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Capacity-approaching quantum repeaters for quantum communications

Masoud Ghalaii and Stefano Pirandola
Department of Computer Science, University of York, York YO10 5GH, United Kingdom

In present-day quantum communications, one of the main problems is the lack of a quantum repeater design

that can simultaneously secure high rates and long distances. Recent literature has established the end-to-end

capacities that are achievable by the most general protocols for quantum and private communication within a

quantum network, encompassing the case of a quantum repeater chain. However, whether or not a physical

design exists to approach such capacities remains a challenging objective. Driven by this motivation, in this

work, we put forward a design for continuous-variable quantum repeaters and show that it can actually achieve

the feat. We also show that even in a noisy regime our rates surpass the Pirandola-Laurenza-Ottaviani-Banchi

(PLOB) bound. Our repeater setup is developed upon using noiseless linear amplifiers, quantum memories, and

continuous-variable Bell measurements. We, furthermore, propose a non-ideal model for continuous-variable

quantum memories that we make use of in our design. We then show that potential quantum communications

rates would deviate from the theoretical capacities, as one would expect, if the quantum link is too noisy and/or

low-quality quantum memories and amplifiers are employed.

I. INTRODUCTION

One of the most developed applications of quantum tech-

nologies is assuredly quantum communications [1–4], within

which the most advanced primitive is quantum key distribu-

tion (QKD)—the artistry of sharing secret key strings to two,

or more, distant stations in the present of untrusted adversaries

[5, 6]. The security of QKD depends on the kinds of assump-

tion one puts on the adversaries, which in turn define the quan-

tum communication link between trusted stations, as well as

adversaries’ power class (namely, individual, collective, and

coherent). For instance, conveniently, a quantum communi-

cation link is described by a bosonic thermal-loss channel.

Furthermore, these assumptions impose limits on the maxi-

mum transmission distance over which legitimate parties can

securely generate a key.

On the other hand, in order to establish a global quantum

communications network [3], i.e., quantum internet [1, 2, 7],

enabling QKD protocols (resistant to loss and noise) to be ex-

ecuted over distances beyond one thousand kilometres is of

great practical importance. To go that far, naturally stemming

from information theory [8, 9], one can build a quantum re-

peater [10, 11] by breaking down a long-distance communi-

cation link into two, or more, short links, and linking them by

means of proper joint measurements. While there are quan-

tum repeater proposals for quantum communication networks

based on discrete variable systems [12–14], which rout back

to the seminal work of Briegel et al. [10], we focus on quan-

tum repeaters for continuous variable (CV) systems [15, 16]

that have recently been brought into attention [17–22]. We

note that one way to increase the reach of a CV-QKD protocol

[23, 24] is to use quantum noiseless linear amplifiers (NLAs)

[25]. However, they can only improve the secure distance for

few tens of kilometres [25–27]. Hence, one practicable idea

to explore is to concatenate such NLA-improved links.

To distribute entanglement to a farther distance, compared

to what we could have achieved otherwise, is the ultimate goal

of a quantum repeater. More precisely, the goal is to beat the

PLOB bound [28], which cannot be exceeded even by the so-

called adaptive local operations and classical communication

strategies [29]. Accomplishing a goal as such requires three

indispensable components: entanglement distribution, entan-

glement distillation or purification, and entanglement swap-

ping. In CV systems, a natural entangled state to use—at

the entanglement distribution stage—is a two-mode squeezed

vacuum (TMSV) state [15], as it has been exploited in almost

all previous studies on CV quantum repeaters [17–21]. For the

entanglement purification stage, one can make use of NLAs,

such as quantum scissors [21], or non-Gaussian entanglement

distillation protocols, e.g., photon-added schemes [19]. Fi-

nally, similar to discrete-variable quantum repeaters [10, 30],

where a Bell state measurement swaps entanglement between

two neighbouring links, one needs to apply a Bell-like mea-

surement in order to jointly measure two nodes in a CV quan-

tum repeater. This task, for instance, can be performed via a

CV quantum relay [31, 32], or a more elaborate apparatus that

needs single photon injection [19].

There nonetheless seems to be a fundamental lack in de-

signing a quantum repeater: either the Bell(-like) measure-

ment or the purification stage, if not both, is probabilis-

tic. This seemingly unavoidable impediment impels us to

equip quantum repeater nodes with ancillary components,

e.g., quantum memories [33, 34], whose presence have been

proven efficacious, if not essential [35, 36], to improve per-

formance of quantum repeaters. To our knowledge, all pre-

vious studies on CV quantum repeaters [17–21] have con-

sidered quantum memories as a key component, even-though

they were assumed ideal.

In the quest for the ultimate performance of a quantum

communication network, including a quantum repeater chain,

one of us [22] has established the end-to-end capacities

achievable by the most powerful protocols under general rout-

ing strategies. In Ref. [22], upper bounds are derived by

extending the techniques first devised from point-to-point to

repeater-assisted quantum communications [28]. On the other

hand, for the lower bounds it uses sessions of QKD over each

link followed by key composition via one time pad. Also, for

entanglement distribution it assumes optimal entanglement

distillation over each link, and then entanglement swapping.

There, for instance, it was shown that the capacity of a quan-

tum repeater chain with the most important optical communi-
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cations link as its basic link, i.e., the bosonic lossy channel,

is given by − log2(1 − η1/N ), bits per channel use, where η

is the channel loss and N the number of links in the chain.

Since Ref. [22] aimed at establishing capacities and sought

for benchmarks, it allowed for the most general quantum op-

erations and measurements, regardless of their practicality.

Hence, whether or not one can design a practical setup that

can beat, or even come close to, such bounds is an exigent

query to study.

In order to study the ultimate practical performance of a

quantum repeater, we notice that a repeater chain generally

has two main compartments. Indeed, one is the basic quantum

module linking each two adjacent repeater stations. A realis-

tic communication link of this kind is a thermal-loss channel

that has a TMSV source at its one (transmitter) end. Never-

theless, such a link can be backed up with a quantum amplifier

at its other (receiver) end, or quantum memories at both ends.

We note that while the use of ideal and non-ideal NLAs in

quantum communications with CV systems have rather ex-

tensively been studied, both in single-link and repeater sce-

narios [17, 18, 21, 25, 26], quantum memories, which are as

crucial, have been overlooked. In general thus the basic mod-

ule, which we indicate by E = E (µ, η, ξ, g), can be described

as shown in Fig. 1(a). The other key compartment is a joint

connecting measurement between two neighbouring links, or

more precisely neighbouring quantum memories, that is pre-

formed at each station of a repeater. While in discrete-variable

scenarios one would typically perform a Bell state measure-

ment [30], in continuous variable protocols we would apply

a CV version of it, shown in Fig. 1(b), which includes a bal-

anced beam splitter followed by two (conjugate) homodyne

detection modules [31, 32].

In this paper, we study the performance of continuous-

variable quantum repeaters that run under the following as-

sumptions. We assume that the repeater is made of a concate-

nation of thermal-loss links, shown schematically in Fig. 1(a).

We assume non-ideal CV quantum memories, i.e., quantum

memories whose coherence times are finite and comparable

to operational times [37] of the system. To do so, we model

quantum memories for CV systems based on decoherence of

quantum states in a thermal bath [38]. We also allow for as-

sisting the basic links with NLAs. Indeed, we can choose not

to use NLAs, especially at short distances, as it is often the

case [25–27]. In this study, we take ideal NLAs as were for-

merly used in Refs. [17, 25]. Finally, as a realistic joint con-

necting measurement, we take a CV Bell detection as shown

in Fig. 1(b).

Under the above assumptions, we find a recursive equation

for the covariance matrix of the end-to-end state of the re-

peater chain with an arbitrary number of links. Based on the

obtained covariance matrix, we then provide general bounds

for secret key rates at different repeater depths. Remarkably,

we show that obtainable rates by our design can in principle

approach the repeater capacities derived in Ref. [22]. More-

over, our study quantitatively shows how non-ideal quantum

memories effect the obtained key rates. Our results certify

that possessing quantum memories with a certain operational

coherence time is a sine qua non to preserve the prospect of

having efficient CV quantum repeaters.

II. THE QUANTUM REPEATER PROTOCOL

We assume that the far-end parties, Alice and Bob, are con-

nected via a repeater chain of depth n, which involves N = 2n

identical basic quantum transmission links; see Fig. 2. Such

a chain then has a total length of L = 2nL0, where L0 is the

point-to-point distance of each basic link. While one can de-

scribe each basic link by a thermal-loss link with transmit-

tance η and excess noise ξ, we, more generally, take a quan-

tum memory and NLA-assisted thermal-loss link, as shown in

Fig. 1(a).

If we prefer to use NLAs, which are non-deterministic op-

erations, we would inevitably make the whole repeater setup

probabilistic. This is where high-quality quantum memo-

ries can be useful, where heralded successful quantum links

are stored in a couple of quantum memories until their adja-

cent links are also announced successful. One can also ben-

efit from quantum memories if the Bell state measurements

are non-deterministic, as studied in the context of discrete-

variable quantum repeaters [30]. In this study, however, we

use CV Bell detection modules, see Fig. 1(b), which are de-

terministic.

In the following, we first study the detail of the CV quantum

repeater with ideal quantum memories. Next, we introduce

our model for quantum memories and, subsequently, explore

the performance of the repeater when such memories are in

operation.

γ γ γ
QM

g
η,ξ

QM(a)

(b)
50:50

QMQM

. . . . . .

γ

μ

FIG. 1. (a) Basic module. A TMSV source generates a bipartite en-

tangled state, with variance µ, of which one light mode is stored in

a quantum memory whereas the other is left propagating through a

thermal-loss quantum link described by the pair (η, ξ). At the end of

the link, upon a successful NLA operation, with amplification gain

g, the amplified state is stored in another quantum memory. (b) Con-

tinuous variable quantum relay. Adjacent quantum memories get

connected via a CV Bell detection, which includes a balanced beam

splitter followed by two conjugate homodyne detectors. The out-

come of the measurement, γ, is then kept for later use. Green QM

boxes indicate quantum memories.
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A. Properties of a basic link

Conveniently, one would only need the covariance matrix

(CM) of the two ends of a basic link to fully solve a Gaussian

system, e.g., that given in Fig. 1(a), wherein all components

are (assumed) Gaussian. In particular, here we assume that

the NLA, ideally, does a Gaussian, yet non-deterministic, op-

eration. In fact, it does |α〉 → |gα〉, where |α〉 is a coherent

state, with some probability [25, 39]. In the following, we will

make use of the Gaussianity of the system.

Two-mode squeezed vacuum state is perhaps the

quintessential two-mode state that has extensively been

used in CV quantum information [15, 16]. The CM of such a

state, generated by the µ box in Fig. 1(a), has the form

V =

(
aI cZ

cZ bI

)
, (1)

where I := diag(1, 1) and Z := diag(1,−1) are Pauli matri-

ces, a = b = µ is the quadrature variance at both modes,

and c =
√
µ2 − 1 is correlation/covariance between them.

Next, we assume that one mode of this TMSV state propa-

gates thorough a thermal-loss channel, characterized by the

channel transmittance η and excess noise ξ. Upon a success-

ful NLA operation, the CM of the state at the two ends of a

link that would be stored in the quantum memories is given by

[25]

V0 =

(
a0I c0Z

c0Z b0I

)
, (2)

where the triplet (a0, b0, c0) is defined in App. A. We hence

describe the basic link via E = E (µg, ηg, ξg, 1), given in

Eq. (A1), whose CM is given by Eq. (2). Therefore, the CV re-

peater chain of depth n between Alice and Bob is constructed

upon linking 2n E ’s by executing CV Bell measurements,

as shown in Fig. 2. The equivalence relation E (µ, η, ξ, g) =

E (µg, ηg, ξg, 1) should be taken with caution, for the reason

that NLAs can result in unreliable outcomes. More specif-

ically, as discussed in Ref. [25], a set of quantum channel

parameters and amplification gain λg =

√
µg−1

µg+1
, which de-

scribes the equivalent TMSV state, can be greater than 1. We

back to this point in Sec. III.

B. Recursive equation for an arbitrary number of basic links

Assume Alice and Bob have all N basic links,

E (µ, η, ξ, g)’s, of the repeater chain ready to be executed. That

is, succeeding successful NLA events at all stations, each state

is stored in a couple of perfect, i.e., lossless and noise free,

quantum memories. The next stage is then to perform joint

Bell-like measurements. We apply the CV Bell measurement

in Fig. 1(b) to each two neighbouring quantum memories.

This leads to obtaining a recursive equation for the end-to-end

CM of the repeater setup (see App. B for details)

Vn =

(
anI cnZ

cnZ bnI

)
, (3)

. . .Alice Bob

μ g
η,ξ

γ
γ
.
1

γ
.
2

γ
.
N-1

FIG. 2. Quantum repeater chain. The distance between far-end

parties, Alice and Bob, is divided into N basic links, each is backed

up with a pair of quantum memories (green squares) located at each

station, where by applying a CV Bell detection on each pair, uncon-

nected links get connected. For proper adjustments, the outcome of

each Bell detection, γj , is then aired to other stations via classical

communications.

where




an = an−1 −
c

2
n−1

an−1+bn−1

bn = bn−1 −
c

2
n−1

an−1+bn−1

cn =
c

2
n−1

an−1+bn−1
.

(4)

We see that the far-end CM of the repeater at depth n de-

pends on only that at depth n−1. Luckily, without great effort,

this can numerically be managed.

C. Continuous-variable quantum memories

Quantum memories are supposed to keep quantum states

intact over a fairly good amount of time. A realistic quantum

memory, nevertheless, can fail to perpetuate the quantum fea-

tures of the stored states. This occurs in a process called de-

coherence, or decay, which may not necessarily be Gaussian.

Following Ref. [38], we model CV quantum memories as de-

vices that change the CM of Gaussian states as time elapses

as

V(t) = Γ(t)V(0) + (I ⊕ I − Γ(t))V(∞), (5)

where Γ(t) = ⊕je
−t/τcI, with τc being the coherence time of

the memory. In addition, V(0) is the initial CM, at time t = 0,

whereas V(∞) is a diagonal matrix and, ideally, is propor-

tional to identity matrix. A realistic quantum memory would

possibly add noise to the quantum system [40]. Such a noise

can be simulated by the following modification

V(∞) = ⊕j(1 + ξQM)I, (6)

where ξQM quantifies the amount of noise that a quantum

memory adds to the stored CV states. Note that we do not

assume an inner structure for the QMs and simply model

a generic QM for continuous-variable states by considering

it—based on Ref. [38]—as a thermal-loss channel. However,

while Ref. [38] let the stored states, at long enough time, to

become vacuum states, we consider an even worse case by

adding excess noise, where the stored states become thermal-

ized states with a variance greater than 1.

Therefore, we realize that a CV quantum memory functions

as a thermal-loss channel that is characterized by means of

Γ(t) and V(∞), which correspond, respectively, to loss and
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excess noise. We remark that a quantum memory for CV sys-

tems have been experimentally demonstrated and tested [40].

Such a quantum memory was shown to keep entanglement of

a 6.0 dB TMSV state for 1ms [41]. However, due to loss and

noise caused by the memory, a fidelity of only 0.52 could have

been achieved.

As a result of our model, the triplet (A0(0),B0(0),C0(0))

that defines an initial CM at time t = 0 would change to the

following triplet




A0(t) = 1 + ξQM + (A0(0) − 1 − ξQM)e−t/τc

B0(t) = 1 + ξQM + (B0(0) − 1 − ξQM)e−t/τc

C0(t) = C0(0)e
−t/τc,

(7)

at time t. Asymptotically in time, i.e., t → ∞, as one would

expect, we get A0(t) = B0(t) = 1 + ξQM and C0(t) = 0, where

we are left with a noisy thermalized bipartite state and zero

quantum correlation between quadratures. We later use this

model to compute achievable secret key rates of CV quan-

tum communication protocols run over a quantum repeater

assisted with such non-ideal quantum memories.

D. Recursive equation with quantum memories

Assume that a two-mode state with a CM given by Eq. (2) is

stored, at time t = 0, in a pair of quantum memories described

above. As time elapses, the CM varies such that at time t it is

given by

V0(t) =

(
a0(t)I c0(t)Z

c0(t)Z b0(t)I

)
, (8)

where time-dependent elements of the CM are given by

Eq. (7).

Now before taking on a recursive equation, let us introduce

a time notion, th, as a characteristic of a basic link. Assume

that th is the average time that a basic link, i.e., its NLA, is her-

alded successful. One can find that, for a basic link of length

L0 assisted with an NLA with success probability Psucc, we

have th = 2L0/(cPsucc), where c is the speed of light. We also

let all basic links run in parallel, by which we mean that each

link of the repeater is running independently and simultane-

ously. The objective here is to prepare all links of the repeater

chain in a certain state. In fact, this is quantum memories that

make this scenario doable, since they allow for storing each

successful link.

Let us also assume that after a unsuccessful attempt NLAs

are immediately ready to operate, so that we ignore the time

that may take to “re-load” an NLA. However, we note that this

can be partly, if not fully, covered by the time th. In fact, upon

an unsuccessful NLA, the QM can be re-loaded at the time

interval when the sender is informed plus the time it takes a

new signal reaches the NLA.

Next, after establishing successful NLA operations over ba-

sic links, one can potentially execute all CV Bell measure-

ments simultaneously at all stations. Indeed, we can perform

a CV Bell measurement on each two adjacent heralded links;

however, inevitably, we have to store the resultant state in

another pair of quantum memories for some time. In fact,

there are various permutations that one can execute or post-

pone these measurements. In this work, we postpone them all

to the moment all links are announced to be successful.

The worst case one can think of, in a chain with N links, is

that N − 1 links are successful at t = 0. Notwithstanding, all

these successful basic links are required to be stored and await

the last one to be heralded successful, which takes th seconds.

Hence, N − 1 links will suffer memory loss and noise for th
seconds. For convenience, so that we can establish a recursive

equation, we assume that all N basic links go through memory

loss and noise for th seconds.

Therefore, we end up with N = 2n basic links, each of

which is described by V0(th). Similar to the case with ideal

quantum memories, by executing CV Bell measurements, we

obtain the recursive equation for the end-to-end CM of the

repeater

Vn(th) =

(
an(th)I cn(th)Z

cn(th)Z bn(th)I

)
, (9)

where




an(th) = an−1(th) −
c

2
n−1

(th)

an−1(th)+bn−1(th)

bn(th) = bn−1(th) −
c

2
n−1

(th)

an−1(th)+bn−1(th)

cn(th) =
c

2
n−1

(th)

an−1(th)+bn−1(th)
.

(10)

For an arbitrary repeater depth n, we can next derive rel-

evant lower or upper bounds on the key rate from the above

equation.

E. Optimal achievable rates for repeater chains

Here we represent proper estimates for the secret key rate

for the repeater system we described. Note that we have ef-

fectively reduced the end-to-end repeater problem to a point-

to-point one, where the CMs given in Eqs. (3) and (9) would

suffice to derive suitable bounds. To achieve this goal, we use

the notions of coherent information (CI) and reverse coherent

information (RCI) of a bosonic channel [42, 43]. As well, we

have all the material to compute the relative entropy of entan-

glement [44], but CI and RCI meet the needs of this work.

Take a bipartite maximally entangled state ΨAB of two

modes A and B. The Choi state of a channel, E, is defined

by the output state that is obtained after mode B propagates

through it: ρE := I ⊗ E(ΨAB). CI and RCI of the channel are

then, respectively, given by

ICI(E) = S[trA(ρE)] − S(ρE), (11)

and

IRCI(E) = S[trB(ρE)] − S(ρE), (12)

where S(·) is the von Neumann entropy. These two, hence,

provide a lower bound on the maximum achievable rate, R

[28]; in fact, we have that

max{ICI(E), IRCI(E)} ≤ R. (13)
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FIG. 3. Performance of the quantum repeater with ideal quantum memories. Reverse coherent information (bits per channel use) versus

AliceBobs distance (km) at the loss rate of 0.2 dB/km, and zero (row 1) and 0.005 snu (row 2) excess noise. In each subplot, we compare

PLOB bound (solid black), RCI for our repeater setup at depth n = 1 (solid blue) and n = 2 (dashed blue), and the ultimate end-to-end repeater

rates, from Ref. [22], at depth n = 1 (solid red) and n = 2 (dashed red). Subplots (a)-(d) correspond to different amounts of amplification gain

and initial modulation variance. We here assume ideal quantum memories.

For bosonic systems, where ΨAB is described by the gen-

eral form of a covariance matrix V in Eq. (1), it can be shown

that [28] coherent and reverse coherent information are, re-

spectively, given by

ICI(V) = h(a) − h(ν−) − h(ν+) (14)

and

IRCI(V) = h(b) − h(ν−) − h(ν+), (15)

where ν± are symplectic eigenvalues of V, h(x) =

x+1
2

log2
x+1

2
− x−1

2
log2

x−1
2

. We remark that in all cases con-

sidered in this work, RCI stands as the lower bound on the op-

timal key rate. In addition, if the CM is time dependent—as

it is the case when non-ideal quantum memories are in use—

so are its eigenvalues. Thus, naturally, entailing Eq. (9), RCI

becomes a function of time.

Let us also point out that when allowing NLAs to operate,

the whole repeater system becomes non-deterministic, even-

though CV Bell detections are deterministic. We set the max-

imum probability of success for the NLAs, 1/g2, as can be

achieved via ideal NLAs [25, 39]. This allows us to to obtain

an optimistic estimate of the performance of the quantum re-

peater chain. Note that because we let basic links to run in

parallel, as previously discussed, the total success probability

of the repeater chain is yet 1/g2. Not to mention, if basic links

are run in a series scenario, we would have had (1/g2)N as to-

tal success probability and consequently come by a very poor

performance.

III. RESULTS AND DISCUSSION

In this section, we compute reverse coherent information

for the quantum repeater setup, whereby we discuss the ef-

fect of loss, noise, and non-ideal quantum memories. More

importantly, we show that the proposed setup can in fact ap-

proach the ultimate rates potentially achievable by means of a

repeater chain.

A. Performance with ideal quantum memories

Figure 3 shows RCI versus total repeater distance at few

repeater depth n. Here, in order to learn the effect of NLAs,

loss, and excess noise, we assume ideal quantum memories

(we will later study the performance of the repeater with non-

ideal quantum memories).

Figure 3(1a) corresponds to the case of bare basic links

(each comprising a TMSV state and a thermal-loss channel,

but without an NLA) connected via CV Bell measurements.

This figure confirms that, in order to outperform fundamen-

tal rates, adding other components to the basic link is an in-

eluctable fact. In this work, the vital device we add to a basic

link is an NLA, the lack of which prevents one to even beat the

PLOB bound, let alone the end-to-end repeater rates. Now let

increase the amplification gain; see Fig. 3(1b-1d). We observe

that the quantum memory and NLA-assisted rates outdistance

not only no-NLA (g = 1) rates, but also the PLOB bound, at

all repeater depths considered, for some values of amplifica-

tion gain g > 1. Also, at longer distances, the repeater rates

get parallel to the PLOB bound at long distances.

In fact, the least our repeater setup does is beating the

PLOB bound, even when the communications link is noisy;



6

see Fig. 3(row 2). We see that excess noise make the key rates

drop after some distance; however, by applying a higher am-

plification gain, we would be able to securely distribute a key

at higher distances. To our knowledge, this is the first theo-

retical proof that the PLOB bound can be outperformed by a

chain of CV repeaters in a noisy regime.

We remark that all plots presented in Fig. 3 respect the

equivalent condition for NLA-assisted CV-QKD links, i.e.,

γg < 1. We elaborate on this point in Sec. III B.

In addition, we observe that the higher the repeater depth,

the better the performance of the CV repeater setup at long

distances. Here, we moreover observe an already known—

in the context of point-to-point CV-QKD—feature of NLAs,

that is, they are not functioning at short distances [25–27]. In-

deed, one may prefer not to use them at short distances, which

stands by the fact that one would expect quantum repeaters to

work successfully at long distances. As we show in the fol-

lowing, these rates put a benchmark on the obtainable quan-

tum repeater key rates that are potentially achievable with the

most convenient joint CV measurement.

B. Approaching quantum repeater capacities

As the most interesting result of our study, we show that

our repeater proposal can provide us with key rates close to

the ultimate end-to-end rates discovered in Ref. [22]. This

can be obtained by optimizing the amplification gain of NLAs

and initial modulation variance at each distance. As seen in

Fig. 3, our key rates start closely below the ultimate bounds.

At which distance this closeness happens depends on ampli-

fication gain g as well as input variance µ. Thus, we could

make an optimization over g and µ, at each distance, to see

how close can our rates come to the repeater capacities.

Figure 4(a) shows the lower bounds versus amplification

gain g, at several values of initial modulation. Here, we have

fixed the end-to-end distance L = 200 km, put zero excess

noise, and repeater depth n = 1, with ideal quantum memo-

ries. Note that this figure should be taken with some caution

since, as previously mentioned, some parts of the generated

data may not be reliable [25, 26], i.e., where λg > 1. The point

where these reliable distances lays depends on both g and µ,

such that higher amplification gains would require lower val-

ues of initial modulation variance; this is shown in Fig. 4(b).

The fact that we should respect λg < 1 implies that the shown

rates in Fig. 4(a) are invalid, at a fixed µ, for large g’s, in-

dicated by circles on each plot. It is seen that the maximum

key rate, marked by a red-filled circles, can be achieved by

either µ = 3 and g = 10.05, or µ = 2 and g = 14.17 (hollow

circles are slightly lower that the two red-filled ones). Both

configurations would make the optimum rate obtainable that

is less than one order of magnitude falls short of the ultimate

rate (1.45 × 10−2) for repeater depth n = 1.

In above, we assumed a pure-loss channel assisted with

ideal NLAs and quantum memories. We remark that, nat-

urally, with low-quality NLAs and/or low-quality quantum

memories, or if the communications link is noisy, the rates

would deviate from the potentially obtainable bounds. In par-
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FIG. 4. (a) Reverse coherent information and (b) λg versus ampli-

fication gain g, at total distance L = 200 km, zero channel excess

noise, and repeater depth n = 1. Each curve is tagged with the ini-

tial modulation variance µ. The rates after the circles in (a), which

correspond to the λg > 1 in (b), are considered invalid.

ticular, in the following, we explore this deviation caused by

non-ideal quantum memories.

C. Performance with non-ideal quantum memories

We now discuss the effect of realistic CV quantum memo-

ries, for which we represented a model, on the lower bounds

of our repeater chain. For fixed distance L = 200 km, Fig. 5

shows how the repeater rates compare with ultimate bounds,

at few repeater depths, while a noisy and lossy (that is, finite

coherence time) quantum memories are in use. Note that for

fixed repeater distance, depth, and amplification gain, the time

parameter th is a constant number.

Figure 5 also makes clear that quantum memories with rela-

tively short coherence times fail to offer a sensible advantage.

However, that depends on repeater depth as well as NLA’s am-
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FIG. 5. Performance of the quantum repeater with non-ideal

quantum memories. Reverse coherent information as a function

of quantum memories’ coherence time, at the loss rate of 0.2 dB/km,

200 km distance, and 0.005 snu channel excess noise. At all cases,

we have set excess noise added by quantum memories ξQM =

0.005 snu. We compare our rates, at different amounts of amplifi-

cation gain and repeater depth, with ultimate repeaterless PLOB and

end-to-end repeater bounds.

plification gain (for each curve we choose the initial variance

that gives the highest rate). For instance, in this particular case

that we examine here, by using a couple of quantum memo-

ries with τc > 1 seconds, a repeater chain of depth n = 1

can achieve rates about one order of magnitude less that the

ultimate bound, even-though both the link and memories are

noisy. We remark that current technology has not yet meet

quantum memories that can keep quantum properties for such

long times, though a huge effort has been put, both theoreti-

cally and experimentally, aiming at the development of quan-

tum memories [33, 34, 40, 45, 46].

Moreover, for this special case of L = 200 km, we observe

that by going to a higher repeater depth (here n = 2), one can

obtain a slightly higher key, though it is relatively far from

its corresponding ultimate rate. Nevertheless, one can inspect

from Fig. 3 that at longer distances, such as 400 km a higher

repeater depth may be required. In other words, at a fixed

channel distance and excess noise, and when quantum memo-

ries with certain coherence time are available, we can tell how

many repeater stations and how much NLA gain should be

used in order to achieve the highest key rate.

IV. CONCLUSION

We have studied the secret key rates that are achievable by

a quantum repeater chain based on NLAs. While using typi-

cal continuous-variable components, we have proved that our

repeater structure is able to surpass the fundamental PLOB

limit [28], even in a noisy regime of operation. Remarkably,

we have further shown that the end-to-end repeater-assisted

capacities [22] can be approached by our repeater structure.

Our rates can outdistance PLOB bound even with non-ideal

quantum memories, too, i.e., those that are noisy and have a

finite coherence time. To do this feat, and to learn a more re-

alistic account of quantum memories, we proposed a model,

which is based on decoherence of bosonic states in a thermal

bath [38]. Our realistic model of a continuous-variable quan-

tum memory behaves like a thermal-loss channel that attenu-

ates the signal, depending on coherence time of the memory,

and also adds some excess noise to it. Our calculations pro-

vide us with the most suitable repeater configuration in terms

of depth and amplification gain, once quantum memories with

a certain coherence time and excess noise are specified.

It is worth noting that because of using ideal NLAs our re-

peater setup is not a totally realistic scenario, though its other

parts, i.e., the entanglement source and measurement relay,

are readily implementable with current technologies. At the

same time, note that the rates in Ref. [22] are obtained by

the most arbitrary powerful protocols under general routing

strategies, such that it treats a quantum repeater chain very

generally and gives no clue towards a physical implementa-

tion. Actually, a real-world implementation of repeater chains

that can offer repeater obtainable capacities is a substantial

problem that, we believe, would need a great effort to be done

in future. This current work can be considered as one (first)

step towards a fully realistic implementation of such repeater

chains where the NLAs are non-ideal, as well. Additionally, it

was not trivial that NLAs, either ideal or not, can help to out-

distance the PLOB bound and, more importantly, approach

repeater capacities. Therefore, by choosing ideal NLAs, we

let ourselves to seek the best possible results one can get from

such a design. Indeed, one would obtain a poorer performance

from non-ideal NLAs. In words, we could consider realistic

amplifiers such as quantum scissors, but that would have not

end up with what we were seeking for at the first place. Cer-

tainly, it is interesting to see how much real-world, non-ideal,

NLAs would effect the ratesthis, we have left as future re-

search.
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APPENDICES

Appendix A: Covariance matrix of basic links

A CV quantum communications link equipped with an

ideal NLA, described by E (µ, η, ξ, g) and shown in Fig. 1(a),

is studied in Ref. [25], where it is proved that such a system

is equivalent to a no-NLA link but now with a modified set of
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parameters




µg =
1+λ2

g

1−λ2
g

, λg =

√
µ−1

µ+1

2−η(g2−1)(ξ−2)

2−η(g2−1)ξ

ηg =
ηg2

1+ηg2[η(g2−1)(ξ−2)ξ/4−ξ+1]

ξg = ξ − η(g
2 − 1)(ξ − 2)ξ/2,

(A1)

such that E (µg, ηg, ξg, 1) ≡ E (µ, η, ξ, g). Therefore, the cor-

responding CM elements of the basic link are given by




a0 = µg

b0 = ηgµg + (1 − ηg) + ξg

c0 =

√
ηg(µ

2
g − 1) .

(A2)

Appendix B: Post-relay recursive covariance matrix

Take two separate identical CMs as below

Va1b1
= Va2b2

=

(
aI cZ

cZ bI

)
. (B1)

The compound CM of these two—correspond to a CV re-

peater with depth n = 1—reads

Va1b1a2b2
=

©­­­«

aI cZ 0 0

cZ bI 0 0

0 0 aI cZ

0 0 cZ bI

ª®®®¬
, (B2)

which, after a permutation of modes, can be written as

Va1b2b1a2
=

©­­­«

aI 0 cZ 0

0 bI 0 cZ

cZ 0 bI 0

0 cZ 0 aI

ª®®®¬
≡
©­«

Va1b2
C1 C2

C
T
1

B D

C
T
2

D
T

A

ª®¬
, (B3)

where different blocks are given by

A = aI, B = bI, D = 0, (B4)

and

C1 =

(
cZ

0

)
, C2 =

(
0

cZ

)
, Va1b2

=

(
aI 0

0 bI

)
. (B5)

As a result of applying the CV Bell detection in Fig. 1(b)

on modes b1 and a2, the CM of the conditional state is given

by the equation [32]

Va1b2 |γ = Va1b2
−

1

2 det Υ

2∑
j,k=1

Cj(ω
T
j Υωk)C

T
k , (B6)

where

Υ =
1

2
(ZBZ + A − ZD − D

T
Z), (B7)

and

ω1 =

(
0 1

1 0

)
, ω2 =

(
0 1

−1 0

)
. (B8)

After some algebra, we find the following expression for

the post-relay state’s CM

Va1b2 |γ =

(
ãI c̃Z

c̃Z b̃I

)
,




ã = a − c2

a+b

b̃ = b − c2

a+b

c̃ = c2

a+b
.

(B9)

Since the resultant CM still has the initial standard from

in Eq. (B1), one can straightforwardly deduce the recursive

expression in Eq. (3) for higher repeater depths.
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