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Abstract

We explore the effect of connectivity and topology on the dynamical behaviour of Reservoir Computers. At present,

considerable effort is taken to design and hand-craft physical reservoir computers. Both structure and physical complexity

are often pivotal to task performance, however, assessing their overall importance is challenging. Using a recently

developed framework, we evaluate and compare the dynamical freedom (referring to quality) of neural network structures,

as an analogy for physical systems. The results quantify how structure affects the behavioural range of networks. It

demonstrates how high quality reached by more complex structures is often also achievable in simpler structures with

greater network size. Alternatively, quality is often improved in smaller networks by adding greater connection complexity.

This work demonstrates the benefits of using dynamical behaviour to assess the quality of computing substrates, rather than

evaluation through benchmark tasks that often provide a narrow and biased insight into the computing quality of physical

systems.

Keywords Reservoir computing � Unconventional computing � Topology � Connectivity � Dynamical behaviour

1 Introduction

Reservoir Computing (RC) (Schrauwen et al. 2007; Ver-

straeten et al. 2007) is a computational model used to train

and exploit an increasingly rich variety of dynamical sys-

tems, ranging from virtual neural networks to novel phys-

ical systems, such as quantum, electrical, chemical, optical

and mechanical [see reviews by Lukoševičius and Jaeger

(2009), Tanaka et al. (2019)]. Every reservoir system is

designed to harness the underlying dynamics of the sub-

strate it is implemented with, whether that be a physical

device or a simulated dynamical system. However, finding

a suitable substrate, or designing one, with sufficient

dynamics to compute specific tasks is challenging.

Methods to assess the range of dynamics a substrate can

exhibit are undeveloped. Therefore, matching substrate to

task is typically done through trial and error. This often

involves a long and laborious exercise to determine how

best to configure and design a substrate to improve

performance.

Dale et al. (2019b) present a framework to assess and

compare computing systems based on abstract behaviours

of dynamical properties. Using a Quality–Diversity algo-

rithm (Pugh et al. 2016), the full dynamical range of the

substrate is mapped and explored. The characterisation of

the substrate is then used to determine the effects of con-

figuration, perturbation and design alteration on substrate

‘‘quality’’. Dale et al. (2019a) use the framework to

investigate the role of connection types and topology on the

quality of simulated recurrent networks. They find that an

increase in network size can compensate for a reduction in

network complexity, and vice versa.

Here we perform an extension of that work, with more

network sizes, longer searches, more runs, and different

restrictions to network creation and alteration: no topo-

logical connections in the underlying network can be bro-

ken, and a constant number of connections is maintained

during the exploration process. We additionally investigate
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what effect adding extra random connections has on the

quality of each topology.

Simple topologies are typically easier to implement in

hardware. If adding only a few additional connections leads

to higher quality, there is the potential for new computing

capabilities with minimal cost in hardware. Here we

explore whether adding only a few additional connections

to regular topologies can lead to more dynamical beha-

viours, behaviours typically accessible only to networks

with higher degrees of freedom, for example, with many

more connections.

In the reservoir computing literature, small-world

topologies—with both regular structure and random con-

nectivity (Deng and Zhang 2007; Kawai et al. 2019)—

have been assessed on multiple benchmark tasks. It was

found that small-world reservoir networks often improve

task performances and provide greater robustness in

parameter selection. However, it is unknown how this

topology affects quality, e.g., does it provide the same, less

or more dynamical freedom? What happens to reservoir

quality as we increase the connectivity of regular networks

towards fully-connected networks? Here, we address both

of these questions and discover that small-world-like con-

nectivity does not lead to any greater quality and that the

quality of regular structures tends to converge to fully-

connected networks with an additional 2.5-5% connections.

2 Reservoir computing

Exploiting the intrinsic properties of physical systems has

the potential to offer improvements in performance, effi-

ciency and/or computational power compared with con-

ventional computing systems (Crutchfield 1994; Lloyd

2000). However, to do so requires a model of computation

that naturally fits the substrate rather than imposing a

model that fights its implementation (Stepney 2008).

The simplicity and black-box exploitation of the reser-

voir computing model means that it suits many types of

physical systems. However, its simplicity has drawbacks,

for example, it struggles to solve complex tasks requiring

high-order abstractions and multiple timescales (Gallicchio

et al. 2017; Lukoševičius and Jaeger 2009).

Input-driven reservoir computers are typically repre-

sented and divided into three layers: the input, the reser-

voir, and the readout. The reservoir is the dynamical

system, and perturbed and observed as a black-box. The

input and readout depend on the chosen method to encode

and decode information to and from the reservoir.

Depending on the implementation, this could be serial or

parallel input-outputs, and discrete or continuous values

encoded as electrical, optical, chemical, mechanical or

other signals.

Each reservoir is configured, controlled and tuned

(programmed) to perform a desired function. This often

requires the careful tuning of parameters in order to pro-

duce working and optimal reservoirs. Most reservoirs are

hand-crafted to a task, typically requiring expert domain

knowledge to design an optimal system. However, the

separation between layers allows the reservoir to be opti-

mised and configured independently of the input and

readout layer. Many techniques have been used to optimise

virtual reservoirs (Bala et al. 2018) and physical reser-

voirs (Dale et al. 2016a, b, 2017).

To interpret a substrate as a reservoir, we define that the

observed reservoir states xðnÞ form a combination of the

substrate’s implicit function and its nth discrete

observation:

xðnÞ ¼ XðEðWinuðtÞ; ucðtÞÞÞ ð1Þ

where Xð�Þ is the observation of the substrate’s macro-

scopic behaviour and Eð�Þ the continuous microscopic

substrate function, when driven by the input uðtÞ at time-

step t. Win is the input connectivity to the reservoir system;

this is typically represented as a random weight matrix

(see Lukoševičius (2012) for a guide on creating reservoir

weights). The variable ucðtÞ represents the substrate’s

configuration (program), whether that be through external

control, an input-output mapping, or other method of

configuration. Typically, ucðtÞ is not a function of time, but

only of a given problem, for example, the hyperparameters

in simulated networks, or bias voltages in electronic sys-

tems. However, modulating or switching between different

configurations over time could add additional dynamical

complexity.

The final output signal yðnÞ is determined by the readout

function g, on the observation xðnÞ:
yðnÞ ¼ gðxðnÞÞ ð2Þ

Note that the intrinsic function Eð�Þ of the substrate is

described as being fixed, clamped, or set by uc; only g is

adapted. However, depending on the system, Eð�Þ may

change when interacted with or observed, and therefore be

non-deterministic. Additionally, Eð�Þ may also have a

stochastic nature and be influenced by its environment;

appropriate sampling and averaging are required in these

cases.

The observation function Xð�Þ is also considered fixed,

but could change depending on the observation method and

equipment.

This formalisation separates the system into contributing

parts, including the observation and configuration method.

This is key to understand for physical reservoir comput-

ing—every element represents the reservoir system, not

just the substrate—leading to more ways to improve,

optimise and exploit.

M. Dale et al.
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3 CHARC framework

CHARC (CHAracterisation of Reservoir Computers) (Dale

et al. 2019b) provides a framework with which to explore

and compare the dynamical and computational expres-

siveness of computing substrates. The expressiveness of a

substrate is determined by how many distinct dynamical

behaviours it can exhibit. The total number of behaviours is

then used to approximate the quality of the substrate to

perform reservoir computation.

Through this process (see Fig. 1 for workflow), the

applied computational model, e.g., encoding, decoding and

abstract representation of the system, is also assessed,

suggesting whether the chosen model is a suitable fit to the

physical implementation.

To characterise the computing quality of substrates, the

framework searches over a set of metrics measuring

favourable dynamical properties. At present, these metrics

are targeted at properties critical to reservoir computing,

however, the framework is not limited to these. If a sub-

strate is able to exhibit many dynamical behaviours, it is

said to have a greater quality and therefore a increased

capacity to solve different classes of computational

problems.

Dale et al. (2019b) use CHARC to explain why evolved

configurations of disordered carbon nanotube composites

perform well at certain tasks and not others: due to their

limited dynamical behaviour. They also show that delay-

line reservoirs (Appeltant et al. 2011) often match the

dynamics of large simulated recurrent neural networks,

partly explaining the competitiveness of such systems.

The basic CHARC framework is designed with various

levels to define and measure quality. The output of lower

levels are used by higher levels to model relationships

between parameters, dynamics and task performance.

At the base level, the computational model is chosen.

The reservoir computing model is applied here. In the

context of a model, an abstract space of behaviours is

defined. This space represents the dynamical behaviour of

the substrate when configured. This space is distinct from

the substrate configuration space, where small changes in

configuration parameters can result in large changes in

behaviour, and vice versa.

To define this n-dimensional behaviour space, n inde-

pendent property measures are used. Here, we use the same

three-dimensional behaviour space used in Dale et al.

(2019b), using three metrics measuring basic properties

required for reservoir computing: Kernel Rank (KR; the

separation property, Legenstein and Maass 2007), Gener-

alisation Rank (GR; the generalisation property, Legen-

stein and Maass 2007), and Memory Capacity (MC; the

echo state property, Jaeger 2001). An example 3-d beha-

viour space is shown in Step 1 of the CHARC workflow,

Fig. 1.

For an outline of how to implement these measures

consult Dale et al. (2019b). As mentioned there, these

three measures by themselves do not fully capture all

dynamical properties of a reservoir. To improve accuracy

and the quality measure, additional independent property

measures may be required. However, these three measures

are generally sufficient to demonstrate the framework and

evaluate the various substrates proposed here.

The Exploration & Mapping level of the framework

defines the search method used to construct the mapping

between abstract reservoir and substrate configuration. This

is shown as Step 2 in Fig. 1. The behaviour space is

explored using an adapted implementation of novelty

search (Lehman and Stanley 2008), an open-ended genetic

algorithm that explores a search space for novel solutions

until a user-defined termination criterion is met.

Novelty search discovers a wider range of behaviours

than does random search (Dale et al. 2019b) for the same

number of evaluations. CHARC maps the entire behaviour

space, not just boundaries, and hence novelty search is a

more appropriate search technique than explicit optimisa-

tion of some objective function. This mapping process, by

covering the full space, can determine the practical use of

Fig. 1 CHARC framework basic workflow
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the substrate, or whether the computational model and

configuration method is appropriate.

The use of heuristic search, rather than exhaustive

search, may result in some biases in the results. For

example, the discovered boundaries of the behaviour space

are noisy as they are the most difficult behaviours to find,

therefore they are less frequently discovered. The discov-

ered boundaries also tend to be noisier for systems with

higher quality (see Fig. 4) as the boundaries of lower

quality systems are easier to find in fewer search iterations.

The quality measure used compensates for some noise: if a

behaviour is found, all nearby behaviours are taken to be

possible; CHARC provides a qualitative approximation of

reservoir quality. Also, different reservoir architectures

will have different biases: although some bias is removed

because of the focus on the resulting behaviour space

instead of configuration parameter space, nevertheless a

larger number of configuration parameters will require

greater exploration, and different architectures have dif-

ferent parameter combinations. The fairest way to compare

is the standard approach taken in using evolutionary

algorithms: put the same restriction on the length of each

search. Some architectures may in principal be underex-

plored, but the results indicate that in fact there is rea-

sonably consistent coverage of behaviour space.

The Evaluation level defines the mechanisms to evaluate

quality. This constitutes the final level for measuring

quality. To assess quality, the final behaviour space is

divided into voxels/cells as demonstrated in Step 3 of

Fig. 1. The total number of voxels that are occupied by

behaviours builds an approximation of the dynamical

freedom: how many distinct reservoirs the substrate can

instantiate. This acts as the measure of quality to compare

across systems.

In order to compare fairly across systems the same

number of evaluations and dimensions should be kept, as

well as the same voxel size when measuring quality.

4 Network topology experiments

Simple, regular and deterministic connection topologies

can perform as well as randomly-generated reservoir net-

works on a number of benchmark tasks (Appeltant et al.

2011; Ortı́n et al. 2015; Rodan and Tiňo 2010, 2011).

However, the exact role and benefits of complex structures

in reservoir computing is an open question and the full

computing and dynamical limitations of simple topologies

still remains unclear.

4.1 Reservoir model

The dynamics of each reservoir network used in this work

is given by the state update equation:

xðnÞ ¼ ð1� aÞxðn� 1Þ þ af ðbWinuðnÞ þ cWxðn� 1ÞÞ
ð3Þ

where x is the internal state at time-step n, f is the neuron

activation function (a tanh function), u is the input signal,

Win and W are weight matrices giving the connection

weights to inputs and internal neurons respectively. The

parameters a, b and c control the global scaling of: leak

rate, input weights and internal weights. The leak rate

controls the time-scale mismatch between the input and

reservoir dynamics; when a ¼ 1, the previous states do not

leak into the current states. Input scaling (b) affects the

non-linear response of the reservoir and relative effect of

the current input. Internal scaling (c) controls the reservoirs

stability as well as the influence and persistence of the

input; e.g. low values dampen internal activity and increase

response to input, and high values lead to chaotic

behaviour.

The final trained output yðnÞ is given when the reservoir

states xðnÞ are combined with the trained readout weight

matrix Wout:

yðnÞ ¼ WoutxðnÞ ð4Þ

4.2 Topologies

In the experiments here, we use CHARC to investigate the

effect of network topology on quality by evaluating four

simulated reservoir networks: ring, lattice, torus and fully-

connected networks.

The ring topology (Fig. 2a) has the least complexity.

Each node has a single self-connection and a weighted

connection to each of its neighbours to its left and right,

resulting in every node having three adaptable weights in

the internal weight matrix W .

The ring is the simplest network to implement in

physical hardware as the number of connections required is

small. Ring structures with various connection types have

been applied to many reservoir computing systems,

including Simple Cycle Reservoirs (SCR) (Rodan and Tiňo

2011), DNA reservoirs (deoxyribozyme oscilla-

tors) (Goudarzi et al. 2013), and delay-line reservoirs using

a single non-linear node with a delay line (Appeltant et al.

2011; Paquot et al. 2012).

The lattice topology (Fig. 2b) has greater connection

complexity. With this topology, we define a square grid of

neurons each connected to its nearest neighbours [using its

Moore neighbourhood, as commonly used in cellular

M. Dale et al.
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automata (Adamatzky 2010)]. Each non-perimeter node

has eight connections to neighbours and one self-connec-

tion, resulting in each node having a maximum of nine

adaptable weights in W .

Lattice networks/models are common in computational

physics, condensed matter physics and beyond, modelling

physical interactions, phase transitions and structure (Lavis

2015). Examples include: discrete lattices like the Ising

model with variables representing magnetic dipole

moments of atomic spins (Brush 1967), and the Gray–Scott

reaction–diffusion model to simulate chemical systems

(Pearson 1993). Physical substrates often have a regular

grid of connections; lattice networks are therefore a real-

istic representation of many physical systems that would be

considered for reservoir computing.

The torus topology (Fig. 2c) is a special case of the

lattice where perimeter nodes are connected to give peri-

odic boundary conditions. Each node has nine adapt-

able weights in W .

Although not a natural topology for physical systems,

turning physical lattices into tori is often relatively simple.

An advantage of the toroidal structure is that it reduces the

signal path distance between perimeter nodes and removes

edge effects, leading to potentially different dynamics at a

minimal cost to connection complexity.

The fully-connected network (Fig. 2d) has no topologi-

cal constraints and has the maximum number of adapt-

able weights: the weight matrix W is fully populated. This

network type is used to benchmark the other topologies.

Due to its large degree-of-freedom in parameter space, this

network likely features the highest quality with respect to

its size. However, fully-connected and random networks

are challenging to implement in physical hardware due

their connection complexity.

Extra complexity can be achieved by increasing the

number of nodes and weights. The number of non-zero

weights in W, as a function of the number of nodes N is

shown in Table 1.

4.3 Experimental parameters

To measure the effect topology has on dynamical beha-

viour and quality, we test each topology across several

network sizes. The network sizes range from 42 ¼ 16 to

202 = 400 nodes. By comparing the different sizes, we can

determine what relationships exist independent of size, and

how relationships scale with network size.

Each network has local (e.g., weights) and global (e.g.,

weight scaling) parameters under manipulation during the

search process. Individual weights in the input layer matrix

Win and the reservoir matrix W are open to mutation and

can be mutated between ½�1; 1�. Global scaling parameters

(a, b and c) are also evolved. For internal weight W scaling

this is a value between [0, 2], and for Win scaling between

½�1; 1�. The leak-rate parameter, controlling the ‘‘leaki-

ness’’ of past states into current states, is restricted between

[0, 1]. Input and internal connectivity of the reservoir

remains constant, depending on the topology. The weight

distribution of Win and W is evolved by a Gaussian

mutation operator.

The output weight matrix Wout for each network is used

only for the memory capacity measure, as both KR and GR

are calculated using only the reservoir states. When the

readout layer Wout is in use, training is carried out using

ridge regression to minimise the difference between the

network output y and the target signal yt.

The CHARC parameters used in the experiments here

are given in Table 2 (see Dale et al. (2019b) for more

Fig. 2 Network topologies under investigation

Table 1 The number of non-zero weights in W, as a function of the

number of nodes N, for the four topologies

Topology No. of weights

Ring 3N

Lattice 9N � 12
ffiffiffiffi

N
p

þ 4

Torus 9N

Fully-connected N2

Reservoir computing quality: connectivity and topology
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information). Novelty search is applied using an adapted

version of the steady-state microbial genetic algo-

rithm (Harvey 2009). Using this algorithm, each generation

produces one new individual that is measured for novelty.

The parameters deme size and recombination rate refer

to division of species in the population and percentage of

genes to inherit. The parameters qmin, Kneighbours and qmin

update control the novelty measure.

To produce a good estimate of quality, typically a large

number of novelty search generations are needed. In

practice, the number used depends on computing resources

and time available to evaluate each reservoir. As shown

in Dale et al. (2019b), a rough estimate is typically

achieved with less than a few thousand search generations.

Here, we apply 10,000 generations to create a detailed

picture of each topology and its role.

In all experiments a voxel size of 10 is used for the

quality measure, leading to a voxel volume of 103 for the

3-dimensional behaviour space.

Each novelty search run begins with a random initial

population. 20 separate runs are conducted for each net-

work size and topology, to gather statistics of quality.

4.4 Results

The results for topology and network size are given in

Fig. 3. As network size increases, general network capacity

increases, as expected. The variation (shaded area) between

runs is similar across all the regular topologies. The fully-

connected network tends to have greater variation across

runs than the others, indicating a stronger dependency on

the initial random population.

At a given size (number of nodes) the fully-connected

networks occupy a greater volume of the behaviour space,

possessing a higher quality, than the others, across all sizes.

Also, lattices and tori, with an intermediate number of

connections between rings and fully connected networks,

have intermediate quality. This suggests that, for a fixed

number of nodes, access to more adjustable parameters

(table 1) typically leads to more dynamical behaviours

being available (see §4.4.2 for more on this).

The lattice and torus have similar qualities across all

sizes; however, the difference between them is statistically

significant. Using the non-parametric Wilcoxon rank sum

test, the difference at all sizes (except at N ¼ 324 nodes,

with p ¼ 0:053) is significant at the 95% confidence level

(p\0:05).

The quality of these two topologies is closer to the fully-

connected network than the ring topology. This suggests

there are only a few behaviours the fully-connected can

exhibit that these two topologies cannot.

As size increases, the quality of the ring topology

increases more slowly than the others. To exhibit a similar

quality to the others would require an approximate dou-

bling of ring size.

4.4.1 Behaviour space

To understand what these differences in quality represent,

we visualise the 3-d behaviour space as three projections.

The behaviour space of each topology is shown separately

in Fig. 4a–d, with each network size superimposed onto the

same space. The largest network is placed at the back with

each network size layered in decreasing order towards the

smallest network in the front. Each network size is also

separated by colour.

In Fig. 4, some common patterns exist for each topol-

ogy. Smaller networks are more efficient in terms of

Table 2 Search algorithm parameters for all experiments

Parameter Value

Runs 20

Generations 10,000

Population size 100

Deme size 20%

Mutation rate 10%

Recombination rate 50%

qmin 3

Kneighbours 10

qmin update 100 generations

Voxel size 10

Fig. 3 Mean quality (dots) and standard deviation (shaded area) of all

network topologies, for network sizes N ¼ 42 ¼ 16, 62 ¼ 36,

82 ¼ 64, ..., 202 ¼ 400 nodes (log–log plot)

M. Dale et al.
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Fig. 4 Behaviour spaces of all topologies and network sizes after 10,000 generations and 20 runs. A total of 200,000 network behaviours are

shown for each network size

Reservoir computing quality: connectivity and topology
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memory capacity—i.e., possess a larger memory capacity

with respect to network size. As size increases, there is a

considerable drop in efficiency with little gain in overall

capacity.

Sparse areas of the behaviour space highlight chal-

lenging properties to all reservoir structures. For example,

the regions where trade-offs between non-linearity (high

KR), noise (high GR) and memory (high MC) are most

challenging.

The ring topology (Fig. 4a) tends to exhibit more linear

and ordered dynamics characterised by smaller KR and GR

values. As size increases, the space occupied proportional

to network size tends to decrease. This implies that larger

networks struggle more than smaller networks to maintain

non-linearity and input separability.

In terms of non-linear and chaotic dynamics, the lattice

and torus topology (Fig. 4b, c) scale relatively well with

size. Yet, only small gains are made in memory capacity as

size increases; some outliers suggest larger MC values are

possible (longer novelty search runs could discover if this

is the case). This limitation to memory capacity explains

why both topologies have less quality than the fully-con-

nected network. The difference between the torus and the

lattice is due to more consistent high memory capacities

across runs, as seen by the slightly more densely filled

areas in Fig. 4c.

The fully-connected networks (Fig. 4d) do not feature

the same memory limitations as the regular topologies.

This network-type frequently exhibits the more challenging

behaviours, occupying regions with greater trade-offs

between non-linearity and memory. Interestingly, these

networks can occupy areas where noise increases (GR) but

input separation (KR) does not: the upper-left region of the

KR-GR space. This trade-off is more prominent in the

fully-connected network.

4.4.2 Number of connections

Our results above suggest that access to more

adjustable parameters (non-zero elements in W) typically

leads to more dynamical behaviours. Here, we investigate

this further.

The number of adjustable weights of a given network is

determined by the network size and topology (table 1), and

is constant during the evolutionary search. We show

quality versus the number of adjustable weights in Fig. 5.

For each topology, there appears to be power-law scaling

with respect to quality and the number of

adjustable weights.

As the number of adjustable weights affects network

complexity and the size of the configuration space, we

expect an increase in degrees-of-freedom and possibly

behavioural freedom with increase in number of weights.

However, there are subtleties. The order of the lines in

Figs. 3 and 5 are reversed. So, at a given number of ad-

justable weights, the fully-connected networks occupy a

smaller volume of the behaviour space, possessing a lower

quality, than the others, across all sizes; they also possess

many fewer nodes. Also, lattices and tori, with an inter-

mediate number of connections between rings and fully

connected networks, have intermediate quality. This sug-

gests that, for a fixed number of adjustable weight

parameters, access to more nodes (table 1) typically leads

to more dynamical behaviours being available.

4.4.3 Balancing nodes and connections

The different effects of more weights or more nodes can be

explained by the fact that some behaviour metrics (KR and

GR) are bounded by the number of nodes, and that bound is

relatively easy to achieve (Fig. 4). So more

adjustable weights allow fuller exploration of the available

behaviour space, and hence higher achievable quality,

whereas more nodes allow a larger dynamical behaviour

range, and hence the potential for higher quality if that

range can be exploited. Fully connected networks have a

maximum number of weights for a given number of nodes,

and hence are the most fully explorable for that number of

nodes; rings have a maximum number of nodes for a given

number of weights, and hence have the largest potential

behaviour space for that number of weights.

Based solely on an inspection of Figs. 3 and 5, quality

can be maintained by a switch of topology, adding more

nodes, and reducing the number of connections. This may

Fig. 5 Relationship between number of adjustable weights and

quality for all networks (log–log plot). Each topology is represented

by its respective symbol and colour. The points on each topology line

are the network sizes evaluated: (bottom to top) 16, 36, 64, 100, 144,

196, 256, 324 and 400. (Color figure online)
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have advantages for manufacturing reservoir substrates.

However, the quality value is a somewhat crude measure,

and may not result in the same collection of behaviours

being produced, for example, different systems with the

same overall quality might not be able to achieve the same

memory capacities (see Fig. 4). The quality measure alone

is not sufficient to guarantee performance on specific tasks:

it gives the overall potential of a substrate, but different

tasks require different values of behavioural metrics (Dale

et al. 2019b) that may lie inside or outside the overall

quality envelope.

5 Network connectivity

Rather than being regular or completely random, many

interesting biological, technological and physical networks

are said to feature small-world topologies or scale-free

properties, exploiting both regular and random struc-

ture (Watts and Strogatz 1998). Networks are considered

small-world when they have a small average path-length

between any two nodes and a high clustering coefficient.

Scale-free networks are characterised by an asymptotic

degree distribution among nodes with large ‘hub’ nodes

typically followed by many smaller-hub nodes.

Both scale-free and small-world topologies have been

applied to Echo State Networks and have shown to

improve performance across certain benchmark tasks

(Deng and Zhang 2007; Kawai et al. 2019). However, the

full range of behaviours exhibited by small-world networks

may be limited. Kawai et al. (2019) find that small-world

reservoirs could not replicate the high linear memory

capacities produced by random and regular networks.

In the experiment in this section, we add a fixed quantity

of evolvable connections to the previous regular structures,

to assess their affect on quality. Adding extra connections

to each topology reduces the signal path length between

distant nodes and alters the degree distribution of nodes in

each topology. We increase the total number of connec-

tions for each topology by setting a randomly-selected

percentage of the non-topological weights—all otherwise

zero-valued entries in W. These new networks, each with

the original topology plus extra random connections, are

then assessed for quality. An example of the ring topology

with extra connections is shown in Fig. 6. 100% additional

connections to any topology results in a fully-connected

network.

Unlike the Watts and Strogatz (1998) small-world

model, which uses a set rewiring probability and set degree

for each node, or the Barabási and Albert (1999) scale-free

model, which applies preferential attachment, we allow

evolution to rewire and converge to any degree distribu-

tion. The total number of connections remain constant for

each network, as in previous experiments; we fix the per-

centage of extra connections, but allow evolution to chose

which particular connections are used. Whether a new

connection is local or distant and what degree each node

has is left to evolution to decide. As before, mutation can

still change individual weight strengths and global network

parameters.

Figure 7 shows quality versus connectivity of all three

topologies at five network sizes. Figure 7 (left) shows

percentage of additional connections versus quality and

Fig. 7 (right) shows number of weights against quality. The

percentage of connections in both plots begins at 0:05%

and increases to 100% (a fully-connected network). The

mean quality is given over 10 runs with standard deviation

represented by the shaded area. Colours and symbols rep-

resent each topology; lighter and darker shades are used to

separate network sizes.

The lattice and torus increase only marginally in quality

with more connections. The ring exhibits a significant

improvement in quality until it converges with the other

topologies at around 2.5–5%. Depending on network size,

this convergence occurs roughly when, or slightly before,

the number of extra connections equals the number topol-

ogy connections. This symbolises the transition point when

the dominant structure shifts from given topology to

unstructured network.

Fig. 6 Example 64-node

networks with a ring topology

and percentage of additional

connections. Colour represents

strength and sign of weighted

connections. (Color

figure online)
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Sparse networks—particularly between 1 and 10%

connectivity—exhibit approximately the same quality as

fully-connected networks. An advantage of sparse con-

nectivity is a linear scaling in computational complexity to

compute as size increases.

To further understand the role of connectivity, we

examine the behaviour space of the ring topology at 256

nodes, Fig. 8. Here, the discovered behaviours of all rings

with different connectivity are layered, starting with the

original ring topology (0%) at the front, then increasing in

connectivity towards the back (100%).

In the KR–GR space (left), the most notable new

behaviours appear between 0.1 and 2:5%. After this, there

are few new behaviours as the bounds of KR and GR are

approached. In the KR–MC space (middle), greater cov-

erage is seen between 1 and 25%; memory capacity grows

by roughly 50% between 1 and 5% of extra connections.

Beyond 25%, there is relatively small, if any, improvement

in MC. In the GR–MC space (right), the inverse relation-

ship between both properties is seen: a high MC requiring a

low GR. For GR, an increase in connectivity appears to

affect coverage incrementally, however, MC only increases

at the higher connection percentages.

6 Conclusion

Assessing and comparing how structure affects dynamical

behaviour is challenging. For unconventional substrates,

determining what predefined structure exists and what part

is useful is even more challenging. Even if structure can be

Fig. 7 Topology, network size and percentage of extra connections

(log–log plot). The quality of each topology with additional

connections, across the five sizes: 64, 100, 144, 196 and 256 nodes.

(left) percentage of extra connections: 0.05–100%; (right) total

weights of topology with extra connections

Fig. 8 Behaviour space of 256-node ring topology with additional percentage of connections
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decided at creation, what is a suitable or ideal structure is

often limited by physical constraints.

In this work, we have assessed what effect different

structural choices have on quality and how reservoir net-

works might be improved with minimal cost to connec-

tivity. We have applied the task-independent CHARC

framework and used it to directly assess topology and

connectivity and their role on the computing quality of

recurrent neural networks. The results show that networks

with simple topologies and sparse connectivity exhibit

similar quality and behaviours as more complex structures.

However, simple topologies, such as the ring, tend to have

limited behaviour. To overcome this, we propose adding

extra connections to each topology. The results indicate

that quality can increase with extra connections to each

topology, with the ring topology being the most affected.

At around 2.5–5% extra connectivity, each topology tends

to converge towards the same quality across all network

sizes. After this, only minor improvements are found. This

point of convergence typically coincides with the number

of extra connections matching, or outnumbering, the con-

nections required to form each topology.

Our interpretation of these results is that small-world-

like connectivity does not lead to any greater dynamical

behaviour or freedom than fully-connected networks.

However, quality is clearly improved when the topological

constraints are relaxed.

In future work, we will apply these design principles and

methods to create better physical computing substrates.
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