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Abstract. In numerical models for granular dampers, particles are generally considered to 
be perfect spheres. However, in practical engineering applications these particles can slightly 
deviate from being true spheres. It has been observed experimentally that sphericity, which 
defines the proximity degree of a shape to a sphere, plays an important role in the amplitude 
dependent behaviour of granular dampers. This paper mainly examines the significance of the 
sphericity level for slightly oblate particles in a granular damper that are subjected to sinus-
oidal vibrations in the same direction as standard gravity. This investigation is carried out by 
evaluating the dissipated power from the granular medium by utilizing three-dimensional dis-
crete element method simulations. Apart from the effect of amplitude of vibrations in the dis-
sipated power, the relative contributions of frictional and inelastic collisional damping 
mechanisms in the overall power dissipation, are also investigated for varying sphericity lev-
els of the oblate particles.  
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1 INTRODUCTION  
Granular (or particle) damping is an effective passive damping approach that involves 

many small spherical particles (typically 0.05 mm – 5 mm in diameter) located inside an en-
closure that is fixed to a vibrating structure. The kinetic energy from vibration is transmitted 
to the particles by collisional momentum exchanges between the particles and the boundaries 
of the enclosure. Granular dampers dissipate the transmitted kinetic energy through inter-
particle and particle-enclosure boundary interactions. This is unlike common viscoelastic 
dampers which generally dissipate the stored elastic energy.  

Interest in granular damping is rapidly increasing in engineering fields because such damp-
ers are robust, cost-effective, easy to retro-fit and relatively insensitive to the environment and 
excitation frequency. [1–4]. As a result, granular dampers have been successfully applied in 
numerous mechanical systems to solve noise and vibration problems, such as a desk-top 
banknote processing machine [5], the exterior panel of a launch vehicle [6], a gear transmis-
sion system [7], and an automotive oil pan [8].  

Despite their conceptual simplicity, granular dampers have quite complex and distinctive 
behaviour. Since the particles are generally hard, made from materials such as metal and ce-
ramic, surface friction plays an important role in energy dissipation, which leads to significant 
non-linearity in the form of amplitude dependent behaviour [9,10]. Granular damping has 
been studied extensively and this non-linearity is the likely reason for the existence of many 
contradictory findings in the literature. To improve understanding, studies have been under-
taken to investigate the sensitivity of granular damping against damper parameters, such as 
coefficient of restitution between impacting bodies, coefficient of friction in contacting sur-
faces, particle number and individual stiffness of particles and enclosure walls [11–13]. More 
recently, it has also been shown that an approximated granular damper model in Discrete El-
ement Method (DEM) simulations can adequately represent the essential properties of a real 
granular damper without matching parameters exactly provided the total mass is represented 
accurately [14]. This presumably arises from the compensation feature of multiple particles 
against the small variations of parameters from exact ones. It should be noted that this ‘uni-
versal response’ approach is only valid when using relatively large numbers of particles.  

Previous studies have reported that granular dampers exhibit the characteristic properties 
of both friction dampers and single impact dampers since the main damping mechanisms of 
granular dampers are surface friction and inelastic collision within the granular media [15]. 
Furthermore, it has been also emphasized before that understanding of the damping mecha-
nisms would provide an efficient way to increase the performance of such dampers [1]. Ac-
cordingly, a few attempts have been made to identify relative contributions of damping 
mechanisms in granular damping [15–18]. However, much uncertainty still exists and the lit-
erature on this topic is very scarce.  

Although the hard particles used in granular dampers typically have a high level of durabil-
ity, over time their shape may deviate from a true sphere due to harsh working conditions or 
intense collisional events. Moreover, non-spherically shaped particles may be deliberately 
used either for cost reasons or to avoid practical design issues such as the packing problem in 
small voids or because of manufacturing tolerances. Therefore, the investigation of irregular 
particles has grown in importance [19–21]. However, there is no notable study that focuses 
upon slightly oblate particles in granular dampers.  

The aim of this study is to provide a numerical investigation on slightly oblate hard parti-
cles in a granular damper undergoing harmonic vibrations in the same direction as gravity. 
Several three dimensional DEM simulations are carried out to find the effects of particle sphe-
ricity levels on the dissipative behaviour. Steady-state cumulative power loss calculations are 
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utilized to characterize the amplitude dependent granular damper in every simulation. The 
contributions of frictional and collisional energy dissipation mechanisms on the total dissipa-
tion are computed.  

2 DEM MODEL FOR OBLATE PARTICLES  
DEM is a numerical scheme for analyzing granular matter, in which the motion of every 

particle is tracked in time. The full time history of interest is broken into a series of very short 
time steps over which the equations of motion for each particle are solved. Where particles 
interact with one another, or with the physical boundaries of the system being studied, appro-
priate force-displacement and force-velocity relations for the contact are employed. The fun-
damental theory of DEM was originally presented by Cundall and Strack [22] and was first 
applied to granular dampers more than 20 years ago [23]. The use of DEM is attractive in the 
study of granular damping because it provides a way to control and observe the contact pa-
rameters and their effect on overall damping achieved.  

2.1 Oblate particle generation  
Although several algorithms have been developed recently that allow irregular particles to 

be defined and used directly within the DEM field, the most common method is the multi-
sphere approach. In this approach, two or more overlapping spherical particles are rigidly 
joined together. Relatively complex shapes can be produced as the spheres are allowed to in-
tersect each other. The use of the sphere as the building block provides computational benefits 
including the existence of advanced contact detection algorithms and contact models. Thus, 
the oblate particles used in this study are formed by employing the multi-sphere approach in 
the EDEM 2020 software [24].  

Shape is an important indicator which defines a particle in numeric computational fields – 
especially for rock-like irregular particles [25]. If a large number of spheres is used in the 
multi-sphere approach, non-spherical shapes can be represented more precisely. However, it 
also causes significant increases in computational times. Hence, irregular shapes should be 
modeled conducting a balance between computational efficiency and closeness of representa-
tion. In this study, oblate particles are generated considering these criteria and are shown in 
Figure 1.  

yd

2.80yd mm

2.60yd mm

2.40yd mm

2.20yd mm

2.00yd mm

  
Figure 1: Created particle types for simulations with respect to a 3mm  diameter perfect sphere mesh template.  

It should be noted that the reference perfect sphere diameter used in this study is 3 mm and 
particle resizing occurs along the local y-axis (i.e. yd  changes) as can be seen in Figure 1, 
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whilst the other lengths ( xd , zd ) are kept constant. In this investigation, the lower limit for yd  
was set at 2 mm, which represents a moderate change in particle shape.  

The relative similarity of oblate particles to the reference sphere can be described using the 
sphericity index [25] which can be written as,  

 
2

3
c
ab

    (1) 

Here, a , b  and c  are the corresponding lengths (largest to smallest, respectively) along the 
three local axes. In this paper, only the smallest length of the oblate particles is adjusted and 
therefore, yc d , 3mmx za b d d    .  

Since oblate particles are created by deforming a sphere along one axis, a two dimensional 
parameter called the circularity index can also be used to define the shape. Circularity is de-
fined in the local YZ  axis as shown below [20].  

 2
4 YZ

YZ
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   (2) 

where YZA  and YZP  are respectively the projection area of a particle on the YZ  axis and the 
perimeter of the particle. Sphericity and circularity values for the oblate particles used in this 
work, are presented in Table 1.  

Particle minor axis length, yd  [mm] Sphericity,   [-] Circularity, C  [-] 
2.00 0.763 0.970 
2.20 0.813 0.980 
2.40 0.862 0.989 
2.60 0.909 0.995 
2.80 0.955 0.999 
3.00 1.000 1.000 

Table 1: Shape parameters of oblate particles.  

2.2 Contact force model  
In DEM, although particles are created as completely rigid bodies, contacts between them 

are deformable. Contacts are traditionally modeled using spring and dashpot elements as 
shown in Figure 2a, which allow relatively rapid calculations to be performed. For perfect 
spheres, force-displacement relationships have already been defined and tested for suitability 
[26–28]. As the multi-sphere is employed, these validated models can be applied to address 
the load-deformation behaviour of oblate particles. The contact model used in EDEM 2020 
for this study is briefly summarized below considering the spheres shown in Figure 2a.  

Normal elastic force between the spheres is determined using the well-known non-linear 
Hertzian contact model.  

 3/24
3

N

eq eq
N

k

E R  
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eN NF e   (3) 
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Here, Ne  is the unit vector from the centre point of sphere under consideration to the contact 
point and N  is the normal overlap of sphere. In this expression, the equivalent elastic modu-
lus ( eqE ) and the equivalent radius ( eqR ) can be found by    2 2

1 1 2 21/ 1 / 1 /eqE E E      

and 1 21/ 1/ R 1/ ReqR   , where E , R  and   are elastic modulus, radius and Poisson’s ratio 
of relevant spheres, respectively. In order to define inelastic (i.e. dissipative) part of normal 
force between the spheres, a coefficient of restitution ( e ) based approach is employed [29]:  

  
     1/2
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where equivalent mass ( eqm ) is defined using the individual masses of spheres 
1 21/ 1/ 1/eqm m m   and   /d t dt

Nrelr  denotes the normal relative velocity between the 
spheres in contact.  
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Figure 2: a) Modelling at the contact point of two contacting spheres, b) contacts of an irregular particle con-

structed with many spheres.  

On the other hand, tangential elastic force is determined according to normal overlap de-
fined as Mindlin and Deresiewicz method [16]. Unlike the original method in which many 
incremental elastic-plastic loading and unloading steps exist [30], a simplified version of this 
method is used to define tangential elastic force-displacement relation as given below.  

  1 8
T

eq eq
N T

k

G R     eT TF e   (5) 

While equivalent shear modulus ( eqG ) is defined by    2 2
1 1 2 21/ 1 / 1 /eqG G G      with 

shear modulus of spheres (G ), T  and Te  stands for the tangential overlap and the unit vector 
along tangential overlap, respectively. Additionally, tangential inelastic force can be also 
formed using the similar approach as for normal direction. However, shear friction should be 
also taken into consideration in tangential direction. Thus, the widely used Coulomb friction 
model is added to tangential contact model:  
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where   /d t dt
Trelr  is the tangential relative velocity between the spheres and f  is coeffi-

cient of friction.   is for indicating whether slipping occurs or not as seen in Equation 7.  

 
1
0

f

otherwise



 
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

T NF F
  (7) 

It should be also noted that although the contact model is presented considering sphere – 
sphere contacts, it would be also valid for sphere – cylindrical enclosure contacts if one as-
sumes enclosureR   and enclosurem   in above expressions.  

For an irregularly shaped particle modelled using multi-sphere approach, contact force cal-
culation procedure should be performed accounting all existing contacts of all individual 
spheres which constitute the particle. For example; as can be seen in Figure 2b, 8 perfect 
spheres which form the irregular particle have different number of contacts with other parti-
cles (e.g. number 1 has 2 contacts while number 8 has 1 contact) and the effects of the total 6 
contacts can be only obtained by looking all 8 spheres. Thus, the resultant force acting on the 
particle can be computed as follows for a particle:  

  
 i j i

       
  

  e d e dF N N T T gR F F F F F   (8) 

where i  and  j i  are the indices which count the total spheres forming the particle and the 
total contacts involved by sphere i , respectively. gF  is the gravitational force acting on the 
corresponding sphere. The resultant moment acting on the particle can be also determined by 
vectorial product of the resultant force and the position vector of particle mass center ( cr ).  

  M c FR r R   (9) 

2.3 DEM simulation procedures  
In three dimensional DEM simulations, detected contacts of particle – particle and particle 

– enclosure pairs are considered to perform the given contact force computation procedure at 
a solution time step. After the calculation of resultant forces and moments, Euler-Newton 
equations of motions are numerically solved to find updated translational and rotational kine-
matics (i.e. positions, velocities and accelerations) of every particle by utilizing central-
difference formulae.  

The time step needs to be set small enough to capture particle overlaps, avoid propagating 
disturbances of a particle far from away and decrease numerical inaccuracies in simulations. 
Although several other approaches have been available to estimate a time step for realistic 
simulations in DEM, the Rayleigh time step criterion is used in the present study [31]. The 
time interval used in the simulations is chosen to be approximately %50 – %35 of the Ray-
leigh time step according to the particle type to ensure the reliability of simulations.  

Even though there have been studies which investigate the characteristics of granular 
damping considering the dynamics of host structure [12,32], it is useful to carry out investiga-
tions on the damper alone to determine energy dissipation behaviour independently from the 
host structure [33,34], so that the damper can be adopted to any structure. This study involves 
a cylindrical enclosure filled with oblate particles subjected to vertical sinusoidal vibrations.  

Particles are given the properties of stainless steel while the material of enclosure is chosen 
as polymethylmethacrylate (PMMA). The properties of these materials and the dimensions of 
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the enclosure are given in Table 2. The contact properties used in the simulations (i.e. friction 
and restitution coefficients) are determined as presented in this table. These parameters are 
selected according to a comprehensive study in which stainless steel – stainless steel and 
PMMA – stainless steel interactions were experimentally examined to extract the contact 
properties between those for DEM simulations [35].  

Enclosure parameters Particle parameters 
Material PMMA Material Steel 
Elastic modulus 3.3 GPa Elastic modulus 206 GPa 
Poisson's ratio 0.37 Poisson's ratio 0.30 
Diameter 0.02 m Density 7800 kg/m3 
Height 0.04 m Nominal total mass 0.04 kg 
Other simulation parameters   
Particle-enclosure friction coefficient 0.4 
Particle-particle friction coefficient 0.4 
Particle-enclosure restitution coefficient 0.92 
Particle-particle restitution coefficient 0.92 
Time step ~5x10-7 s   

Table 2: Parameters and properties of numerical simulations.  

To allow a comparative study to be undertaken, it was considered desirable that the total 
mass of particles remained the same for different particle types. In order to achieve a suitable 
clearance level (75% – 80% filling ratio or 20% – 25% clearance ratio) for practical damping 
in every simulation configuration [11], the total particle mass was set to 0.04 kg. However, 
because particles are discrete but had different sizes, the total mass varied by up to the mass 
of half a particle, as shown in Figure 3a. Figure 3a also shows that a greater deviation in shape 
from a perfect sphere results in an increase in the number of particles required to achieve the 
target mass. Before any vibrational loading was applied, all particles were allowed to settle in 
the enclosure by the gravitational effect (see Figure 4).  
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Figure 3: a) Changes in total particle mass and total particle number in terms of particle type, b) given vibration 

signal.  

Behaviour of the granular medium under steady-state vibration was studied by prescribing 
sinusoidal motion for the enclosure at a frequency of 20 Hz. The effect of vibration intensity 
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was investigated by increasing the amplitude in steps, with the response being calculated for 
ten cycles at each level, as shown in Figure 3b. These vibrational levels are represented by 
commonly used non-dimensional acceleration ( ).  

 
2A

g


    (10) 

where A  and   are displacement magnitude and angular frequency of vibrations, respective-
ly. In the vibration signal, time gaps are provided between each vibrational level to let the par-
ticles become stationary before the next excitation.  

2.00yd mm 2.20yd mm 2.40yd mm

2.60yd mm 2.80yd mm 3.00yd mm

  
Figure 4: Views of granular oblate particles in the enclosure after settling process (i.e. stationary positions).  

3 DISSIPATED ENERGY CALCULATION  
Total cumulative dissipated energy in the simulations can be obtained by utilizing an in-

cremental numeric computation scheme. For a single contact, total dissipated energy incre-
ments ( CE ) are computed integrating the scalar product of dissipative forces (i.e. in normal 
direction, 

dN
F  and in tangential direction, 

dT
F ) and corresponding relative velocities between 

the contacting bodies through the contact time, cT . In order to account all N  number of con-
tacts in the current computation step, this calculation is repeated for every contact, and then 
the effects of every contact is summed accordingly as following.  

    
       

   
 1 k

c

k kN
k k

C
k T

d t d t
E t t dt

dt dt

       
  

  N T

d d

rel rel
N T

r r
F F   (11) 

where 
Nrelr  and 

Trelr  represent the relative positions of contacting bodies with respect to each 
other in normal and tangential directions, respectively, while t  stands for time. In addition, 
the computation time step of the energy dissipation calculation scheme should be sufficiently 
larger than the contact durations to account all contacts within a single step.  
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The tangential dissipation can arise from either friction between the bodies in contact or 
restitution of the bodies unlike the normal dissipation where whole dissipation is caused by 
only collisional restitution. Frictional dissipation is solely employed if slipping, in which the 
tangential force is higher than the maximum static friction force between the contacting bod-
ies, is occurred. The frictional cumulative dissipation steps can be separately determined as 
given in below. 

    
   

 1 k
c

kN
kf

C f
k T

d t
E t dt

dt




    Trel
N

r
F   (12) 

Collisional dissipation can then be obtained by subtracting the frictional loss from the total 
dissipation energy.  

 c f
C C CE E E      (13) 

4 RESULTS  

4.1 Overall dissipative behaviour of oblate particles  
To assess the general damping behaviours of oblate particles against different vibrational 

amplitudes and the relationship between the dissipation and the granular motional behaviour, 
cumulative total dissipated energies were extracted separately for every vibrational case in all 
simulations. Figure 5 presents some of those dissipated energy results. In these results, the last 
five vibration periods at each vibration level are considered. Simulations were repeated to de-
termine the effects of packing on the results. The results verified that packing effects stay very 
small except at the amplitude 1  .  

The first set of analyses belongs to very small oscillations (i.e. 1.0  ). Under such small 
vibrations, the particles inside the enclosure have almost no relative motions with respect to 
each other, they only follow the enclosure motion (i.e. solid-like behaviour) since the particles 
do not overcome the gravitational and the static frictional forces within the granular media. 
Thus, the dissipated energies are extremely small, and they do not exhibit obvious steady-
state behaviors since a few individual particle movements that induce energy dissipation can 
be instantly observed due to wave propagation through the granular media from the bottom 
boundary of the enclosure. These instantaneous dissipation increases can be more likely seen 
for perfect spheres owing to their smooth circular surfaces. In addition, numerical errors in 
computational operations and initial packing may also considerably affect these small out-
comes.  

It is apparent from Figure 5 that huge differences surprisingly emerge between the particle 
types at several vibration amplitudes. Further investigation into granular media indicates that 
this is mainly connected with the dissimilarities of granular motional states which the parti-
cles are in. For instance; in Figure 5d, there are two groups of result: one is high dissipation 
group, and the other is low dissipation. At this vibration level, the high energy dissipation 
group is at the onset of two-sided bouncing bed behaviour in which the granular particle clus-
ter impacts the bottom and the top boundaries of enclosure during a period of vibration (i.e. 2 
collective impacts with the enclosure in a period), thereby transferring the momentum effec-
tively to the granular media. On the other hand, the granular media in low dissipation group 
generally collides with only the bottom boundary in a vibration period (one-sided bouncing 
bed), while it slightly touches to the top boundary in this period (mild collision).  
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a) b)

c) d)

e) f)

  
Figure 5: Total cumulative dissipated energy characteristics for 5 vibrational periods of a) 1  , b) 4  , c) 

5  , d) 6  , e) 8  , f) 10  .  

The defined dissipation groups in Figure 5d are also valid at 5   as can be seen in Figure 
5c. At this vibration level, the high dissipation group members exhibit similar behaviour to 
that seen previously except that the granular cluster impacts the top boundary once in every 
two periods. Although the members of low dissipation group have similar motion, the most 
squashed particle type somehow executes impacts with quite less intensive than the other 
members as can be clearly seen in Figure 5c.  

Figure 6 shows the total potential energy in the particles throughout the simulation. Ob-
served motional behaviours of granular media at various vibrational sequences are marked 
with different colors. Purple represents solid-like behaviour, while magenta and cyan stand 
for one-sided bouncing bed with fluidization of a few of the particles on the top layer and one-
sided bouncing bed with fluidization of the uppermost layers of particles, respectively. As one 
can see in this figure, red marked potential energy regions are clearly more uneven and scat-
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tered than other vibrational cases. This result may be explained by the fact that the granular 
media shows relatively higher level of fluidization in which a reasonable amount of particle 
indistinctly floats in these loading ranges. Another possible reason for this is that the collec-
tive motion of granular media is not symmetric at every vibrational period in these cases as it 
is in other vibration scenarios. The motions within these red marked ranges are described as 
following: dotted red is one-sided complete bouncing bed with few individual top particles-
top wall impacts in every period, dot-dashed red is one-sided complete bouncing bed with few 
individual top particles-top wall impacts once in every two periods, dashed red is one-sided 
complete bouncing bed and mild collective collision with the top wall once in every two peri-
ods and flat red is one-sided complete bouncing bed and mild collective collision with the top 
wall in every period. The last phenomena observed in the simulations is two-sided complete 
bouncing bed that is marked with blue in total potential energy plots.  

  
Figure 6: Total potential energy changes of simulated particles in time, yellow flat line indicates the total poten-

tial energy at the stationary positon of particles.  

4.2 Damping characterization of oblate particles  
In order to compare the damping behaviour of oblate particle types, the energy dissipation 

rates in a steady-state vibration period (i.e. power loss) were determined by integrating the 
cumulative dissipated energies through this period.  

  1
C

T

Power loss E t dt
T

    (14) 

The power losses are illustrated with respect to either sphericity or circularity for every 
simulated vibrational level in Figure 7 and Figure 8, respectively. The perfect sphere results 
are also included in these figures as a reference of default particle type used in most typical 
granular damper applications. In these graphs, the contribution of damping mechanisms of 
granular damping (i.e. friction and impact) on overall power loss are also shown to illustrate 
the macroscale damping behaviour of oblate particles. In addition to this, particle-particle and 
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particle-enclosure frictional losses are separately depicted in these plots to show dominance of 
interaction type.  
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Figure 7: Power loss changes in terms of sphericity at different vibration levels: total loss ( ), frictional loss 

( ), inter-particle frictional loss ( ), particle-enclosure frictional loss ( ), collisional loss ( ).  

If one looks into the total power loss results omitting the reference particle (i.e. the perfect 
sphere: 1   and 1C  ) in both charts, it can be found that there are three damping regimes 
according to the vibrational intensity in which the total loss is affected by particle shape. The 
first one is ‘inclining’ regime where the total power loss generally increases with increasing 
sphericity or circularity level before 5  . This increasing behaviour becomes moderate at 
higher amplitudes, whilst it is very slight for small vibrations. Afterwards, there is ‘transition’ 
regime up to 8  . Although increasing tendency in total power loss continues in this regime, 
a dramatic jump is also observed because of impacts with the upper surface of the cavity, as 
discussed in the previous section. The last damping regime is ‘declining’ in which the power 
loss is decreasing with increasing sphericity or circularity unlike the other regimes and this 
falling behaviour is more apparent at higher vibration amplitudes. Together, these findings 
suggest that damping is optimised at different amplitudes, depending on particle shape. The 
results also indicate that there is an oblate particle type which provides more damping than the 
perfect sphere for almost all vibrational levels. Thus, it can be preferable in granular applica-
tions to use very slight oblate particle if the vibrations ensure working before two-sided com-
plete bouncing bed. Otherwise, in two-sided complete bouncing bed state, it is more 
appropriate to employ highly flattened particles. However, it should be noticed that these re-
sults need to be supported by quantitative data from experimental works.  

For a given non-dimensional acceleration level, it can be highlighted from the power loss 
plots that the most dominant damping mechanism is friction for every particle type. Besides, 
particle-particle frictional interactions are responsible for most of frictional dissipation. In fact, 
it is reported that particle-particle contacts contribute most of overall dissipation (i.e. particle-
enclosure boundary interactions have minor effects on dissipation) as similarly mentioned be-
fore [18]. The dominancy of frictional loss leads that the overall damping behaviour stated in 
the previous paragraph completely reflects the frictional energy dissipation.  
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Figure 8: Power loss changes in terms of circularity at different vibration levels: total loss ( ), frictional loss 

( ), inter-particle frictional loss ( ), particle-enclosure frictional loss ( ), collisional loss ( ).  

One unanticipated result is that collisional loss always increases with sphericity or circular-
ity whatever the damping regime. It is believed that this occurs because flatter (i.e. low sphe-
ricity or low circularity) particles have fewer intense collisions (i.e. high overlap, high impact 
velocity). Additionally, an interesting correlation is found between collisional and particle-
enclosure frictional loss characteristics along sphericity or circularity. As can be seen in Fig-
ure 7 and Figure 8, they generally have the same tendency before two-sided bouncing bed be-
haviour (i.e. 8  ) while the power loss trends of those seem opposite after this threshold 
vibration intensity.  

5 CONCLUSIONS  
This study set out to assess the effect of oblate particle usage in granular dampers undergo-

ing vertical harmonic excitations by conducting numerical studies. The investigation has 
shown that the damping performance and the motional behaviour is sensitive to the sphericity 
level of the particles as well as the vibration amplitude. The power loss results in this study 
indicate that three damping regimes exist, each depends on vibration level and sphericity of 
the particles. Additionally, there is generally an oblate particle type which can be chosen ra-
ther than the typical perfect sphere to provide higher damping to main structures according to 
the motional state. Also, it has been shown that the general damping characteristics of parti-
cles follow the frictional dissipation behaviour which is the dominant mechanism in granular 
damping. This research extends the existing literature on damping from irregular particles. 
However, experimental investigations should be also conducted to confirm these numerical 
outcomes.  
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