 9(a) schemat-

ically shows the conventional SLAwhich is capable of developing tissue

scaffolds with more than one spatially distributed microenvironments

and helps in lineage differentiation when stem cells are cultured on

them with different growth factors in different microenvironments

[151]. This is an important step in the direction towards full-scale

in vitro organ printing and maturation.

Continuous liquid interface production (CLIP) is an upside-down

form of SLA, in which, the curing light is used to illuminate the resin

bath from below through a transparent window at the base of the

resin bath container as shown in Fig. 9(b). The support plate on which

the structure is fabricated is dipped into the resin bath from top. As

curing light is shown according to the 3D CAD model, the resin forms

structure on the support plate, which is continuously moved upwards

allowing fresh resin to fill the gap and the structure to grow in size

[152].

SLA has been successfully used to create vascular networks for circu-

lation of oxygen and cell growth gradients [153,155]. Cui et al. [153] re-

cently employed SLA to fabricate a 3D vascularizedmodel to investigate

the breast cancer metastasis to bone. By using a light crosslinkable ma-

terial, GelMA/PEGDA with or without nano-hydroxyapatite (nHA), the

author successfully printed a 3D vascularized construct which consists

of three chambers: micro-vascularized bone, endothelialized vessel

and cancer tumour as shown in Fig. 10(a-d). This 3D printed cancer

model provides an approach to mimic transendothelial migration and

colonization of cancer cells, which paves theway towards the screening

of novel anticancer drugs and the development of customised

Fig. 7. Sacrificial writing into functional tissue. (a) A schematic illustration of the printing step. (b) Sequential images showing the fabrication of a perfusable tissue with vascular channels

by extrusion-based printingwithin the tissuematrix connected to inlet and outlet tubes. Scale bar, 10mm. (c) 3Dmodel of a normal humanheart used as a template for the printing (left);

different view of a 1:2 scale polydimethylsiloxane cardiac tissue with septal branches fabricated by extrusion-based printing. Scale bar, 5 mm (right). (images adapted from ref. [139]

Copyright © 2019 American Association for the Advancement of Science)
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diagnostics and therapeutics. In order to fabricate complex 3D vascular

networks which better mimic the native tissue, Grigoryan et al. [154]

used SLA to create a range of intravascular andmulti-vascular networks

within biocompatible hydrogels as shown in Fig. 10(e-h). After success-

fully creating the entangled perfusable networks in PEGDA hydrogel

(Fig. 10(e)), the authors extended the work to create a lung mimetic

unit which comprised an inlet and outlet vascularized network and air

sac as shown in Fig. 10(f). The perfusion test demonstrated that the

printed vascularized hydrogel (PEGDA) could withstand more than

10,000 ventilation cycles over 6 hours during red blood cells (RBC) per-

fusion while switching the inflow gas between humidified oxygen and

humidified nitrogen. With the goal of fabricating structurally complex

and functional tissues, a multi-material liver tissue was created by

seeding the vascularized hydrogel carriers containing hepatocyte aggre-

gateswith ECs as shown in Fig. 10(g, h). The in vivo biocompatibility test

demonstrated the surviving functional hepatocytes, confirming the bio-

compatibility of the printed vascularized tissue. This work made the

preclinical studies possible by providing an approach to overcome the

long-standing design hurdle in functional tissue fabrication.

The main advantage of both SLA and CLIP is that they offer highly

scalable 3D bioprinting similar to extrusion-based printing, while not

compromising with the high resolution similar to inkjet printing. The

Fig. 8. Vascular networks fabricated by thermal extrusion bioprinting (FDM). (a) A schematic illustration of the vascularized construct fabricated by FDM. (b) A single carbohydrate-glass

fibre (200 μm in diameter, top) is encapsulated in a fibrin gel. After removing the carbohydrate-glass, an open perfusable channel in the fibrin gel was created. Scale bar, 500μm. (c) A

confocal image of the vascular network embedded with 10T1/2 cells and seeded with endothelial cells after 24 h culture. Scale bar, 1mm. (images adapted from ref. [149] Copyright ©

2012 Macmillan Publishers Limited) (d) A photograph of the FDM printed mold with four curved arms using PVA as sacrificial material and PLA as support material. (e) A photograph

of the PVA mold after removing the PLA support material. Scale bar, 3 mm. (f) A CAD model of the designed sacrificial mold. (g) The visualized motion program of the sacrificial mold.

Scale bars, 6 mm. (h) A schematic show of the fabrication processes of the vascular construct. (i) A photograph of the sacrificial mold cast in a gelatin hydrogel before removing PVA.

(j) A photograph of the vascularized construct after removing PVA. Scale bars, 1.4 cm. (k) A photograph of the cross-section of the vascularized construct, showing the volumetric

distribution and structural stability of the channels. Scale bar, 5 mm. (l) A photograph of vascularized construct after 24 h of direct perfusion. Scale bar, 4.5 mm. (m, n) Live/dead

confocal microscopy images of the cross-section in the centre with the four channels (m) and the inlet of the perfusion (n) of a 1 cm thick vascularized construct after 15 days of cell

culture. Scale bar, 2 mm. (images adapted from ref. [150] Copyright © 2017 Acta Materialia Inc.)

Fig. 9. Schematic illustrations of (a) conventional stereolithography; and (b) Continuous liquid interface production (CLIP).
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main limitation is that they can be used only with photo-curable inks

which normally are not biocompatible and biodegradable.

3.4. Laser-assisted bioprinting

Laser-assisted bioprinting was initially developed for printing of

metals and electronic components. This technology has now been

imported for printing living cells directly from cell culture suspensions

at a specific location with a lowmargin of error of ± 5 μm in resolution

on 2D or 3D substrates [156]. Based on different laser sources and en-

ergy absorbing layers, there are a few variations of laser-assisted

bioprinting including laser guided direct write (LGDW), laser induced

forward transfer (LIFT), absorbing film-assisted laser induced forward

transfer (AFA-LIFT), matrix-assisted pulsed laser evaporation direct

write (MAPLE-DW) and biological laser printing (BioLP). LGDW differs

from the others as it uses weakly focused continuous laser while the

rest four use pulsed laser. The main difference with LIFT is the use of

high-powered pulsed laser and a thin absorbing layer between the

donor slide and the bioinks. AFA-LIFT and BioLP use a thick absorbing

layer that prevents the direct interaction between laser and the bioinks.

MAPLE-DW uses a low-powered pulsed laser at UV or near-UV wave-

length. Fig. 11(a) schematically shows a representative laser-assisted

bioprinting: a pulsed laser beam is guided throughmirrors onto a liquid

film/bioink which is supported on a thin and transparent solid surface,

e.g. quartz. The liquid film/bioink is a suspension of the cells that are

to be deposited on the substrate. The amount of energy required to

Fig. 10. Vascularized constructs fabricated by SLA. (a) Beam-scanning SLA printing of breast cancer bone model. (b) A schematic 3D view of the triculture model. (c) A schematic of the

in vivo invasion of cancer cells into bone and 2D view of the triculture model. (d) Photo images of 3D printed breast cancer model with top view and side view (the thickness of the

model construct is ≈3 mm). (images adapted from ref. [153] Copyright © 2019 Wiley-VCH) (e) Top: A schematic illustration of a designed entangled vessel topology. Bottom: A

photograph of the SLA printed vessels in hydrogel (20 wt% PEGDA). Scale bar, 3 mm. (f) A photograph of the SLA printed vasculature during perfusion while the air sac was ventilated

with oxygen. Scale bar, 1mm. (g) Vascularized hepatic hydrogel carriers were created by seeding HUVECs in the vascular network after printing. (h) Confocal microscopy observations

show that hydrogel anchors physically entrap fibrin gel containing the hepatocyte aggregates. Scale bar, 1 mm. (images adapted from ref. [154] Copyright © 2019 American Association

for the Advancement of Science)
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generate the laser pulses depends on the laser wavelength, beam thick-

ness and the characteristics and thickness of the liquid film. When the

laser is fired, its energy is absorbed by the liquid film leading to the for-

mation of a tiny vapour bubble. The sudden expansion of the vapour

bubble causes a tiny volume of the liquid to leave the film surface and

fall on the receiver substrate to form transferred material. The volume

of the deposited liquid depends on the laser energy and the liquid.

The laser is guided and fired according to a pre-determined pattern

leading to patterned cell-laden material on the receiver substrate

[157]. Cell viability after laser-assisted bioprinting is affected by three

main parameters, i.e. laser pulse energy, liquid film thickness and vis-

cosity. Catros et al. [158] investigated a range of these three parameters

found that the cell viability was enhanced by increasing bioink viscosity

and film thickness, whilst increasing the laser energy has a negative ef-

fect on the viability of the printed cells.

Although laser-assisted bioprinting offers high printing resolution

and is free from nozzle clogging, it is generally limited to fabricate 2D

patterns due to its intrinsic printing mechanism. Photonic cell damage,

cytotoxicity induced by using metal energy absorbing layer in LIFT and

AFA-LIFT and limited scalability are the main disadvantages of using

this method [21,160]. However, there is increased interest in using

laser-assisted bioprinting to fabricate 3D vascular constructs/hollow

channels for biomedical applications on account of its nozzle-free char-

acteristic and precise deposition ofmaterials [159,161].Moreover, it can

use biomaterials with high viscosities as printing inks which cannot be

used by other techniques mentioned above. Xiong et al. [159] success-

fully fabricated straight and Y-shaped hollow channels using cell-

laden alginate by laser-assisted bioprinting as shown in Fig. 11(b). No

support structure was required for the printing of the branched

Y-shaped tube, demonstrating the feasibility of this technique when

applied to fabricate overhanging structures. The cell viabilities of the

Y-shaped constructs immediately after printing and after 24 h incuba-

tion were 68.1% and 70.8%, respectively, with both being higher than

that of the straight ones. This was attributed to the low landing force

for printing overhang structures, hence resulting in a relatively higher

cell viability.

4. Challenges and future prospects

In vitro vascularization in a tissue-engineered construct is of great

importance for the supply of oxygen and nutrients and excretion

of wastes after implantation in vivo. Especially for tissues with high

level of oxygen consumption rate, suitable vascularization is essential

to the final success of the implantation. Although current 3D

bioprinting technologies have made a remarkable breakthrough in

fabrication of vascular networks, there is still a big gap between

perfusable tubular structures and vasculature. As blood vessels have

layered structures with specific cells and proteins, the first challenge

is to biologically mimic the layered structures of vessels to enable

proper functions. Another vital challenge of 3D bioprinting of

vascularized tissues lies in the accurate production of the complex hi-

erarchical vascular networks which match the host tissues and the

precise positioning of biomaterials, ECs, vascular SMCs and growth

factors to improve vasculature. Current techniques have limitations

in printing vessels frommicrometre-scale to millimetre-scale in a sin-

gle printing process. Furthermore, printing micrometre-scale func-

tional capillaries, which have the equivalent importance to larger

sized vessels for functional vascularized tissues, is yet to be achieved.

One promising approach is to formulate bioinks with vascularization

bioactives which can facilitate angiogenesis to form capillaries. This

will require a good understanding of embryonic development,

mechanobiology, cell-cell/cell-material interactions and biological re-

sponses of ECs to stimuli, such as perfusate flow and hydrostatic pres-

sure. Biomaterials also need to be further formulated to be more

supportive for cell growth with suitable mechanical properties,

while maintaining good tissue structures without collapse in perfu-

sion environment. Another aspect to be improved is the compatibility

of biomaterials with current printing techniques in terms of printabil-

ity, which determines the shape fidelity of printed structures.

Technologically, further effortswill bemade to print awider range of

materials including matrix materials, cells and growth factors in accu-

rate positions simultaneously with high resolution and printing speed.

Multi-nozzle systems of various sizes, integrated into a bioprinter and

independently dispensing multiple biomaterials, may be a promising

approach to print highly scalable multi-material constructs at a high

speed. Additionally, integration of different printing techniques can be

a promising avenue to overcome current technical bottlenecks of 3D

bioprinting. For instance, extrusion-based bioprinting, which suffers

from low resolution while possessing high printing speed, can be com-

bined with high resolution printing techniques, such as inkjet printing

or laser-assisted printing, to fabricate large volumetric tissues with

multi-scaled vascular networks.

In addition to fabricating vascularized tissues in vitro, direct printing

of tissue-engineered constructs in vivowould be highly expected as the

transplantation associated issueswould be eliminated. By incorporating

patients’ anatomical clinical images, highly customized tissue co-

nstructs can be precisely printed in vivo during surgery, which will

drastically reduce the treatment procedures of the conventional

transplantation strategy.

Furthermore, 4D bioprinting has attracted increasing attention, and

is believed to be the next generation of biofabrication technique. As

4D bioprinting is capable of fabricating dynamic 3D biological con-

structs that can be stimulated to change behaviours by using stimuli-

responsive materials [162], therefore, the smart bioinks including ECs,

growth factors can be dynamically controlled to biomimic the natural

vasculature development via 4D printing.

Fig. 11. (a) A schematic illustration of laser-assisted bioprinting process. (b) Images of the Y-shaped hollow channels fabricated by laser-assisted bioprinting using cell-laden hydrogel.

(images adapted from ref. [159] Copyright © 2015 IOP Publishing Ltd.)
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