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Abstract

Dynamic traffic assignment (DTA) is an important method in the long term transportation planning and
management processes. However, in most existing system optimum dynamic traffic assignment (SO-DTA),
no side constraints are used to describe the dynamic link capacities in a network which is shared by multiple
vehicle types. Our motivation is based on the possibility for dynamic system optimum (DSO) to have
multiple solutions, which differ in where queues are formed and dissipated in the network. To this end, this
paper proposes a novel DSO formulation for the multi-class DTA problem containing both human driven
and automated vehicles in single origin-destination networks. The proposed method uses the concept of
link based approach to develop a multi-class DTA model that equally distributes the total physical queues
over the links while considering explicitly the variations in capacity and backward wave speeds due to class
proportions. In the model, the DSO is formulated as an optimization problem considering linear vehicle
composition constraints representing the dynamics of the link capacities. Numerical examples are set up to
provide some insights into the effects of automated vehicles on the queue distribution as well as the total
system travel times.

Keywords: multi-class two regime transmission model, dynamic system optimum, physical queues, mixed
traffic networks, automated vehicles

1. Introduction

Advances in communication technologies have resulted in new vehicle generations, such as automated
vehicles (AVs). In general, an AV can obtain neighbouring information via vehicle-to-vehicle (V2V) com-
munication and/or vehicle-to-infrastructure (V2I) communication, and then adopt a suitable control law to
achieve a certain objective, such as maintaining a short constant headway within vehicles or smooth driving
patterns. Recent studies have shown that the use of AVs have the potential to improve road safety, traffic
efficiency, and environmental sustainability (Jia and Ngoduy, 2016a,b, Levin and Boyles, 2016a,b, Ngoduy,
2013b,c, Shladover and Lu, 2012, Zhao et al., 2018). Nevertheless, there is still a long way to go before
full deployment of AVs vehicles on roads is viable. It has been predicted that by 2030 AVs will make up
a significant share of the vehicle market, which indicates a long lifespan for mixed traffic flow consisting
of both human-driven vehicles (HVs) and and AVs. Modelling and managing the dynamics of such mixed
traffic flow have received a great attention over the last few years. The majority of the research focuses on
the short-term planning, devoted to the understanding of the complex (asymmetric) interactions between
HVs and AVs in traffic flow dynamics (Delis et al., 2015, Kesting et al., 2010, Levin and Boyles, 2016a,
Ngoduy, 2012, 2013a, Ye and Yamamoto, 2018). In general, the AVs will increase link capacity because of
the smaller headway. For example, Levin and Boyles (2016b) extended the Cell Transmission Model-CTM
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(Daganzo, 1995) to capture variations in capacity and backwards wave speed in response to class proportions
(e.g. the penetration of AVs) within each cell. Recently, Melson et al. (2018) have adopted a different shape
of the fundamental diagram for AVs and integrated it with the HVs in the Link Transmission Model-LTM,
originally proposed by Yperman et al. (2005).

The Link Tranmission Model (LTM) in either discrete form (Yperman et al., 2005) or continuous form
(Han et al., 2015, Jin, 2015) has been developed using the Newells theory which is a special formulation
of Lax-Hopf (LH) formula, where the state of the whole link (i.e. either free-flow or congested) will be
determined by the entry and exit flow. More specifically, the flow propagation in LTM is based on Newell’s
cumulative flow curves applied at the entry/exit of each link, with node models used to calculate the
transition flows, which are based on conservation of flow between the incoming and outgoing flows. Send-
ing/receiving flows, together with transition flows and other flow constraints, form the basis for updating
the cumulative flows at the link boundaries. Osorio and Flotterod (2014), Osorio et al. (2011) have then
developed a stochastic version of LTM, which is a so-called Double Queue Model (DQM). In the DQM, the
link is treated as a set of two queues, referred to as the upstream queue and the downstream queue. Both
LTM and DQM can properly capture the free-flow travel time delay when the link is in a free-flow state
and the backward shoc-kwave time delay when the link is in a congested state, which make them possi-
ble to capture queue spillbacks. The DQM was used in Ma et al. (2014) to find a free-flow DSO solution
where spillback is tracked by the traffic state at the link entrance (in free flowing) or at the link exit (in
congested) accounting for some time shift. Nevertheless, either LTM or DQM does not determine explicitly
the propagation of the front shocks within a link and thus is unsuitable for providing the detailed traffic
state within the link. To fulfill our objective (i.e. equal distribution of the queues over links to reduce the
heterogeneity of congestion), we must track the time and space evolution of the queue lengths in the DSO
problem. While LTM or DQM cannot describe such evolution of the queue lengths, CTM can do it with high
computational cost, especially for the DSO problem. We will address this problem by applying a recently
proposed Two-regime Transmission Model (TTM) in Ngoduy et al. (2016) for our DSO problem. The TTM
principle is more desirable for our DSO-related problem than using the CTM, LTM or DQM as, on the one
hand, it utilizes the entry and exit flows to describe the link state similarly to the LTM or DQM, and, on
the other hand, it provides the time and space evolution of the queue lengths.

Basically, the TTM assumes that the link is homogeneous (e.g. in terms of link capacity) and the actual
bottleneck is at the downstream node. This is highly justified in the urban traffic context as the majority
of traffic congestion occurs at the downstream node and the tail of such congestion may propagate either
upstream or downstream of traffic flow depending on the traffic incoming from the upstream node and exiting
at the downstream node. Furthermore, the TTM also assumes that traffic along a link is characterised by
two regimes (i.e. either non-congested where the density is below a critical density or congested where the
density is above the critical density). Depending on how traffic flows into and flows out of the link, the
time-varying length of each regime and the evolution of traffic density in time and space are determined.
With these assumptions, we are only interested in the congestion formation and the propagation of the tail
of the congestion under a certain boundary condition (when and where a traffic congestion occurs).

It has been shown recently by Shen and Zhang (2014) that DSO may have multiple solutions which
share the same DSO objective (i.e. the total travel times) but have different queue lengths at nodes in
the network. Our aim is to find a DSO solution that optimally distributes the congestion over links inside
the network which essentially reduces queue spillbacks. In order to do so, we require more information
than the LTM can offer, but wish to avoid the computational burden of CTM for DSO. We thus adopt
an extension of the TTM in Ngoduy et al. (2016) to capture the effects of AVs in the context of dynamic
traffic assignment (DTA) problems, particularly how various initial penetrations of the AVs affect the queue
distribution at nodes in the dynamic system optimum-DSO principle. To this end, this paper focuses on a
multi-class dynamic traffic assignment-system optimum problem, which equally distributes the (horizontal)
queue over links under mixed AVs and HVs operations. We expect that such equal distribution of the queue
over links will lead to better traffic management inside the network (e.g. reduced queue spillbacks) such
as road allocations and priority control for specific vehicle classes. Therefore, there is a need to explicitly
determine the time and space evolution of the queues in such multi-class traffic networks. Particularly, how
the variations in capacity and backwards wave speed affect the distribution of the physical queues at nodes.
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Multi-class static traffic assignment has been initially introduced in Dafermos (1972). van Vuren and
Watling (1991) have investigated the concept of multi-class traffic assignment further where one user class
(i.e. guided one) is aiming to minimise marginal travel costs (as would be the case in a pure system optimum
(SO) pattern) and the other class is aiming to minimise actual travel costs (as would be the case in a pure
user equilibrium (UE) UE pattern). In a similar line, Bagloee et al. (2017) argued that the AVs are seeking
the SO principles, while the remainder (i.e. the HVs) continue to pursue a UE pattern. This idea is then
formulated using the static nonlinear complementarity problem (NCP) in which a mixture of SO and UE
representing HVs is enforced. Chen et al. (2016) proposed a mathematical procedure to optimally deploy
AV lanes considering the endogenous AV market penetration. Given AV lanes deployed in a general road
network, the flow distributions of both HVs and AVs are captured by a multi-class network equilibrium
model. Recemtly, Wang et al. (2019) proposed a multi-class traffic assignment model, where HV users and
AV users follow different route choice principles, characterized by the cross-nested logit (CNL) model and
UE model, respectively. Their proposed multi-class model can capture the characteristics of mixed traffic
flow such as the difference in value of time between HVs and AVs and the asymmetry in their driving
interactions, thereby enhancing behavioral realism in the modeling.

Nevertheless, all of these strategies have been studied in a stead-state (or static) framework, while the
representation of traffic dynamics and driver behavior (e.g. different reaction times and backwards speeds)
has not been yet taken into account. Especially, there has been a discernible trend in the literature toward
those that explicitly integrate the dynamics of flow predicted by a traffic model with DTA/DSO problems,
such as CTM (Lo and Szeto, 2002), LTM or DQM (Gentile et al., 2007, Han et al., 2016, Long et al.,
2018, Osorio et al., 2011) and Two-regime Transmission Model-TTM (Ngoduy et al., 2016). This dynamic
approach has then been extended to capture the route choices of multi-class traffic flow by Szeto et al. (2011)
using a multi-class CTM or Jiang et al. (2016) using a multi-class LTM. Given the background described
above, we aim to formulate a DSO problem with a KWM as linear constraints. To fulfill our objective (i.e.
equal distribution of the queues over links), we must track the time and space evolution of the queue lengths
in the DSO problem. We will address this problem by applying the TTM in Ngoduy et al. (2016) for our
DSO problem of single O-D traffic networks containing mixed AVs and HVs. Note that in the scope of this
paper, we are not dealing with lane changing behavior or more sophisticated maneuver close to intersection,
which is a challenging problem itself in modelling mixed traffic flow dynamics. A microscopic model for
control of car-following and lane-changing has been developed in Wang et al. (2015). Xie et al. (2019),
Zhang et al. (2019) proposed deep learning methods for calibrating microscopic models of lane-changing
and combined car-following and lane-changing in systems of HVs, respectively. Mohajerpoor and Ramezani
(2019) estimated mean and variance of headway in a system of mixed AV/HV traffic and the impact of
various lane allocation policies. Ghiasi et al. (2019) proposed speed trajectory controls for a mixed system
of AVs and HVs, and considered its extension to multi-lane scenarios. Others considered safety implications
of mixed AV/HV operations with a multi-lane discrete simulation (Ye and Yamamoto, 2019).

In this paper, we restrict our analysis to a (lane-aggregated) macroscopic model for mixed AV/HV
operations which is simple enough to be embedded into a DTA framework as a set of linear constraints. More
specially, we will illustrate that modelling explicitly the queue length dynamics along the link in the multi-
class SO-DTA will help reduce the spillback problems in the congested network. The main contributions of
this paper are given below:

• We develop a method to model mixed AVs and HVs in DTA. We derive a new optimisation framework
to find a multi-class DSO solution which can equally distribute the average queue lengths over links
so that the spillback due to different classes can be reduced.

• We set out the theoretical background necessary for the formulation of the (network-level) multi-class
TTM as a set of side constraints, in which the (dynamic) link based share factor of the AVs will be
modelled as an extra set of variables.

The organization of this paper follows. We set out some preliminaries needed for the model development
in Section 2. We propose a link aggregate fundamental diagram for the mixed traffic of automated and
human-driven vehicles in Section 3. Section 4 formulates the multi-class kinematic wave model (Lighthill
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and Whitham, 1955) as a set of constraints for a multi-class DSO traffic assignment problem in which the
queue lengths are calculated explicitly. Section 5 presents a new optimization framework which finds DSO
solutions equally distributing the total queue lengths over links in the network under various penetrations
of the AVs, using the constraints formulated in Section 4. We discuss the complexity of the optimization
problem in Section 6. Section 7 illustrates our numerical studies for a small and a reasonably large network
in order to support the advantages of our approach. Finally, we conclude our paper in Section 8.

2. Preliminaries

A traffic network is considered a directed graph, which consists of a set of links connected via a set of
nodes. Two rules for source and sink nodes:

• There is only one link from a source node, called source link.

• There is only one link to a sink node, called sink link.

The notation below will define a traffic network being considered in this paper.

• T: a set of discrete time slots, T ⊂ I (integer). For continuous time domain, we use notation TR

(TR ⊂ R). We also define T = |T| as the number of time slots.

• V: Set of nodes. There are two subsets: set of source nodes VR and set of sink nodes VS , such that:
(VR ∪ VS) ⊆ V and, VR ∩ VS = ∅.

• M: Set of vehicle classes.

• E: Set of directed links, combined by any two nodes in V, e.g. if (eu, ed) ∈ E then we call eu the
upstream node, and ed the downstream node of this link. There are three subsets of links: normal,
source (ER) and sink (ES) links. The last two types are the specialized and virtual links to provide
features of source nodes and sink nodes. For each link a ∈ E and vehicle class m ∈ M (e.g. m = 1 for
HVs and m = 2 for AVs):

– la: length of link a.

– Υ−
am: set of inflow links to link a of vehicles of class m.

– Υ+
am: set of outflow links from link a of vehicles of class m.

– Sam(t): upstream capacity (supply) of vehicles of class m on link a at time t.

– Dam(t): downstream capacity (demand) of vehicles of class m on link a at time t.

– uam(t): incoming traffic flow to link a of vehicles of class m at time t.

– vam(t): outgoing traffic flow from link a of vehicles of class m at time t.

– nam(x, t): number of vehicles of class m on link a at location x and time t.

– Nam(t): spatial average number of vehicles of class m on link a at time t.

– ρam(x, t): density of vehicles of class m on link a at location x and time t.

– qam(x, t): flow of vehicles of class m on link a at location x and time t.

– ρa(x, t): total density on link a at location x and time t, ρa(x, t) =
∑

m∈M

ρam(x, t).

– αam(x, t): share factor of vehicles of class m on link a at location x and time t.

– α̂am(t): link aggregate share factor of vehicles of class m on link a at time t.

– lcam(t): length of congested regime of vehicles of class m on link a at time t.

– lfam(t): length of non-congested regime of vehicles of class m on link a at time t.
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∗ Note that: uam(t), vam(t), Sam(t) and Dam(t) are continuous in time domain TR.

Also for each node n ∈ V:

– Γ−
nm: set of inflow links to node n of vehicle class m.

– Γ+
nm: set of outflow links from node n of vehicle class m.

(Γ−
nm ∪ Γ+

nm) ⊆ E

Γ−
nm ∩ Γ+

nm = ∅

Υ−
am = {e|a ∈ Γ+

nm; e ∈ Γ−
nm}

Υ+
am = {e|a ∈ Γ−

nm; e ∈ Γ+
nm}

• fabm(t): upstream traffic at link b, coming from downstream traffic at link a of vehicle class m.

a, b ∈ E

a ∩ b 6= ∅

3. Multi-class fundamental diagram

In this section, we formulate the aggregate fundamental diagram for mixed AVs and HVs traffic flow for
given spatial aggregate share factor of AVs using microscopic car-following approach. Let us start with a
general continuous car-following model in the following form:

dvj
dt

= Φ(sj , vj ,∆vj) (1)

where vj and sj denote, respectively, the speed and distance gap of vehicle j. ∆vj = vj −vj−1 is the relative
speed w.r.t. the leading vehicle j − 1. The non-linear function Φ(.) denotes any elementary car-following
models in the literature (for example the optimal velocity model-OVM, the full velocity diference model-
FVDM, the intelligent driver model-IDM or the general motors model-GMM). Then at the steady-state
condition (i.e. sj = se, vj = ve ∀j ):

Φ (se, ve, 0) = 0 (2)

Solving the above equation will lead to the speed-density relation ve = v(ρ) where ρ is the density. In other
words, the car-following and macroscopic models share the same speed-density relationship and, therefore,
the same fundamental diagram. We can always use any existing continuous car-following models (e.g. OVM,
FVDM or IDM) to derive the fundamental diagram. However, we have chosen the IDM because it contains
explicitly the safe time headway which is a most important factor reflecting the difference between the
automated and human-driven vehicles. Note that some advanced car-following models for AVs (Jia and
Ngoduy, 2016b, Liu et al., 2017) and mixed HVs and AVs (Jia et al., 2019) traffic dynamics can be used to
derive the equilibrium fundamental diagram of mixed AVs and HVs traffic flow. However, they will likely
result in non-linear flow-density relationships, which are not relevant for the derivation of the constraints of
the DSO problem in the ensuing paper. For the sake of simplicity, we drop the link index in this section.

The adopted IDM Treiber et al. (2006) has been used rather extensively in the literature to model the
dynamics of both human-driven and automated vehicles (Kesting et al., 2010, Ngoduy, 2013a, Sharma et al.,
2019). The IDM for our mixed traffic problem can be described as below:

dvj
dt

= Aj

[

1−
(vj
V

)δ

−

(
s∗j
sj

)2
]

(3)
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Figure 1: Impact of the exponent coefficient δ on the shape of the fundamental diagram

where δ is the acceleration exponent coefficient which specifies how the acceleration decreases when
approaching the free-flow speed. V is free-flow speed. The effective desired gap s∗j is defined as:

s∗j = s0 + vjTj +
vj∆vj

2
√
AjBj

(4)

where s0 is clearance gap (which is the same for all vehicles in our case), Tj is a (constant) desired time
gap of vehicle j. Bj is the maximum deceleration of vehicle j. It is worth noticing that the last term in the
right hand side of equation (4) is only active in non-stationary traffic corresponding to situations in which
∆vj 6= 0.

Under steady state conditions, where the acceleration dvj/dt = 0, the follower and the leader travel at
the same speed vj = vj−1 = ve, by using equations (3)-(4) we obtain:

sj =
s0 + Tjve
√

1−
(
ve
V

)δ
(5)

Let us discuss here the impact of δ on the shape of the equilibrium space gap. When δ = 1 we obtain
an exponential relaxation to the free-flow speed V with a finite relaxation time, while δ → +∞ corresponds
to approaching V with a constant acceleration. The latter case conforms to the linear fundamental diagram
which is used in the ensuing paper. For decreasing δ it becomes smoother and smoother, and various non-
linear fundamental diagrams are obtained. However, such non-linear diagrams are not in the scope of our
paper. Fig. 1 shows an example of various fundamental diagrams derived from the IDM with different
values of δ for homogeneous traffic.

Let us assume that all vehicles regardless of the class travel with the same free-flow speed V until they
reach an aggregate critical distance headway Hc (i.e. corresponding to the aggregate critical density) where
the gap control policy in the AVs will be activated. Therefore, the approximation of equation (5) reads:

vj = V if sj ≥ Hc (free-flow regime) (6)

sj = s0 + Tjve if sj < Hc (congested regime) (7)

Obviously, the distance gap in the control mode (i.e. in the congested regime) depends on the desired time
gap Ti. It thus depends on the type of car-following behavior of different vehicle class. In the randomly
mixed traffic flow, there are four types of car-following:

• Automated vehicle following automated vehicle (A-A type). In this case, Tj = TAA.

• Automated vehicle following human-driven vehicle (A-H type). In this case, Tj = TAH .
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Car-following type A-A type A-H type H-A or H-H type

Probability α̂2
1 α̂1α̂2 α̂2

Table 1: Probability of car-following type

• Human-driven vehicle following automated vehicle (H-A type). In this case, Tj = THA.

• Human-driven vehicle following human-driven vehicle (H-H type). In this case, Tj = THH

where TAA, TAH , THA, and THH denote, respectively, the desired time gap for A-A, A-H, H-A, and H-H
car-following pair. In terms of driving behavior, the human-driven vehicles do not receive information from
the leading vehicle, regardless of the class so the reaction time or desired time gap is identical for the H-A
and H-H car-following type (i.e. THA = THH = TH). Whereas, the A-H car-following type will have larger
desired time gap than the A-A car-following type since the former does not receive information from the
leading vehicle. However, the automated vehicle can react better to the front stimulus than the human so
it is reasonable to assume that TAA < TAH < TH . Under the equilibrium state, given the link aggregate
share factor for a vehicle class m, α̂m, (here m = 1 denotes AVs, m = 2 denotes HVs), the probability
for each car-following type to happen is determined as in Table 1. Note that in Table 1: α̂2

1 + α̂1α̂2 + α̂2

= α̂2
1 + α̂1(1− α̂1) + α̂2 = α̂1 + α̂2 = 1.
From table 1, in the congested conditions, the expected aggregate equilibrium distance gap is determined

as:
ŝ = s0 + ve

[
α̂2
1TAA + α̂1α̂2TAH + α̂2TH

]
(8)

which leads to:

ve(ŝ) =
ŝ− s0

α̂2
1TAA + α̂1α̂2TAH + α̂2TH

=
ŝ− s0

T̂
(9)

where
T̂ (α̂1, α̂2) = α̂2

1TAA + α̂1α̂2TAH + α̂2TH (10)

denotes the expected link aggregate desired time gap of the mixed AVs and HVs traffic.

At macroscopic scale, the the distance gap is the inverse of the density, i.e. ŝ =
1

ρ
− lv where lv is

the average vehicle length, from equations (6)-(9) we obtain the aggregate fundamental diagram for mixed
AV-HV traffic flow as below:

q (ρ, α̂1, α̂2) = ρV if ρ ≤ C(α̂1, α̂2) (free-flow regime) (11)

q (ρ, α̂1, α̂2) = ρve(α̂1, α̂2) = (K − ρ)W (α̂1, α̂2) if ρ > C(α̂1, α̂2) (congested regime) (12)

where q is the expected aggregate flow and ρ is the total density. K denotes the jam density, which is
identical for all vehicles and is calculated from the safe distance gap as s0 = 1/K − lv. The aggregate
shock-wave speed, W (α̂1, α̂2), is defined as:

W (α̂1, α̂2) =
1

KT̂ (α̂1, α̂2)
(13)

The aggregate equilibrium flow-density equations (11)-(12) conform to a triangular flow-density fun-
damental diagram with (dynamic) aggregate critical density C(α̂1, α̂2) and (dynami) aggregate capacity
Q(α̂1, α̂2) defined as below:

C(α̂1, α̂2) =
KW (α̂1, α̂2)

V +W (α̂1, α̂2)

Q(α̂1, α̂2) =
KVW (α̂1, α̂2)

V +W (α̂1, α̂2)
(14)
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Figure 2: Aggregate fundamental diagram for mixed AVs and HVs.

The aggregate fundamental diagram for mixed AVs and HVs for various penetration of the AVs is
depicted in Figure 2. In this fundamental diagram, Q(α̂1, α̂2) = QAV when α̂1 = 1 (i.e. the capacity of full
AVs traffic) and Q(α̂1, α̂2) = QHV when α̂1 = 0 (i.e. the capacity of full HVs traffic). The link aggregate
capacity is a function of the aggregate penetration of the AVs (i.e. α̂1) over time, which will be included in
our DSO solution in the ensuing sections.

4. Multiclass Two regime Transmission Model

This section describes our proposed model to be embedded in the dynamic system optimum problem in
Section 5. More specifically, we extend the two traffic regime concept in Ngoduy et al. (2016) to account
for the multiclass traffic network in this paper, which is latter called the multiclass two regime transmission
model (MTTM). The following assumption is made for our model development.

Congested cellFree-flow cell

Inflow OutflowFlux

Propagation of congestion

Figure 3: Illustration of the two regime based model.

Assumption 1. Traffic queue only happens at the downstream bottleneck of the link. As such, the link is
divided into two regimes: free-flow and congested area (Figure 3). The length of each regime is time varying,
subject to the class specific in-and out-flow.

It is worthy to mention that Assumption 1 actually has a rigorous proof, see Bretti et al. (2006). This
assumption is true when the link of interest is empty at the beginning of the analysis period. It does not hold
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when the initial density condition is specified arbitrarily (e.g. incidents) and congestion may start appearing
anywhere on the link. Nevertheless, these cases are excluded from our model for the DSO problem in this
paper.

4.1. Basic model equations

For the sake of simplicity, we drop out the link index in this section but the derivation holds for every
link. The extension of LWR model to a number of vehicle classes has been undergone recently. In the
ensuing section, we will recall the concept of the multiclass LWR model. According to the conservation law,
each vehicle class should satisfy the following equation:

∂ρm
∂t

+
∂qm
∂x

= 0 ∀m ∈ M. (15)

To follow the model of Newell (1993) for each vehicle class, the dynamics of the number of vehicles each
regime are given below:

dnm(x, t)

dt
=







um(t)− um

(

t−
x

V

)

if x < lfm(t) (in free-flow regime)

vm

(

t−
l − x

W (t)

)

− vm(t) if lfm(t) ≤ x ≤ l (in congested regime)
(16)

Then we can obtain the class specific number of vehicles in a link:

Nm(t) = =
1

V

lfm(t)∫

0

um

(

t−
x

V

)

dx

︸ ︷︷ ︸

Free-flow regime

+

lcm(t)∫

0

(

Kαm(t, l − x)−
1

W (t)
vm

(

t−
x

W (t)

))

dx

︸ ︷︷ ︸

Congested regime

(17)

This equation indicates that the class specific number of vehicles in a link determined in each traffic
regime by equation (16) has been implicitly incorporated and will be used latter to formulate the linear
discrete link constraints for a dynamics system optimum problem.

4.2. Definition of the discrete time variables

In this paper, we shall use the time index i or k for discrete time, and t or h for continuous time. Let us
define the following discrete time variables from the continuous TTM described above:

um(i) =

∫ i+1−

i

um(t)dt

vm(i) =

∫ i+1−

i

vm(t)dt

fm(i) =

∫ i+1−

i

fm(t)dt

Dm(i) =

∫ i+1−

i

Dm(t)dt

Sm(i) =

∫ i+1−

i

Sm(t)dt

∀i ∈ T (18)

For the sake of simplicity without loss of generality let us assume that

la
V

∈ N

la
W

∈ N

∀a ∈ E (19)
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Basically, we will consider the class specific number of vehicles in a link Nam(t) and the spatial average
share factor α̂am(t) a major set of variables for the DNL problem. In continuous time, the class specific
number of vehicles in a link at time instant t ∈ TR can also determined by the class specific in- and out-flow:

Nm(t) =

∫ t

0

[um(h)− vm(h)] dh. (20)

In discrete time step, the class specific number of vehicles in a link at time step i ∈ T means:

Nm(i) = lim
t→(i+1)−

∫ t

0

(um(h)− vm(h)) dh =

i∑

k=0

[um(k)− vm(k)] (21)

Hence,

N(i) =
∑

m∈M

i∑

k=0

[um(k)− vm(k)] (22)

Note, by definition, the link aggregate share factor is computed as: α̂m(t) =
1

l

∫ l

0

αm(x, t)dx. The corre-

sponding discrete link aggregate share factor is α̂m(i). In the model formulation of the ensuing paper, we
consider all the variables and dynamic parameters (i.e. aggregate capacity and wave speed) to be discrete
in time.

4.3. Formulation of side constraints

These class specific number of vehicles in a link are bounded as follows.

Proposition 1 (Lower bound of class specific number of vehicles in a link).

Nm(i) ≥

i∑

k=i− l
V
+1

um(k) ∀i ∈ T. (23)

Proof. See proof in Appendix A.

Obviously, this condition also leads to the lower bound of the total number of vehicles in a link (Ngoduy
et al., 2016):

N(i) =
∑

m∈M

Nm(i) ≥
∑

m∈M

i∑

k=i− l
V
+1

um(k) =

i∑

k=i− l
V
+1

u(k). (24)

Proposition 2 (Upper bound of class specific number of vehicles in a link).

Nm(i) ≤ Klα̂m(i)−
i∑

k=i− l
W (i)

+1

vm(k) ∀i ∈ T. (25)

Proof. See proof in Appendix B

This inequality also leads to:

N(i) =
∑

m∈M

Nm(i) ≤ Kl
∑

m∈M

α̂m(i)−
∑

m∈M

i∑

k=i− l
W (i)

+1

vm(k) = Kl −

i∑

k=i− l
W (i)

+1

vm(k) (26)

which is the linear upper bound of the total number of vehicles in a link (Ngoduy et al., 2016).
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Remark 1. In case the jam density is different for each vehicle class then equation (25) reads:

Nm(i) ≤ Kmlα̂m(i)−

i∑

k=i− l
W (i)

+1

vm(k) ∀i ∈ T. (27)

Theorem 1 (The existence and uniqueness of the class specific congested length lcm(t)). At time instant
t, given um(h), vm(h) (∀h ≤ t) and αm(x, t) (∀x ∈ [0, l]) satisfying conditions (23), (A.3), (A.4) and (25),
there exists a value of lcm(t) so that

∫ l−lcm(t)

0

um

(
t− x

V

)

V
dx+

∫ lcm(t)

0



Kαm(l − x, t)−
vm

(

t− x
W (t)

)

W (t)



 dx =
∑

h≤t

[um(h)− vm(h)].

The solution of lcm(t) = lc is unique (at time t) if it satisfies the above condition and

Kαm(l − lc, t)−
vm

(

t− lc

W (t)

)

W (t)
−

um

(
t− l−lc

V

)

V
≥ 0.

Proof. Let F (lc) be a continuous function of lc:

F (lc) =

∫ l−lc

0

um(t− x
V
)

V
dx+

∫ lc

0

[

Kαm(l − x, t)−
vm(t− x

W (t) )

W (t)

]

dx.

It is obvious that this function is a monotonically non-decreasing continuous function (of lc) in [0, l] because:

dF (lc)

dlc
= Kαm(l − lc, t)−

vm(t− lc

W (t) )

W (t)
−

um(t− l−lc

V
)

V
≥ 0.

This means that we can obtain lcm(i) given the class specific number of vehicles in a link Nm(i).

Theorem 2 (Class specific queue dynamics). If time step is selected to be at least max(l/W ) (Ban et al.,

2012) so that um(i) and vm(i) are steady in i ∈ [0,
l

W
− 1] then the class specific queue dynamics is

approximated as:

lcm(i) =
Nm(i)− um(i)

V
l

Kα̂m(i)− um(i)
V

− vm(i)
W (i)

(28)

Proof. As um(i) and vm(i) are steady in i ∈ [0,
l

W (i)
− 1], we have:

um(t0) = um(t0 + i) = um(i) (29)

vm(t0) = vm(t0 + i) = vm(i) (30)

then, based on Proposition 1 and Theorem 1, we can obtain:

Nm(i) = lcm(i)

(

Kα̂m(i)−
um(i)

V
−

vm(i)

W (i)

)

+
um(i)

V
l

which leads to:

lcm(i) =
Nm(i)− um(i)

V
l

Kα̂m(i)− um(i)
V

− vm(i)
W (i)

(31)
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5. Dynamic system optimum problem with MTTM-based constraints

As DSO may have multiple solutions in which all the solutions share the same objective while the
difference is where the queues are formed and dissipated in the network. This section formulates a problem
to find DSO solutions which can evenly distribute the class specific queues (i.e. the length of the congested
regime for class specific vehicles lcam(t)) over links in the network so that the spill-backs can be reduced.

5.1. Objective functions

We formulate the DSO problem in this paper into two stages.

1. Stage 1: find a DSO solution via minimizing the total travel times or the total system cost. That is:

F = max
∑

m∈M

∑

a∈ES

∑

i∈T

(T + 1− i)uam(i) (32)

subject to the node and link constraints in sections 5.2. and 5.3. In the literature, Ngoduy et al. (2016),
Shen and Zhang (2008) have proven that the objective function (32) is equivalent to the objective of
minimizing the total travel time in case of the single user class traffic. The proof for multi-class traffic
is rather straightforward and is given in Appendix E.
Since Shen and Zhang (2014) have indicated that there exist many DSO solutions which share the
same DSO objective (32) but have different queue lengths at nodes in the network. Stage 1 aims to
find one of these solutions which gives such minimum total travel time while the purpose of Stage 2 is
not minimisation of travel time, as that is already achieved in Stage 1, but a secondary objective that
may be defined, separately from travel time minimisation. It is formulated as below.

2. Stage 2: Given the optimal total travel times found in Stage 1, find a traffic pattern which equally
distributes the congestion in links.

Objective: G, defined as the function of the queue length lca(i)

Constraints:
∑

m∈M

∑

a∈ES

∑

i∈T

(T + 1− i)uam(i) = F (i.e. to achieve the DSO solutions) (33)

and the node, link and non-holding-back constraints in Sections 5.3, 5.2 and 5.4.

This step restricts the solution domain to system optimal solutions via the first constraint. As there
exists a non-holding-back solution without changing the system optimal objective value (Shen and
Zhang, 2014), it indirectly shows that Stage 2 provides a feasible solution domain.

In this paper, we consider an objective functions G below for the illustration purposes:

G = min
∑

m∈M

∑

a∈A

∑

i∈T

(

lc −
lcam(i)

la

)2

(34)

where

lc =
1

|M||A|T

∑

m∈M

∑

a∈A

∑

i∈T

lcam(i)

la
. (35)

The Stage 2 formulated by the above G function aims to find a DSO solution which can reduce the
spillback issues due the propagation of the queues in the network. According to the estimation of conges-
tion length shown in Theorem 2, the Statge 2 problem aims to minimize the variance of congestion level
(equivalent to the ratio between the estimated congestion length and the link length) over all links in the
network. We show in the numerical results in Section 7 and in the appendix Appendix F that Stage 2
can help reducing the spill-back traffic in the SO solution. Note that, the issue of spill-back happens when
the congestion from downstream flow impacts on the upstream flow or lca = la. This issue can be reduced
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if travellers could divert to other less-congested routes. By doing this, we would reduce the congestion on
heavy-traffic links and increase congestion on less congested links, meanwhile none of them would cause
spill-back to the upstream, i.e. to guarantee lca < la for any link in the network. In our formulation, Stage 2
problem aims to divert the flow on heavy congested links to other free-flow or less-congested links. Therefore,
it can help to reduce the issue of spillback in a DSO solution. Because the link lengths are different, the
evaluation of congestion in each link is normalized with the link lengths in our objective function G.

Remark 2. While the objective function F in Stage 1 problem is linear, the objective function G in Stage 2
problem is a quadratic (non-linear) function involving the dynamics of the physical queues. We will discuss
the complexity of this problem in Section 6.

The multi-class network-level constraints contain both link constraints and node constraints, which are
described below.

5.2. Link constraints

From the Propositions and Theorems developed above, the class specific link constraints for the proposed
model are summarized as below:

∀i ∈ T, ∀m ∈ M, ∀a ∈ E:

Nam(i) =

i∑

k=0

[uam(k)− vam(k)] (36)

Nam(i) ≥

i∑

k=i+1− la
Va

uam(k) (37)

Nam(i) ≤ Kalaα̂am(i)−

i∑

k=i+1− la
Wa(i)

vam(k) (38)

α̂am(i) ≥ 0 (39)
∑

m∈M

α̂am(i) = 1 (40)

Note that we have introduced an extra set of variables representing the aggregate link-based share factor
α̂m
a (i).
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5.3. Node constraints and capacity constraints

∀i ∈ T,m ∈ M, ∀a ∈ E:

∑

a∈Γ−

n

vam(i) =
∑

a∈Γ+
n

uam(i) (41)

uam(i) =
∑

b∈Υ−

a

fbam(i) (42)

vam(i) =
∑

b∈Υ+
a

fabm(i) (43)

Sa(i) = min




Qa(i);Kala +

∑

m

∑

k≤i−
la

Wa(i)

vam(k)−
∑

m

∑

k≤i−1

uam(k)




 (44)

Da(i) = min




Qa(i);

∑

m

∑

k≤i−
la
Va

uam(k)−
∑

m

∑

k≤i−1

vam(k)




 (45)

∑

m

uam(i) ≤ Sa(i) (46)

∑

m

vam(i) ≤ Da(i) (47)

fabm(i) ≥ 0 (48)

Constraint (41) represents the conservation of the class specific vehicles at an immediate node while
constraint (42) determines the total number of class specific vehicles entering a node from all upstream links
of that node and constraint (43) defines the total number of class specific vehicles exiting a node from all
downstream links of that node. In fact, equation (41) and pair of equations (42) and (43) are equivalent, and
we only need one of them in the final model. Constraints (44) - (47) are the supply and demand constraints
at the node, and the corresponding flow at the entry and the exit of the link. Note that the link capacity
Qa(i) in these constraints is the aggregated capacity, taking into account the effect of each vehicle class on
each other as illustrated in Figure 2. Constraint (48) guarantees the non-negative class specific flow on link.

5.3.1. Source node constraints

uam(i) = Uam(i)

α̂am(i) =
Uam(i)

Ua(i)
{Qa(i)} → ∞

∀a ∈ ER, i ∈ T,m ∈ M (49)

where Uam(i) and Ua(i) denote, respectively, the class specific demand and the total demand to source link
a at time step i.

5.3.2. Sink node constraints

vam(i) = 0
{Qa(i)} → ∞

∀a ∈ ER, i ∈ T,m ∈ M (50)
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5.4. The non-holding-back constraints

The non-holding back (NHB) solutions require the system to discharge flow as much as it can and have
been widely discussed before in the literature (Shen et al., 2007). For our particular problem, the non-
holding back condition is that if there is a positive flow fabm(t), then at least one of the above constraints
(37, 38, 46, 47) has to meet the equality either at the downstream of link a or at the upstream of link b. We
formulate this constraint similar to the one in Ngoduy et al. (2016) as below:

c1a(i)c
2
b(i)c

3
a(i)c

4
b(i)

∑

k≥i+1

fabm(k) = 0 (51)

for all i ∈ T,m ∈ M, a ∈ E, b ∈ Γ+
a where

c1a(i) = Nam(i)−

i∑

k=i+1− la
Va

uam(k)

c2b(i) = Kblbα̂bm(i)−Nbm(i)−

i∑

k=i+1−
lb

Wb(i)

vbm(k)

c3a(i) = Qa(i)−
∑

m

vam(i)

c4b(i) = Qb(i)−
∑

m

ubm(i).

6. The complexity and solution method

The summary of model in both Stages are presented below:
Stage 1: minF s.t. Eqs. (36)-(50).
Stage 2: minG s.t. Eqs. (33), (36)-(51).

The complexity of our optimization problems in terms of number of constraints and variables is O(|A|T ).
The challenge in solving these problems is caused by the non-linear objective function G in Stage 2 and
non-linear constraints in Eqs. (10), (13), (14) and (51). Note that in Eq. (14), because α̂1 + α̂2 = 1, we
rewrite the formulation of Qa(i) as the function of α = α̂1 as below:

T̂ (α) = α2(TAA − TAH) + α(TAH − TH) + TH

Q(α) =
KVW (α)

V +W (α)
.

Then we have the following proposition:

Proposition 3. The aggregate capacity Q(α) is always a convex function of the share factor α.

Proof. See Appendix C.

Remark 3. Due to the convex function Q(α), the Stage-1 model (i.e. finding general DSO solutions) is
classified as a difference of the convex programming (DCP) problem. Lipp and Boyd (2016) showed that its
local optimum is efficiently found by using the concave-convex procedure that leverages the ability of solving
convex optimization problems. Alternatively, in this paper, we rely on the IPOPT solver (Biegler and Zavala,
2009) for both models. This solver could be applied to a general non-linear problem. Our numerical results
show the reasonable computing time for solving Stage-1 model, i.e., less than 5 minutes in all results.
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Non holding-back traffic for DSO solution. In Section 5.4, we present the constraints to avoid the
issue of holding traffic at any nodes in the network. However, these constraints are non-convex which makes
the Stage-2 problem more complicated than the Stage-1 problem. In this section, we propose a method
to obtain a non-holding-back DSO solution without using these constraints. Let’s consider the following
problem P:

[P] maxH s.t. Eqs. (33), (36)-(50)

where

H =
∑

a∈E

∑

m∈M

∑

i∈T

(T + 1− i)uam(i).

Then we have the following proposition:

Proposition 4. The solution of problem P is not holding traffic at any link in the network.

Proof. See Appendix D.

Note that, the objective function H considers the aggregated total flow at any link in the network rather
than only at the sink in the SO objective function F . By maximizing the incoming flow (and also outgoing
flow via the Eq. (41)) at any link given the coming flow at destinations (via Eq. (33)), we can resolve the
issue of non-holding-back traffic for the SO solution. By doing this (i.e. eliminating the non-holding back
constraints), we can reduce the complexity of the Stage 2 problem and, similarly, we also solve this problem
using the IPOPT solver.

7. Numerical results

The numerical results are studied in two different networks: a small-size Braess network and a larger-scale
network (e.g. Sioux Falls network). In the Braess network, we demonstrate the system optimal solution via
the optimal share factor and the distribution of traffic flow and physical queues in congested links. Whereas
in the Sioux Falls network, we aim to show the computational complexity and its potential for solving larger
scale networks.
7.1. Braess network

The network topology in Figure 4 and its parameters are described in Table 2. The traffic demand
departs from node R (to the destination S) at a rate of 180 veh/min. With these network settings, we aim
to create a bottleneck at the upstream of link (4,5) due to the merging traffic from links (2,4) and (3,4). As
the congestion will propagate back to the source, it causes the reduced flow throughput and the decreased
total travel time. In this example, we would like to study the impact of AVs on the system performance
(i.e. the total travel times and the spill-back problems) in different situations:

• Case 1: Given the same total amount of demand, the AV penetration is varied.

• Case 2: Similar to case 1, but this case requires the equalization of average travel time (EATT) for
each vehicle type.

In the numerical results below for case 1, we will show that the AVs are allocated more link capacity
than HVs due to their higher capacity in congested links. In contrast, in case 2, the obtained solution has
to guarantee the identical travel time for each vehicle type in order to avoid the bias control of traffic split
per vehicle class in the network.

Let Um denote the total demand (over time) of a specific type of vehicles, TSTTm be the total system
travel time for the vehicle class m. Hence, the additional EATT constraint for case 2 reads:

TSTT1

U1
=

TSTT2

U2
(52)
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Figure 4: Braess network.

Link Length KHV = KAV V TAA TAH TH

(m) (veh/m) (m/min) (sec) (sec) (sec)
(1,3), (2,4), (2,3) 400 0.12 1000 0.5 1.0 1.5
(1,2), (3,4), (4,5) 400 0.24 1000 0.5 1.0 1.5

(0,1) 400 0.36 1000 0.5 1.0 1.5

Table 2: Braess network parameters. Note that in our simulation set-up, links (1,3), (2,4) and (2,3) have 1 lane, links (1,2),
(3,4) and (4,5) have 2 lanes, links (0,1) has 3 lanes

where m = 2 is for HVs, m = 1 is for AVs, and

TSTTm =
∑

a∈ER

∑

i∈T

iUam(i)−
∑

a∈ES

∑

i∈T

(T + 1− i)uam(i)

Um =
∑

a∈ER

∑

i∈T

Uam(i).

This additional constraint is used in both Stages in case 2. The comparison between these two cases is
further discussed below.

Travel time versus the penetration of AVs. The overall comparison between these cases is performed in
terms of the effect of the penetration of AVs on the total travel time, as shown in Figure 5. This figure
clearly shows that the total travel time is decreased with the increased AV penetration. Furthermore, the
average travel time of AVs is always smaller than that of HVs. It certainly indicates that the AVs gain more
priority over the HVs to pass through the network.

In contrast, the result for case 2 shows the solution where the equality of travel time for each class of
vehicles is maintained in the system. It is interesting to observe that we could achieve this equality without
increasing much the total travel time (less than 4%). In summary, the increase of AV penetration definitely
improves the total travel times (at most 13% at 90% penetration of AV).

Physical queue distribution versus the penetration of AVs. In this part, we investigate the above scenarios
in terms of the physical queue distribution, i.e., the smaller value of G function, the better distribution of
queue over the network. It is worth mentioning that, in the previous result of the total travel time, the
Stage-1 objective value achieved in case 2 is slightly larger than in case 1 (about 0.5 %). Given these two
different Stage-1 solutions, the result of Stage 2 in Figure 6 shows a similar impact of the AV penetration on
the optimal distribution of physical queues. Furthermore, it also shows that more AV traffic would reduce
the variance of queue length over the network.

Figures 7 and 8 show the spatio-temporal total density at links (1, 2) and (2, 4) obtained from two
Stages in two scenarios. From these figures, we observe that the spill-back traffic between these links can
be reduced in the Stage-2 solution. More specifically, spill-back does happen from link (2,4) to link (1,2) in
Stage-1 solutions as the congestion in link (2,4) reaches upstream node (2). However, in Stage-2 solutions,
we prevent the congestion in link (2,4) from reaching its upstream node (2) by shifting a part of it to other
free-flow links, thus reduce the congestion in link (1,2).
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Figure 5: Travel time in Braess network with different penetrations of AV (with total demand of 360 vehicles).
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Figure 6: The performance of queue distribution in terms of G in Braess network with different penetrations of AV
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20% AV 70% AV

Stage 1
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Figure 7: Time-space density at links (1,2) and (2,4) in the Braess network (case 1).

20% AV 70% AV
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Figure 8: Time-space density at links (1,2) and (2,4) in the Braess network (case 2).
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Figure 9: The solution of α̂(t) at link (2,4) in the Braess network (case 1: left figure, case 2: right figure).

Furthermore, Figure 9 show the corresponding result of time varying share factor α̂(t) at link (2, 4). It
is clearly shown that α̂HV (t) is higher in case 2 than in case 1, therefore it enables the reduction of HVs’
travel time observed in case 2.

7.2. Sioux Falls network

In this section, we will evaluate the computational performance of our framework by using the Sioux
Falls network in Figure 10, where the network settings (i.e., link length, number of lanes, and link jam
density) in Bar-Gera (2002) are adopted. The parameters used in this case are similar to Table 2. The
total demand (per minute) of both AVs and HVs is 333.34veh/min, the time domain is one hour with 3-min
interval. Similar to the previous example, the increased AV penetration helps to improve the dissipation of
congestion (e.g., at link (22, 20) in Figure 12) and reduce the total system travel time (Figure 11) where
the AVs gain the most benefit over the HVs.

Benefit of AVs in the congested network. In the previous example of a small network, we observe the benefit
of AVs in reducing significantly the total system travel time (TSTT). In fact, we are able to obtain the
same result in the Sioux Falls network with a very high demand of traffic so that traffic congestion occurs,
i.e., demand of 8000 vehicles in total, see Figure 11(a). For a smaller demand, that is the network is not
congested, the effect of the increased AV penetration on the TSTT is not significant as seen in Figure 11(b).
It is worth noticing that the AVs’ travel time also increases due to the higher AV penetration (i.e. higher
AV demand).

Figure 12 describes the spatio-temporal evolution of the total density in the congested link (22, 20)
for different initial penetrations of AVs. It is clear that a higher penetration of AVs leads to less traffic
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Figure 10: Sioux-Fall network.

(a) Demand = 8000 vehicles (b) Demand = 2000 vehicles
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Figure 11: Travel time in Sioux Fall network with different penetrations of AV.
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Figure 12: Time-space vehicle density at link (22, 20) in Sioux Falls network, demand = 4000 vehicles.
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Figure 13: The value of α̂(t) at link (22, 20) in Sioux Falls network, demand = 4000 vehicles.

23



Setting Stage 1 computing time (min.) Stage 2 computing time (min.)
10% AV 5.0 50.8
30% AV 4.0 40.1
50% AV 2.4 61.7
70% AV 1.9 40.1
90% AV 1.1 46.7

Table 3: Computational demand using the Sioux Falls network with the total demand of 8000 vehicles.

Demand (veh) Time T (min) Stage 1 computing time (min.)
2000 66 0.1
4000 96 0.4
6000 120 1.5
8000 150 3.1

Table 4: Computational demand of Stage 1 using the Sioux Falls network.

congestion. Moreover, the DSO solution with an optimal distribution of the physical queues (i.e. Stage 2
solution) tends to reduce the congestion level along the link.

Additionally, Figure 13 presents the time varying share factor α̂m(t) at the link (22, 20) that complements
with Figure 12. It clearly shows that AVs use much of the link capacity in the high initial penetration of
AVs while HVs share a portion of link capacity with AVs in the low initial penetration of AVs. This again
indicates how the link capacity is dynamically allocated to different vehicle classes in order to optimize the
total system travel costs. Furthermore, in terms of optimal queue distribution (i.e. at Stage 2), AVs tend
to be allocated longer (in time) and larger value of α̂AV (t) in the comparison with the solution at Stage 1.

Computational performance. In terms of computational performance, Table 3 shows that Stage 1 performs
much faster than Stage 2, i.e., about 1/10, in our proposed framework. Note that, the model in Stage 1 is
less complex than Stage 2 due to the linear objective function F . For this reason, the result of minimizing
the queue distribution takes a considerable amount of time. However, due to the fast computation of solving
Stage 1, we are able to evaluate quickly the optimal system performance in the different scenarios (e.g., with
and without EATT, with different class specific traffic demands) for planing purposes.

To further evaluate the first Stage, we measure its computing time by increasing the OD traffic demand
with the result shown in Table 4. By increasing the demand, we also need to increase linearly the time
domain to clear all the corresponding demand. However, the computational time (of Stage 1) increases
dramatically.

In summary, we demonstrate the DSO solution for mixed human-driven and automated vehicles via our
examples and show the benefit of increasing AV penetration to improve the system performance, in terms of
both total system travel time and optimal physical queue distribution. Our numerical results also show how
the link capacity is dynamically allocated to different vehicles classes in order to optimize the total system
travel costs and the total physical queue distribution. We also present the impact of traffic demand on both
average travel time for each vehicle type and on the computational demand of each Stage in our framework.

8. Concluding remarks

This paper explored the impact of AVs on traffic network performance using a multi-class system optimum
dynamic traffic assignment (SO-DTA) approach. We derived the network level side constraints for the mixed
AVs and HVs vehicles taking into account the variations in link capacities in response to the dynamics of
the vehicle class proportions. More specially, our proposed model allows to obtain a DSO solution that
optimally distributes the physical queues in the network considering the dynamics of the AV share factor.
The possible impact of the AVs on the road capacity under different initial penetration rates was then
numerically investigated. The simulation results indicated that the introduction of AVs changes the traffic

24



flow dynamics, reducing the spillback with the reduction in the total system travel time. Our results also
demonstrated that the reduction in the total system travel time with increased initial penetrations of AVs
is more profound with increased total demands, when heavy traffic congestion occurs.

The findings in this paper have important implications for traffic management and open up various new
research directions, such as optimal dynamic road/lane allocations and priority signal control for specific
vehicle classes. Although the proposed framework currently only applies for the single origin-destination
network with two specific vehicle classes, it plays an important role in the state-of-the-art and paves a way
for future work covering more generic scenario of multi-class networks and traffic demands (e.g. with more
than two vehicle classes such as HVs, AVs and trucks). Our future work is to extend the proposed framework
to the mixed DSO-DUE case, in which the AVs are controlled to follow the SO principle while the HVs
pertain to the UE principle. In this mixed case, measures such as pricing may be used to influence the HVs
towards a better solution for the system; the model considered in the present paper, of DSO for both HVs
and AVs, will then serve as an important benchmark as the maximum that might be achieved from such
pricing measures, as we move towards full marginal cost pricing.

Appendix A. Proof of proposition 1

Proof. From equation (14) we obtain:

qm(x, t)

V
+

qm(x, t)

W (t)
≤ Kαm(x, t) (A.1)

According to assumption 1:

qm(x, t) =







um

(

t−
x

V

)

in the free-flow regime

vm

(

t−
l − x

W (t)

)

in the congested regime
(A.2)

Then inequality (A.1) is converted into the following condition:

um(t− x
V
)

V
+

vm(t− l−x
W (t) )

W (t)
≤ Kαm(x, t) (A.3)

in which, by definition:
∑

m∈M

αm(x, t) = 1 (A.4)

This inequality implies that:
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which is substituted to equation (17) to obtain:
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which is converted to the discrete time as:

Nm(i) ≥

i∑

k=i− l
V
+1

um(k).
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Appendix B. Proof of proposition 2

Proof. Similarly, inequality (A.3) implies that

1

V
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.

which is substituted to equation (17) to obtain:
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which is converted to the discrete time as:

Nm(i) ≤ Klα̂m(i)−
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+1

vm(k).

Appendix C. Proof of Proposition 3

Proof. First, we have
dT̂ (α)

dα
= 2α(TAA − TAH) + (TAH − TH) < 0 since TAA < TAH < TH . Hence

dW (α)

dα
= −

1

KT̂ 2

dT̂ (α)

dα
> 0. Moreover,
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= 2(TAA − TAH) < 0. Let us compute the derivatives of

Q(α) w.r.t. α:
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and
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so Q(α) is a convex function of α.

Appendix D. Proof of Proposition 4
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Assume that the optimal solution of problem P holds traffic from link a to link b at time i in the network.
According to the condition Eq. (51), all the conditions are not met, i.e.,

Nam(i)−

i∑

k=i+1− la
Va

uam(k) > 0

Kblbα̂bm(i)−Nbm(i)−

i∑

k=i+1−
lb

Wb(i)

vbm(k) > 0

Qa(i)−
∑

m

vam(i) > 0

Qb(i)−
∑

m

ubm(i) > 0

∑

k≥i+1

fabm(k) > 0.

All these conditions guarantee that we can take a small traffic ǫ in fabm(k) > 0 (k > i)and put into
fabm(i) without violating any constraints. Therefore, we achieve a new solution that is identical to the
optimal one except for

unew
am (i) = uold

am(i) + ǫ

unew
am (k) = uold

am(k)− ǫ.

As the result, we achieve a new value of H which larger than the optimal one:

Hnew = Hoptimal + ǫ(k − i) > Hoptimal

where ǫ > 0, k > i. Therefore, the solution of problem P does not hold traffic at any link in the network.

Appendix E. Minimising total travel time with the objective function F

Let fpm(i, k) be the amount of class-m traffic on path p departing the source at time i and arriving the
sink at time k. Let P be the set of all path in the network. The source link is denoted as link r and the sink
link is denoted as link s. Remind that we denote Urm(i) as the demand of class-m traffic from the source r
at time i. Therefore, we can infer that:

∑

p∈P

∑

k>i

fpm(i, k) = Urm(i) ∀i ∈ T.

The total system travel time (TSTT) for class-m vehicle is computed by the following equation:
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=
∑
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∑

i∈T
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k>i

k fpm(i, k)−
∑

i∈T

i Urm(i).
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Due to
∑

p∈P

∑

i∈T

fpm(i, k) = usm(k) (where s is the sink link in path p), we can continue inferring that:

TSTTm =
∑

i∈T

i usm(i)−
∑

i∈T

i Urm(i)

= −
∑

i∈T

(T + 1− i)usm(i) +
∑

i∈T

(T + 1)usm(i)−
∑

i∈T

i Urm(i)

=
∑

i∈T

(T + 1− i)Urm(i)

︸ ︷︷ ︸

Constant

−
∑

i∈T

(T + 1− i)usm(i).

Note that, above transformation is based on the conservation of travel demand at sources and destinations

that
∑

i∈T

usm(i) =
∑

i∈T

Urm(i) where (r, s) is the pair of source and sink links. The above equation is true for

any O-D pair and any class m. Therefore, minimizing the total travel time is equivalent to maximizing the
objective function F (i.e., aggregation of total flow at destinations).

Appendix F. Justification of the two-stage framework in the DSO problem

Since the distribution of traffic in the network (i.e., nodes and links between sources and destinations)
can form different traffic patterns, Stage 2 aims to select the one which balances the queue among those
links, and consequently helps slow down the propagation of the spillback. In the following, we show an
example that different patterns (or solutions) can be observed, one with more desirable properties compared
to the other. Let’s consider a simple network with 4 links as shown in Figure F.14 where the network setting
is shown in Table F.5. It is clearly that there are two identical paths from R to S with the same free-flow
travel time. The traffic demand (with a total of 1500 vehicles) from R to S runs at full capacity of link (0,1),
however, the bottle-neck link (2, 3) cannot get all traffic from two path at the full capacity. Therefore, the
congestion will happen in one or both paths and cause the traffic congestion to spill back from node 2 to
node 1. There are two paths called a and b as shown in Figure F.14 (in this example, by mentioning path
a (or b) we mean the path from R to S passing through link a (or b)).

a

b
R S

1 2 30

Figure F.14: The simple network.

Table F.5: The network setting.

Link(s) Length (m) #lanes V (veh/min.) W (veh/min.) W (veh/min.) K (veh/m per lane)
(AV) (CV)

0-1 400 8 1000 600 400 0.12
1-2 (a, b) 800 4 1000 600 400 0.12

2-3 400 5 1000 600 400 0.12

Figure F.15 shows the difference in the number of vehicles staying in the network in the comparison
between Stage 1 and Stage 2 traffic patterns in different settings of AV penetration (α). In this figure, the
positive value means that more (Stage 2) vehicles are in the network than Stage 1 vehicles at any point in
time. Note that, these two traffic patterns give the same DSO objective value (i.e. the same total travel
time). However, because the spillback at node 1 happens quicker in Stage 1 (i.e. the tail of the congestion
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Figure F.15: The difference of vehicles in the comparison between the Stage 2 and Stage 1 solutions.

reaches node 1), the flow to the network reduces quicker to the bottle-neck flow (at link (2,3)) in this stage.
Particularly, the two traffic patterns shown in Figure F.15 are described below:

• (Stage 1) All traffic flow on path a passes through node 2 without delay where the remaining capacity
on link (2,S) is for path b.

• (Stage 2) Traffic splits equally at node 1 and merges equally at node 2.

These two traffic patterns fully utilize the capacity at node 2 (therefore they are DSO solutions) while they
are different in splitting and merging traffic at nodes 1 and 2.

In the following, we show that different congestion patterns can lead to different traffic states in terms
of network occupancy and traffic flow. For any link a, let ua,t and va,t denote the (class-aggregated) traffic
flow at the upstream and downstream of link a. The dynamic number of vehicles in link a, defined as Na,t,
is equal to

Na,t =
∑

h≤t

(ua,h − va,h) .

Both stages above share the same traffic patterns when the congestion is still in the middle of link (1,2)
(either on path a or b). We will investigate how long the congestion (or queue) reaches the node 1 and causes

the spillback on link (0,1). Let TV =
la
Va

be the free-flow travel time and TW =
la
Wa

be the travel time of

backward shockwave from the downstream. Let ts be the time that the spillback happens at the upstream
of link a (meaning that the whole link is in congested regime from time ts). Assume that the inflow to link
a is a constant u and the outflow capacity of link a is v. Due to the fact that the value of v depends on the
available flow capacity of the downstream link(s) of a, it can happen that u ≥ v leading to the congestion
on this link. In this typical condition, we can observe three periods in link a as follows:

• t ≤ TV : ua,t = u, va,t = 0, Na,t = ut.

• TV + 1 ≤ t ≤ ts: ua,t = u, va,t = v, Na,t = TV u+ (t− TV )(u− v).

• t ≥ ts + 1: ua,t = va,t = v, Na,t = TV u+ (ts − TV )(u− v).

This clearly shows that larger value of ts can lead to more flow and more vehicles staying in the network.
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For any TV + 1 ≤ t ≤ ts, according to Eq. (36) regarding the shockwave propagation, we can derive that

Kala ≥
∑

h≤t

ua,h −
∑

h≤t−TW

va,h = ut ⇒t ≤
Kala
u

t ≤ TV + TW

Kala ≥
∑

h≤t

ua,h −
∑

h≤t−TW

va,h = ut− (t− TV − TW )v ⇒t ≤
Kala − v(TV + TW )

u− v
t ≥ TV + TW

With the above inference, it can be easily proved that

• If u =
KaVaWa

Va +Wa

=
Kala

TV + TW

then ts = TV + TW (spillback is independent on outflow v).

• If v < u <
KaVaWa

Va +Wa

then ts =
Kala − v(TV + TW )

u− v
(spillback is dependent on both inflow u and

outflow v)

If u ≤ v, no queue can happen or grow in this link, therefore ts is undefined in this case. The above discussion
shows quantitatively the dependence of spillback on the inflow u and outflow v. It clearly indicates that
different DSO traffic patterns (i.e., different values of u and v) create different patterns of spillback reflected
by the number of vehicles accommodated in the network as shown in Figure F.15.

To further describe how the two-stage framework works, in the following part, we show that Stage 2
traffic pattern actually minimizes the spreading of spillback. Let ua, va, ub, vb be the inflow and outflow of
links a and b (from node 1 to node 2) respectively. Both links a and b have the same traffic jam density K,
length l, free-flow speed V and backward shockwave speed W . According to the analytical study of spillback
in the example above, the spillback happens on these links at tas and tbs, respectively, as follows.

tas =
Kl − va(TV + TW )

ua − va
(F.1)

tbs =
Kl − vb(TV + TW )

ub − vb
(F.2)

where va < ua <
KVW

V +W
and va < ua <

KVW

V +W
. We also have the conservation of travel demand D

where ua + ub = D and bottleneck capacity as va + vb = Q. Let t̄s = min(tas , t
b
s) be the time when the

shockwave reaches the upstream node (i.e., node 1 in the example). Therefore, to reduce (or slow down)
the spillback, we need to maximize the value of t̄s. Because this optimization problem is symmetric, the

optimal solution happens when ua = ub =
D

2
and va = vb =

Q

2
, which also balances queues in both paths

(Stage 2 traffic pattern).
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