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Abstract

The analysis of sound scattered by a rough surface and measured by multiple microphones po-
sitioned in the far field yields an estimate of the unknown scattering surface profile. Expanding
from previous work, the approach used in this paper is based on an expansion and linearization
of the Kirchhoff integral equation, and applies to a low density of receivers. Here, the original
algorithm is modified in order to reduce the measurement bias, and extended to broadband signals
to over-constrain the problem and improve its robustness. The improved method is rigorously
assessed alongside the original algorithm and its small perturbation version, for a two-dimensional
geometry and for scattering surfaces with a spatial power-function spectrum. The impact of the
measurement setup and surface characteristics on the reconstruction uncertainty are evaluated by
means of numerical simulations. Additional experimental data obtained for three known surface
profiles reveal the impact of noise and measurement uncertainties. The optimal measurement
configuration requires a trade-off between resolution (higher at high frequencies), and robustness
(higher at low frequencies). This limit is overcome at least partially by the proposed multiple-
frequency extension. The resulting measured uncertainties were close to the theoretical expectation
of approximately 2 % of the acoustic wavelength.

Keywords: scattering; surface inversion; microphone array

1. Introduction

Measurements of the shape of the interface between two media are ubiquitous across engineering
and geophysics, including applications such as non-destructive testing, microscopy, and remote
sensing. In this paper the focus is on rough surfaces, i.e., smooth perturbations of an otherwise
flat plane. Examples include the ocean bottom [1], sea waves [2, 3], or river surfaces [4, 5]. The5

accurate characterization of these surfaces is key to effective flood prevention and monitoring of
geophysical processes. One way to measure them is to observe the behavior of a wave field as it
interacts with the interface. Specifically, if transmission through the interface can be neglected
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(this is the case, for example, of high frequency sound on the water-air or air-water interface), the
surface shape can be estimated based on a model of scattering and a measurement of the scattered10

signal by a number of sensors distributed in space. Surface reconstruction techniques based on
this principle have been developed for optical [6, 7], electromagnetic [8, 9, 10, 11, 12, 13], elastic
[14], and acoustic [15, 16, 17] wave signals.

Uniqueness of the solution of the inverse surface scattering problem is discussed in [9, 18, 19, 20].
Surface reconstruction techniques include methods that apply to time-domain data [21, 22, 3],15

methods that identify the surface location from the maxima or minima of an imaging function
mapped in all spatial dimensions [6, 23, 24, 25], and methods that yield directly the surface function
(or its projection on a certain basis). The latter is achieved either by minimizing the difference
between the observed and predicted field variable distribution (optimization problem) [26, 27, 10,
28, 20], or by inverting the boundary integral equations that define the forward problem, i.e., that20

of calculating the scattered field for a given scattering interface geometry. The advantage of these
latter approaches is that they do not require, in principle, a prior parametrization of the surface. On
the other hand, one needs to determine the unknown distributions of two quantities (the surface
shape and the field variable on all boundaries, including the interface). This can be achieved
iteratively [29, 12, 30, 13] or directly [31, 32]. An alternative is to use an approximate expression25

to determine the field at the surface, thus reducing the number of unknowns. Approximations
that can be used include the Kirchhoff approximation [8, 16], Rytov approximation [33], small
perturbation expansion [34, 11], and Milder’s operator expansion [15]. This simplifies the inversion,
although it may yield a loss of accuracy in the conditions where the approximations fail, typically
for surfaces with high curvature or in the presence of shadowing or multiple reflections.30

Starting from the Kirchhoff approximation of the scattering integral equations, Krynkin et al.
[17] formulated the acoustic scattering forward problem for a rigid surface in the form of a matrix
product. This enabled a straightforward reconstruction of the surface shape after a singular value
decomposition (SVD) of the transfer matrix, and its subsequent inversion. A similar approach is
commonly used for some source imaging problems [35]. There, the method has been extended to35

underdetermined problems [36], where the number of unknown elementary sources is greater than
the number of sensors. Similarly, the surface reconstruction method introduced in [17] applies to
sparse sensors arrays, where the number of receivers is smaller than the number of points that
discretize the surface. This makes the method a strong candidate for a variety of applications,
especially in acoustics where physical dimensions and cost of the microphones limit the achievable40

density of sensors. The approach introduced in [17] was validated experimentally [37], for two
examples of rough surface and with a single microphone that was scanned along an arch. With the
exception of [16] (tested on periodic gratings), and [3] (tested on non-periodic water waves), most
other surface reconstruction techniques lack an experimental validation. As a result, little is known
about their performance in a realistic measurement environment. Additionally, the influence of45

the sensors array geometry and surface parameters on the measurement uncertainties, and the
statistics of the reconstruction error, have not been thoroughly investigated.

The present work aims to bridge these gaps using new numerical and experimental results
obtained with approaches derived from the method presented in [17]. Here, this method is denoted
as the short array (SA) method. Synthetic data of the sound field scattered by a large number50

of random rough surfaces with a power-function spatial spectrum are generated with an acoustic
model based on the Kirchhoff approximation, assuming constant surface elevation in one direction.
The synthetic data are then analyzed with the SA method, to reconstruct the profile of each surface.
The SA method is also based on the Kirchhoff approximation, but the inverse model equations
include additional approximations and expansions. This avoids the ‘inverse crime’ consisting in55

using the same model for the forward and inverse problem, except when this is required for a
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self-consistency test. The analysis of numerical data enables to inspect the statistical distribution
of the reconstruction error for a large collection of surfaces with similar properties, and for various
characteristics of the measurement setup (signal frequency, sensors height and separation) and
surface parameters (roughness vertical and horizontal scales, spectrum slope). Three error metrics60

are found necessary for a compact and consistent representation of the error distribution. The
numerical analysis is complemented by experimental tests on three rough surfaces, obtained with
an array of 34 microphones. The experimental data, recorded at multiple frequencies using a
broadband random excitation, serve two purposes: they validate (within the range of the tests)
the numerical analysis based on a Kirchhoff approximation model, and they highlight a number65

of issues relevant for the application, namely the effect of phase uncertainty and noise, and the
robustness and accuracy of single measurements.

Two modifications of the SA method are newly introduced in this work, and tested alongside
the SA method. The first (SA0 method) is a preconditioning of the linearized problem which
fixes an otherwise inconsistent use of the Tikhonov regularization. The second (SP method)70

is an alternative derivation based on a small perturbation expansion of the scattering integral
equations. A further multiple frequency extension to all methods is introduced, based on the
following idea: since the shape of a scattering surface is independent of the frequency of excitation
of the incident field, information about the scattered field at different frequencies can be combined
to impose additional constraints on the inversion. This had been achieved previously for other75

methods, by sequentially introducing data at increasing frequencies to improve an initial coarse
reconstruction at a low frequency [27, 28, 38, 20]. Here, the additional information is combined into
a single problem, which is solved simultaneously at all frequencies. A somehow similar approach
was recently proposed for the related problem of scattering from finite-size volumetric scatterers
[39]. In its application to the SA surface reconstruction method, the most noticeable property80

of the multiple frequency extension is its capability to transform the forward linear system from
underdetermined to overdetermined, with consequences on the accuracy and stability of the inverse
solution.

This work is organized as follows: The statement of the forward problem and the derivation
of the three inversion methods and their multiple-frequency extension are presented in section 2;85

the results of the numerical analysis based on synthetic scattered field data are presented in
section 3; the synthetic data was calculated based on a form of the Kirchhoff approximation
equation, which is derived in Appendix A for scattering surfaces with constant elevation in one
direction; experimental surface reconstruction results are reported in section 4; numerical and
experimental results are compared and discussed in section 5; and the conclusions of the study can90

be found in section 6.

2. Fundamentals of the method

All surface inversion methods discussed here have the so-called Kirchhoff approximation [40]
as a starting point. This approximation is valid when the scattering surface is sufficiently smooth,
i.e., 2krc sin

3 φ > 1, where k = 2π/λ is the acoustic wavenumber, λ = c/f is the wavelength,95

f is the frequency, c is the speed of sound, rc is the surface local radius of curvature, and φ is
the angle of incidence of sound measured from the horizontal. Here it is assumed that sound
propagates in air, with c = 340 m s−1. The acoustic signal is harmonic in time with frequency f ,
or can be represented as a linear combination of harmonic signals. In the latter case, the theory
applies to each component independently. The Kirchhoff approximation consists in evaluating the100

acoustic field on the rough surface at each point, considering only the locally tangent flat plane.
A general form of the resulting integral equation valid for an acoustically rigid surface of the form

3



Figure 1: Schematic representation of the surface scattering problem geometry, and characteristic parameters:
acoustic wavenumber k0, source inclination angle φ0, equivalent piston radius a0, microphone array separation d0
and height z0, surface standard deviation σ0, spectrum slope α0, and large-scale, κ0, and short-scale, κ1, cut-off
wavenumbers. The rough surface is described by the function z = ζ(x), with normal vector n.

z = ζ(x, y) is reported in the Appendix A. Different boundary conditions at the surface could
lead to qualitatively similar results [41, p. 228], but their implementation is beyond the scope of
this work.105

In a realistic three-dimensional case, ζ varies along x and y, and the microphones are distributed
in three dimensions in space. To reduce the computational effort and the number of parameters
that describe the system, here the problem was simplified as follows: (i) the elevation of the rough
surface ζ was assumed to vary only in the x-direction, i.e., ζ = ζ(x); (ii) the width of the surface
in the y direction was assumed to be infinite; (iii) the source and all microphones were assumed110

to lie on the same plane y = 0, normal to the surface. These conditions enable a stationary phase
expansion within the Kirchhoff approximation integral equation, hence allowing to integrate along
y, independently of the surface shape. Details of the calculations are reported in the Appendix.

With such premise, sound is considered to be emitted by an acoustic source with co-ordinate
vector S = (xs, zs), and scattered at a rough surface z = ζ(x), where the plane z = 0 coincides
with the average of ζ(x) over x, ζ̄(x) = 0. The scattered sound field is recorded by an array of
Nm microphones, with the co-ordinates of the m-th microphone indicated by Mm = (xm, zm),
as depicted in Fig. 1. The source is approximated as a point source with a directivity pattern
D(θ(v − S)), where θ(v − S) is the angle between vector v − S and the axis of the transducer,
and v is a generic location in space. D(θ(Mm − S)) is assumed to be small at the microphone
locations, therefore the direct field is neglected. The distance from v = (xv, zv) to a point at the
intersection between the surface and the plane y = 0, ρ = (x, ζ(x)), is

R(v,ρ) = |v − ρ| =
√

(x− xv)2 + (ζ(x)− zv)2. (1)

Finally, the complex acoustic potential p(Mm, k, t) at the m-th microphone and at wavenumber k
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is calculated as
p(Mm, k, t) = p0(k)P (Mm, k) exp (−ikct), (2)

where p0(k) is the amplitude of the emitted signal, or its complex Fourier coefficient at wavenumber
k, and

P (Mm, k) =
e−iπ/4

√
k8π

∫

D(θ(ρ− S)) exp {ik [R(Mm,ρ) +R(S,ρ)]}
√

R(S,ρ)R(Mm,ρ)
√

[R(S,ρ) +R(Mm,ρ)]

×
{[

1 +
i

kR(S,ρ)

] [

(x− xs)

R(S,ρ)

dζ

dx
− (ζ − zs)

R(S,ρ)

]

+

[

1 +
i

kR(Mm,ρ)

] [

(x− xm)

R(Mm,ρ)

dζ

dx
− (ζ − zm)

R(Mm,ρ)

]}

dx.

(3)

Hereafter only the non-dimensional time-independent factor P (Mm, k) is considered, without loss
of generality.115

Equation (3) describes the relation between the acoustic field at one location Mm and the
shape of the rough surface. If ζ is assigned at a discrete set of locations xr, the equation can be
evaluated numerically using a quadrature method. Such an approach has been validated numer-
ically and experimentally in the past, for static [37] and slowly moving [17, 42, 43] surfaces. Its
accuracy was found comparable to that of a standard boundary element method for surfaces with
similar characteristics to the ones considered here [43], which satisfied the Kirchhoff approximation
condition. The solution of the inverse problem, i.e., the estimation of ζ(xr) knowing P (Mm, k), is
difficult because of the strongly nonlinear character of Eq. (3). A simplified approach proposed by
Krynkin et al. [17] and common to all the techniques discussed here consists in isolating (within
the integral) the terms of Eq. (3) that depend on ζ from the ones that depend on Mm. In this
way, the numerical solution of the forward problem takes the form of a matrix product,

F
(k)
Nm×1 = H

(k)
Nm×Nr

E
(k)
Nr×1, (4)

where H
(k)
m,r = H(xr,Mm, k) is the element of a transfer matrix from a point xr on the surface

to a microphone in Mm, F
(k)
m = F (P (Mm, k)) is a function of the acoustic potential at the m-th

microphone, and E
(k)
r = E(ζ(xr), k) is a function of the surface elevation at the location xr. Nm

and Nr are the number of microphones and the number of grid points that discretize the surface,
respectively.120

Eq. (4) can be inverted easily if the number of microphones equals the number of points where
the surface is reconstructed, but this is seldom achievable given that the discretization grid must
be fine enough for the numerical integration to converge. A solution [17], is to apply a singular
value decomposition (SVD) [44] along with a regularization procedure to approximate an inverse
of matrix H. Following [17], here the regularization was performed in the sense of Tikhonov, and125

the regularization parameter was selected by the generalized cross-validation (GCV) method [45].
Then, vector E can be calculated from the known F, and the surface elevation can be calculated
independently at each point of the grid by inverting the function E as ζ(xr) = E−1(ζ(xr), k). The
way to obtain a formulation similar to that of Eq. (4) starting from Eq. (3) differs for the three
main approaches considered here, although it can be summarized into two main steps: a first130

expansion step common to all methods, and a subsequent separation of variables.

2.1. Expansion Step: All Methods

To simplify the dependence of P on ζ, the following assumptions must be introduced into
Eq. (3): (i) the maximum surface elevation is small compared to the distance of the source and
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microphones from the surface, ζ/R ≪ 1; (ii) the source and the microphones are in the far-field of
the surface, kR ≫ 1; (iii) the surface gradient is small, dζ/dx ≪ 1. As a result,

P (Mm, k) ≈
∫

A(S,Mm, x, k) exp [−iqz(Mm,S, x, k)ζ(x)] dx, (5)

where

qz(Mm,S, x, k) = k

[

zm
R(Mm,ρ0)

+
zs

R(S,ρ0)

]

, (6)

ρ0 is the projection of ρ onto the x-axis, ρ0 = (x, 0), and

A(S,Mm, x, k) =
e−iπ/4

k
√
k8π

D(θ(ρ0 − S)) exp {ik [R(Mm,ρ0) +R(S,ρ0)]}
√

R(S,ρ0)R(Mm,ρ0)
√

[R(S,ρ0) +R(Mm,ρ0)]
qz(Mm,S, x, k). (7)

In equation (5), the surface shape appears only inside the exponential. However, qz still varies
with Mm. In [8], this dependence was removed by arranging the sensors along a curve where qz is
constant. In this way, the factors depending on ζ could be separated within the integral. The same135

result is accomplished by the three methods discussed here by means of an average or expansion.
The consequent definition of the three matrices F, H, and E, differentiates the three methods, as
outlined below.

2.2. Separation of Variables: SA Method

This is the method presented by Krynkin et al. [17]. Here, the way to remove the dependence
of qz from Mm, hence to isolate ζ, is to approximate qz with the function

q̃z(S, x, k) = qz(Mm,S, x, k) + k

[

z̃m

R(M̃,ρ0)
− zm

R(Mm,ρ0)

]

= k

[

z̃m

R(M̃,ρ0)
+

zs
R(S,ρ0)

]

(8)

where M̃ = (x̃m, z̃m) is a representative microphone location, for example the center of the array140

M̃ =
∑

m Mm/Nm. The approximation of qz is more accurate if Mm − M̃ is small, i.e., for a
short array. Therefore, here the method is referred to as the Short Array (SA) method, although
it remains accurate even for relatively long arrays, as demonstrated for example by Krynkin et
al. [37].

With the SA method, the elements of the three matrices are defined as

F(k)
m = P (Mm, k), (9)

H(k)
m,r = A(S,Mm, xr, k)∆x, (10)

where ∆x is the xr grid size, and

E(k)
r = exp {−iq̃z(S, xr, k)ζ(xr)} . (11)

Once the vector E has been calculated from the inversion of Eq. (4), ζ is found as

ζ(xr) = i
ln
[

E
(k)
r

]

q̃z(S, xr, k)
. (12)
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2.3. Separation of Variables: SA0 Method145

Due to the ill-posedness of the inverse scattering problem, the solution of Eq. (4) usually
requires some type of regularization. A common regularization strategy, implemented for example
by Krynkin et al. [17], and also here, is the so-called Tikhonov regularization [46]. The regularized
solution in the sense of Tikhonov minimizes a weighted sum of the squared residual and of the
norm of the solution [46], which corresponds here to the sum ‖F − HE‖2 + β2‖E‖2, where β is a150

regularization parameter. Accordingly, the Tikhonov regularization constrains the norm of ‖E‖2.
However, for the SA method, E = exp (−iq̃zζ) → 1 when q̃zζ → 0, therefore the optimal solution
in the sense of Tikhonov can be biased, especially when the surface deformation is small.

The SA0 method consists in a simple preconditioning of the SA method, introduced for this
work with the aim of fixing such an inconsistency. Note that

P (Mm, k)− P0(Mm, k) ≈
∫

A(S,Mm, x, k) {exp [−iqz(Mm,S, x, k)ζ(x)]− 1} dx, (13)

where P0(Mm, k) is the acoustic field reflected from a flat surface ζ = 0. Unlike Eq. (6), the term
that multiplies the kernel A is small when kζ is small. The pre-conditioned problem is consistent155

with the Tikhonov regularization. However, solving Eq. (13) requires either the measurement or
the theoretical calculation of P0. The latter is straightforward, for example by means of Eq. (4).
The replacement of qz with q̃z is still necessary with this method.

With the SA0 method, the elements of the three matrices are defined as

F(k)
m = P (Mm, k)− P0(Mm, k), (14)

H(k)
m,r = A(S,Mm, xr, k)∆x, (15)

and
E(k)
r = exp [−iq̃z(S, xr, k)ζ(xr)]− 1. (16)

ζ is calculated as

ζ(xr) = i
ln
[

E
(k)
r + 1

]

q̃z(S, xr, k)
. (17)

2.4. Separation of Variables: SP Method

This last method is based on a Small Perturbation (SP) expansion [e.g., 41, ch. 3], which only
applies to a small surface elevation qzζ ≪ 1. The derivation is similar to the ones described in
[11] and [34] for an electromagnetic problem, but here the inversion is obtained without iterations
and without resorting to Fourier analysis, for a potentially underdetermined system of equations.
Expanding the exponential in Eq. (13) at first order yields

P (Mm, k)− P0(Mm, k) ≈ −i

∫

A(S,Mm, x, k)qz(Mm,S, x, k)ζ(x)dx. (18)

Then, ζ is already isolated and there is no need to approximate the function qz. The elements of
the three matrices are defined as

F(k)
m = P (Mm, k)− P0(Mm, k), (19)

H(k)
m,r = −iqz(Mm,S, x, k)A(S,Mm, xr, k)∆x, (20)

and
E(k)
r = ζ(xr). (21)

ζ is obtained directly from the inversion as ζ(xr) = E
(k)
r .160
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Figure 2: Schematic representation of the linearized forward problem cast as matrix product. The single-frequency
(standard) approach is represented by the terms inside the dashed line: the unknown surface shape is represented by

the vector ENr×1, and is obtained from the complex pressure F
(k1)
m measured at each microphone m = 1 . . . Nm, by

inverting the rectangular known transfer matrix H
(k1)
Nm×Nr

numerically. The multiple frequency approach is obtained

by concatenating matrices F
(kj)
Nm×1 and H

(kj)
Nm×Nr

obtained for different wavenumbers kj , j = 1, . . . , Nk, while ENr×1

remains unchanged.

2.5. Multiple Frequency Extension

All three approaches described above typically require a numerical inversion scheme to solve a
sometimes largely underdetermined linear system. As it will be shown, the accuracy of the recon-
struction depends strongly on the numerical inversion, and on the presence of noise. Furthermore,
the choice of the signal frequency affects the results in such a way that it is difficult to identify165

an optimal frequency without knowledge of the surface statistics. To overcome these issues, here
it is suggested to extend the three methods above, combining information available at different
frequencies in order to improve the robustness of the surface reconstruction.

It is assumed that the same surface can be tested at multiple wavenumbers kj, j = 1, . . . , Nk,
either using harmonic signals at subsequent times, or simultaneously with a sine sweep or a random
noise. For each frequency, an equation like Eq. (4) applies. For the SP method, the unknown
vector ENr×1 is independent from k, while for the SA and SA0 methods it is a function of the
frequency through q̃z. For these methods, q̃z can be approximated by its average across multiple
frequencies, q̃k. Since q̃z is directly proportional to k, the error introduced with such approximation
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is proportional to the bandwidth. Then,

E(k)
r ≈ Er =











exp [−iq̃k(S, xr)ζ(xr)] , SA method,

exp [−iq̃k(S, xr)ζ(xr)]− 1, SA0 method,

ζ(xr), SP method.

(22)

Finally, a larger multi-frequency system can be constructed by using vertical concatenation, as







F
(k1)
Nm×1
...

F
(kNk

)

Nm×1






=







H
(k1)
Nm×Nr

...

H
(kNk

)

Nm×Nr






ENr×1, (23)

and ζ can be estimated from NmNk data obtained at Nm microphones, by inverting a much larger
matrix with size NmNk × Nr. When NmNk > Nr, the system becomes overdetermined, and the170

solution can be found for example with a least squares method. As it will be seen in section 4,
this can strongly improve the robustness of the inversion.

3. Numerical Study of the Inversion Uncertainty

3.1. Numerical Model

The performance of the various reconstruction methods presented in the previous section is175

here investigated numerically with a Monte Carlo approach. The scripts used for the numerical
simulations and analysis can be found in [47]. The acoustic field is calculated numerically by
means of Eq. (3) for a large number of realizations of the surface function ζ, generated by means
of a linear random phase model. The acoustic model has been previously validated for similar
surfaces by [42] in forward scattering, and by [43] in a backscattering configuration. A further test180

of convergence with respect to the density and extent of the surface discretization grid used for the
numerical integration of Eq. (3) has been performed for this work, in the most stringent conditions
(highest frequency, largest distance of the array from the surface). As a result, a grid spacing of 1
mm (∆x/λ < 0.1) with 2048 points is chosen to calculate Eq. (3) numerically. Further refinements
or extensions of the grid caused variations of the magnitude and phase of the potential <1 %. The185

synthetic acoustic field was then analyzed with the procedures described previously, yielding an
estimate of the surface shape. The statistics of the reconstruction error are inferred by comparing
the known initial realizations with their reconstructions.

The geometry of the measurement setup and the characteristics of the surface are defined in
such a way to allow their characterization by a small number of parameters. Therefore, in contrast
with the works of Krynkin et al. [17, 37], a line-array setup is used in this work, i.e., the source
and each microphone are all at the same height z0 above the plane z = 0. The spacing between
microphones is constant, and defined by the parameter d0. The source is modeled as a baffled
piston, with radius a0 and with directivity [48, p. 381]

D(θ) = 2
J1(ka0 sin(θ))

ka0 sin(θ)
, (24)

where J1 is the Bessel function of the first kind, and θ is the angle with respect to the source axis.
The axis is inclined by an angle φ0 with respect to the horizontal direction. The microphones190

are modeled as omnidirectional. To give a more realistic representation and take into account the
physical dimensions of the source, a minimum fixed distance equivalent to 60 mm (2.6 to 4.4 times
the acoustic wavelength) is imposed from the first microphone to the source in all simulations.
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The rough surface realizations are constructed by means of a linear random phase model, in a
way similar to Thorsos [40]:

ζn(xq) =
∑

ν

√

Ψ(κν)

2

[

ξν,n exp (iκνxq) + ξ∗ν,n exp (−iκνxq)
]

(25)

where the superscript ∗ indicates the complex conjugate, κν = ν2π/L, ν = 1, . . . L/2∆x, L is
the surface length, ∆x is the surface grid size, ξν,n is a Gaussian-distributed complex variable,
and Ψ(κ) is the surface Fourier power spectrum. Note that the discretization grid employed for
the calculation of the acoustic potential (forward problem), xq, is different in general from the
reconstruction grid xr introduced in section 2. A power-function spectrum Ψ(κ) ∝ κ−α0 is used.
Such a spectrum is commonly used to describe natural surfaces such as water waves in the ocean [49]
and in rivers [42], or sea [50] and river [51] bed shapes. Similarly to the work in [51], a saturation
range is introduced at wavenumbers < κ0, as well as a small scale cut-off at wavenumber κ1, i.e.,
the spectrum is given the form

Ψ(κ) =















σ2
0C, where κ < κ0,

σ2
0C

(

κ
κ0

)−α0

, where κ0 ≤ κ ≤ κ1

0, where κ > κ1,

(26)

where C is a normalization constant, σ0 is the standard deviation of the surface elevation, κ0 =
2π/l0 is the lower saturation wavenumber, and κ1 = 2π/l1 is the upper cut-off wavenumber. The195

saturation scale κ0 defines a maximum scale of the surface, and ensures that the statistical moments
converge independently of the surface size.

Finally, the problem is entirely defined by 9 parameters. Four of them (σ0, α0, κ0, and κ1)
define the statistics of the surface, two (z0 and d0) the geometry of the acoustic array, and three
more (a0, φ0, and k0) the characteristics of the source. The last parameter, k0 = 2π/λ0, is the200

wavenumber of the acoustic signal, or the average of all wavenumber components used for the
analysis in the multiple-frequency calculations. All calculations in sections 3.2 to 3.7 are based
on a signal with a single frequency. The effect of the multiple frequency extension is discussed in
section 3.8, and with the experimental results in section 4.2.

3.2. Error Metrics205

For various combinations of the 9 parameters, the performance of the different reconstruction
approaches is tested numerically on 1,000 random realizations of the rough surface constructed by
means of Eq. (25). ζ̃n(xr) is defined as the estimated reconstruction of the n-th surface realization
ζn(xr). Then, the reconstruction error at each grid point xr and realization is εn(xr) = ζ̃n(xr) −
ζn(xr). Binning the values of εn(xr) observed across all realizations yields a set of histograms that210

estimate the probability distribution function (pdf) of the error at each xr.
Figure 3 shows examples of these normalized histograms obtained for the SA and SA0 methods,

for two sets of surfaces that differed only for their standard deviation of the surface function,
σ0/λ0 = 0.06 and σ0/λ0 = 0.12, respectively. Although the error statistics are markedly different
in the four cases shown in Fig. 3, five characteristic regions of the plots where the histograms215

behave similarly can be identified. These are designated with letters A, B, and C. The two areas
indicated with C are at the edges of the reconstructed surface. Here, the error distribution is
multi-modal, and the error is large, especially for the SA method. The distance between the
peaks of the distribution is approximately λ0/2. Since both the SA and SA0 methods obtain
the surface from the phase of a term proportional to exp (−iq̃zζ), the multiple modes may have220
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Figure 3: Probability distribution of the local surface reconstruction error εn = ζ̃n(xr) − ζn(xr) evaluated from
1,000 realizations. Geometry and surface parameters: α0 = 4, κ0/k0 = 0.34, κ1/k0 = 3.4, z0/λ0 = 18, d0/λ0 = 0.59,
k0a0 = 7.4, ψ0 = π/3 rad, Nm = 34 microphones. (a, b) σ0/λ0 = 0.059, (c, d) σ0/λ0 = 0.118. (a, c) SA method, (b,
d) SA0 method. The vertical dashed lines indicate the boundaries of the effective reconstruction domain, comprised
between the specular reflection points for the first and last microphone. The rectangular region A with green
contours identifies the domain used for the computation of the error metrics.

occurred due to an ambiguity of the phase. The boundaries between the outer C regions and the
inner A and B region in Fig. 3 are represented by the points of specular reflection of the first and
last microphones of the array, (xs + xm,1)/2 and (xs + xm,Nm

)/2, respectively. The portion of the
surface in between these points, with size Λ = (xm,Nm

− xm,1)/2, was identified as the effective
domain of the reconstruction [17]. Here, in this region, the error distribution appears narrower225

and with a clearer peak centered near εn = 0, except for the SA method at smaller σ0, which
shows a visible fluctuation of the peak location along the surface. A broader distribution indicates
a larger deviation between target and reconstructed surface, while the distance of the peak from
zero indicates a bias of the reconstruction. Secondary peaks of the distributions are visible in region
B. Such large errors here indicate a failure of the reconstruction for some realizations, which could230

strongly skew the statistical moments. In this work, a reconstruction is considered to have failed
when the maximum of the error (within the reconstruction domain Λ) falls in region B, i.e., when
max |εn(xr)| > λ0/4.

To give a simple quantitative representation of the reconstruction error that takes into account
the complexity of the observed distributions, three error metrics are defined. The error in the
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regions C is not considered for the calculation of these metrics. The likelihood of a failure of the
reconstruction is estimated with the parameter Fε, defined as the ratio between the number of
failed reconstructions and the total number of realizations, N ,

Fε =
1

N

∑

n

b(n), b(n) =

{

1 max |εn(xr)| > λ0/4, xr ∈ Λ,

0 otherwise.
(27)

This metric is assumed to represent the robustness of an algorithm. The remaining two metrics
are defined considering only the realizations that do not fall into the failure criterion (i.e., with235

reference to region A in Fig. 3). They represent the uncertainty (bias and deviation) that can be
expected from a reconstruction that does not appear obviously wrong. Excluding the realizations
that cross regions B, the 15.87 %, 50 %, and 84.14 % percentiles of the εn(xr) distribution are
calculated at each location xr within the reconstruction domain Λ. The bias Pε is defined as the
root-mean-square (rms) average of the 50 % percentile (median) error level calculated over xr. The240

reconstruction deviation, Sε, is instead defined as the rms average of the difference between the
84.14 % and 15.87 % error levels, corresponding to a 68.27 % confidence interval. To quantify the
uncertainty of the error metrics computed by the Monte Carlo simulation, these were calculated
for five independent sets of 1000 surfaces each, with similar statistics, using the same setup and
surface parameters of Fig. 3a. The maximum variations of the metrics across the five sets was245

found to be ±3 % for Fε, ±2.5 % for Bε, and ±0.5 % for Sε.
Note that during the formalization of the inversion problem, the location of the points where

the surface shape is calculated, xr, is arbitrary. Here, xr is represented by a regular grid with length
L0 and spacing ∆xr. It should be noted that, although the reconstruction is accurate only within
a limited portion of the reconstruction grid, bounded by the first and last stationary phase points,250

setting L0 = Λ does not provide accurate reconstructions. The errors were found to decrease with
an increase of L0, until L0 > 5Λ. Further increases of L0 have a non-significant effect on the error
metrics. Hence, all calculations reported here were conducted using L0 = 6Λ = 3(xm,Nm

− xm,1).
The simulations were found being marginally affected by the reconstruction grid size ∆x, as long
as this was small enough to be able to resolve the smallest surface scales. A variation of the three255

metrics smaller than 1.1 % was observed for ∆x between 0.025λ0 and 0.4λ0. A value of ∆x < 0.1λ0

has been used for all simulations.

3.3. Self Consistency

The reconstruction algorithms examined here rely on three approximations: (i) a far-field
expansion of the Kirchhoff integral formula; (ii) a discretization and truncation of the scattering260

surface; (iii) a separation of variables leading to a linearization of the problem, obtained either by
expanding qz at a single location (SA, SA0), or by taking the small perturbation limit qzζ ≪ 1
(SP). Each of these approximations is likely to introduce an error in addition to the one that
arises from the numerical inversion. To examine the impact of these additional error sources,
the reconstruction was applied to an ‘ideal’ scenario, where the above approximations should not265

contribute. In this scenario, the acoustic pressure was estimated using Eq. (4), which already
includes all the above approximations, instead of Eq. (3). In this way, any error observed after the
inversion would be a result of the numerical inversion procedure alone.

Figure 4 shows a comparison of the error metrics calculated with the standard procedure
(synthetic pressure signal estimated from Eq. (3)), and based on the ideal scenario (Eq. (4)), for270

the three methods and for a range of surface standard deviations, σ0/λ0 between 0.006 and 0.24.
The probability of failure Fε was found to increase sharply with σ0/λ0 when σ0λ0 ≥ 0.1, for all
methods. Bε also increased with σ0 for the SA0 and SP methods. The SA method showed a
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Figure 4: Effect of the model approximations and numerical inversion procedure on the error metrics, for the three
inversion methods: SA (blue), SA0 (red), and SP (green). The circles represent calculations with the standard
procedure, applying the inversion to the synthetic pressure distribution determined by a Kirchhoff approximation,
Eq. (3). The triangles represent the error attributable to the numerical inversion only. Results shown for α0 = 4,
κ0/k0 = 0.34, κ1/k0 = 3.4, k0a0 = 7.4, ψ0 = π/3 rad, Nm = 34, z0/λ0 = 18.

considerable bias also for small σ0, and displayed a minimum of Bε at σ0/λ0 ≈ 0.1. Moreover, the
deviation Sε increased with σ0 for all methods, with larger values observed for SP at large σ0/λ0275

when the qzζ ≪ 1 approximation ceased to be valid.
For the SA and SA0 methods, the difference between the more realistic case and the ideal

case was generally not significant, indicating that the reconstruction error was dominated by the
numerical inversion procedure. Visible differences observed at σ0/λ0 = 0.24 may have been caused
by the very small number of successful reconstructions for this case (Fε ≈ 1) which strongly280

reduced the number of successful realizations used for the calculation of Bε and Sε. The SP-based
reconstruction showed a significant decrease of all error metrics when the expansion errors were
removed, especially when σ0/λ0 > 0.1. This was to be expected, since the SP model looses validity
when σ0/λ0 ∼ 1. These calculations confirm that the approximations introduced by Krynkin et
al. [17] to transform the integral Kirchhoff equation into an invertible linear system of equations are285

appropriate, at least for the cases considered here. Note that, during a similar self-consistency test,
Wombell and DeSanto [8] observed a much larger difference between the ‘realistic’ and ‘ideal’ case
reconstruction at large σ0/λ0. However, the difference between the two cases in [8] was determined
by the applicability of the Kirchhoff approximation, which has been assumed valid in both cases
here. The difference observed here, instead, was due only to the expansion and factorization steps.290

3.4. Effects of Measurement Noise

The robustness of each method to noise was assessed by introducing additive Gaussian noise
to either the amplitude or phase of the synthetic signal, i.e.,

Pν(Mm, k) = P (Mm, k) (1 + ξ) exp (iχ2π) , (28)

where Pν is the ‘noisy’ signal, and ξ and χ are Gaussian distributed random variables. Their
respective standard deviations, σξ and σχ, represent the magnitude of the amplitude and phase
noise, respectively. Examples of the error metrics calculated for different values of σξ and σχ

(keeping σχ = 0 or σξ = 0, respectively) are shown in Fig. 5. Amplitude noise increased the295

probability of failure Fε only for SA, but increased the deviation Sε similarly for all methods. The
bias Bε was not affected. Phase noise had a stronger effect on all metrics, and for all methods,
except the probability of failure of SP which remained very low even with large σχ. The strongest
effect was observed for the SA method, where a phase uncertainty of 20 % was found sufficient to
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Figure 5: Effect of Gaussian amplitude uncertainty, σξ (a, b, c), and phase uncertainty, σχ (d, e, f), on the error
metrics, for the three inversion methods: SA (blue), SA0 (red), and SP (green). Results shown for σ0/λ0 = 0.06,
α0 = 4, κ0/k = 0.34, κ1/k = 3.4, k0a0 = 7.4, ψ0 = π/3 rad, Nm = 34, z0/λ0 = 18.

bring the probability of failure above 0.9. Random variations of the phase similar to those modeled300

with σχ can be caused by uncertainties of the microphone locations, or lack of phase calibration.
The rapid increase of Sε (and of Fε for SA) with σχ can severely harm the overall accuracy of the
method, and requires care while setting up the measurement system.

3.5. Effects of the measurement setup

The measurement setup is defined by the parameters z0, d0, a0, and φ0. Variations of the speaker305

radius a0 and angle φ0 mainly affect the distribution of the incident sound intensity on the surface,
and were found having small effect on the error metrics as long as the insonified area was larger
than the whole reconstruction domain. For all simulations considered here, the product k0a0 = 7.4
was held constant and φ0 was fixed at 60 degrees from the horizontal. While evaluating the effects
of the height z0 and microphone separation d0 on the reconstruction errors, the position of the first310

and last specular points were held constant to keep the reconstruction domain identical. For a
given number of microphones Nm, the locations of the first and last microphones were determined
as xm,1 = 2xsp,1 − xs and xm,Nm

= 2xsp,Nm
− xs, respectively, where xsp,1 and xsp,Nm

define the
position of the two specular points. Then, d0 followed from d0 = (xm,Nm

− xm,1)/(Nm − 1).
The values of the three error metrics, calculated for different combinations of z0/λ0 between315

8.8 and 29.4, and for d0/λ0 between 0.37 and 2.7, are shown in Fig. 6, 7, and 8, respectively. Each
row in these figures was calculated with a different frequency, to test the non-dimensionalization of
the error metrics and parameters by the acoustic wavelength. The axis ranges differ between rows
due to the non-dimensionalization. For all methods, the probability of failure (Fig. 6) increased
sharply when d0/λ0 ≤ 0.5. For larger microphone separations, the SA0 and SP methods showed a320

small Fε < 5 %. In contrast, the SA method showed a further increase of Fε when d0/λ0 > 1.5,
with estimated probability of failure well above 50 %. This indicates a lack of robustness of the
SA method.
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Figure 6: Distribution of the probability of failure Fε as a function of the array height z0 and microphone spacing
d0, for the three methods: SA (a, d, g), SA0 (b, e, h), and SP (c, f, i). Geometry and surface parameters: α0 = 4,
k0a0 = 7.4, ψ0 = π/3 rad. (a, b, c) σ0/λ0 = 0.074, κ0/k0 = 0.27, κ1/k0 = 2.7, f0 = 25 kHz, (d, e, f) σ0/λ0 = 0.059,
κ0/k0 = 0.34, κ1/k0 = 3.4, f0 = 20 kHz, (g, h, i) σ0/λ0 = 0.044, κ0/k0 = 0.45, κ1/k0 = 4.5, f0 = 15 kHz.
The simulations were performed with the same dimensional parameters, for different excitation frequencies. The
non-dimensional axis ranges are different for each row as a result.
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Figure 7: Distribution of the non-dimensional error bias Bε/λ0 as a function of the array height z0 and microphone
spacing d0, for the three methods: SA (a, d, g), SA0 (b, e, h), and SP (c, f, i). Geometry and surface parameters
are the same as in Fig. 6. Note the different color-coding in (a), (d), and (g).

The SA method performed poorly also with respect to the error bias, as shown in Fig. 7. Here,
the relative bias Bε/λ0 was of the order of 1 % for the SA method, almost one order of magnitude325

larger than for SA0 and SP. A different color scale was used for the SA plots in Fig. 7, to account
for this difference. For these simulations, σ0/λ0 was between 4.4 % and 7.4 %, therefore the bias
was a significant proportion of the standard deviation of the surface roughness. The smallest bias
seemed to occur at larger σ0/λ0 for the SA method, in accordance with what has been observed in
Fig. 3. In contrast, the SA0 and SP methods had smaller bias at smaller σ0/λ0. For all methods,330

an increase of Bε/λ0 at large microphone separation d0/λ0 > 2 and small height z0/λ0 < 20 was
observed. To maintain the bias small, an increase of the separation between the microphones must
be accompanied by an increase of the height of the array above the surface. The behavior of the
deviation Sε, in contrast, was similar for the three algorithms, as shown in Fig. 8. Sε was generally
larger when the microphones separation d0/λ0 and array height z0/λ0 were large. Therefore, to335

minimize Sε the array needs to be kept near the surface, and the distance between the microphones
needs to be small (but larger than 0.5λ0). The observed values of Sε/λ0 were typically between
3 % and 10 %, which suggests that Sε was the main contribution to the overall reconstruction
error, at least for the SA0 and SP method.

3.6. Effects of the Roughness Parameters340

The performance of the three reconstruction algorithms with respect to changes of the surface
standard deviation σ0 is investigated in Fig. 9a-c. The error metrics were calculated for various
combinations of σ0 (between 0.1 mm and 4 mm) and of the frequency f0 (between 15 kHz and
25 kHz). The results are found reasonably consistent after normalization of σ0, Bε, and Sε by the
acoustic wavelength λ0, although low-frequency data (triangles in Fig. 9a-c) had slightly larger345
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Figure 8: Distribution of the non-dimensional reconstruction uncertainty Sε/λ0 as a function of the array height
z0 and microphone spacing d0, for the three methods: SA (a, d, g), SA0 (b, e, h), and SP (c, f, i). Geometry and
surface parameters are the same as in Fig. 6.

values of the normalized error metrics. This might have been an effect of the difference of κ0/k0
and z0/λ0.

Although the reconstruction error appears to scale with the acoustic wavelength, the perfor-
mance of the reconstruction is generally better described by the quantity Sε/σ0. This is apparent
from Fig. 9c, where Sε/σ0 = 1 is represented with a dashed line. In fact, at low frequency (low350

σ0/λ0), although Sε/λ0 was very small for all methods, Sε was very close to σ0. This indicates an
error as large as the amplitude of the surface roughness, which is generally not acceptable. The
more meaningful error Sε/σ0 is indicated by the distance of all points from the line Sε/σ0 = 1.
This distance increased for the SA and SA0 methods at higher frequencies (σ0/λ0 > 0.1), where
Sε/λ0 became significantly lower than σ0/λ0, while it remained very small for the SP method due355

to the non applicability of the small perturbation expansion at high frequency.
The sensitivity of the error metrics to the surface spectrum slope α0 is represented in Fig. 9d-f.

A steeper spectrum (larger α0) yields a smoother surface. This was associated with a slight decrease
of Fε and Bε, and a more marked decrease of Sε. Similarly, a smaller value of the characteristic
roughness wavenumber κ0 is associated with a gentler surface. These also corresponded to smaller360

Bε and Sε, for all algorithms (Fig. 9h-i). Fε, however, showed a maximum at κ0/k0 ≈ 0.5 (Fig. 9g),
which is currently difficult to motivate physically. The shorter cut-off scale represented by κ1 was
found having no significant impact on the error metrics, at least in the range 1.1 ≤ κ1/k0 ≤ 8.5
(plot omitted). This suggests that the inversion acts as an effective low-pass filter of the roughness
function.365

3.7. Frequency Dependence

To explore the hypothesis of the inversion procedure acting as a low-pass filter of the surface,
the power spectral density spectrum of the reconstructed surfaces was calculated, and compared
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Figure 9: Effect of surface roughness standard deviation (a, b, c), spectrum slope (d, e, f), and characteristic
surface wavenumber (g, h, i) on the error metrics, for the three inversion methods. SA (blue), SA0 (red), and SP
(green). The different symbols in (a, b, c) denote different frequencies: 15 kHz (triangles), 20 kHz (circles), 25 kHz
(squares). The dashed line in (c) indicates Sε = σ0. Geometry and surface parameters: (a, b, c), κ0/k0 = 0.45,
z0/λ0 = 13 (triangles), κ0/k0 = 0.27, z0/λ0 = 22 (squares); for all remaining, σ0/λ0 = 0.06 (except a, b, c), α0 = 4
(except d, e, f), κ0/k0 = 0.34 (except g, h, i), κ1/k0 = 3.4, k0a0 = 7.4, ψ0 = π/3 rad, Nm = 34, z0/λ0 = 18.
Note the different vertical scale in (a, b, c). The SA and SA0 data in (f) and (i) overlap and therefore are not
distinguishable.
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Figure 10: Effect of the signal frequency on the reconstruction accuracy at various surface scales. Contour levels
indicate the average ratio (in dB) between the Fourier power spectral densities of the target and reconstructed
surface. The white and the red dash-dotted lines indicate the characteristic surface scale κ0/k0 and the shortest
surface scale κ1/k0, respectively. SA (a), SA0 (b), and SP (c). Results are shown for α0 = 4, k0a0 = 7.4,
ψ0 = π/3 rad, Nm = 34.

with that of the known target surfaces, also exemplified by Eq. (26). The average (across multiple
realizations) reconstructed/target ratio between these two spectra is shown in Fig. 10 as a function370

of the non-dimensionalized surface wavenumber κ/k0, for various k0. All three methods showed a
tendency to underestimate the amplitude of the spectrum, by an amount that increased consistently
with the normalized surface wavenumber κ/k0, almost independently of the absolute value of k0.
In particular, scales shorter than ≈ 2λ0 had their power spectral density underestimated in average
by more than 6 dB, for all methods. This underestimation increased even faster for the SP method,375

which appeared to be less sensitive to short wavelengths.

3.8. Multiple Frequency Extension

All results so far were obtained using the signal at a single frequency f0. The outcome of
considering multiple frequencies simultaneously according to the method described in section 2
is presented in Fig. 11. Here, the reconstruction was based on a discrete set of wavenumbers380

k1, k2, . . . , kNk
, where Wk = kNk

− k1 was the effective bandwidth, the wavenumber grid spacing
was set as Wk/(Nk − 1) = 0.0025k0, and the center wavenumber was k0 =

∑

j kj/Nk. The
error metrics were evaluated for Wk/k0 between 0 (single frequency case) and 0.5, without noise
and with 5 % amplitude and phase uncertainty. All results shown in Fig. 11 were obtained
with a fixed number of microphones, Nm = 34, and of reconstruction points, Nr = 991, while385

the number of frequency bands was Nk = 400Wk/k0 + 1 and varied between 1 and 201. As a
result, the ratio between number of rows and number of columns of the transfer matrix, NmNk/Nr

varied between 0.03 (single frequency case) and 6.90. A ratio NmNk/Nr = 1, which indicates
the transition from an underdetermined to an overdetermined problem, would have been obtained
with Wk/k0 = 0.073. As seen in Fig. 11, the increase of the bandwidth caused a slight decrease of390

Sε/λ0 for all methods, and a slight increase of the bias Bε/λ0 for the SA0 and SP methods. The
improvement in Sε/λ0 was larger in the presence of noise, and did not increase further beyond
Wk/k0 = 0.1 (NmNk/Nr = 1.4). Widening the bandwidth generally reduced the probability
of failure Fε, more visibly in the presence of noise. Without noise, Fε initially showed a peak at
Wk/k0 = 0.05. For this case, NmNk/Nr = 0.7, meaning that the problem was still underdetermined395

and required solution via a singular value decomposition. The presence of a peak of Fε only for
the case without noise suggests that the extended matrix was nearly singular without noise and
with small broadband. For larger Wk/k0, the problem was overdetermined, and the inversion was
obtained with an iterative least squares procedure [52]. The steep decline of Fε for larger Wk/k0,
observed in Fig. 11, suggests that the least squares inversion is more robust.400
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Figure 11: Effect of the signal bandwidthWk on the reconstruction error based on the multiple frequency extension
of the SA (blue), SA0 (red), and SP (green) methods. Signal without noise (circles) and signal with 5 % amplitude
and phase noise (triangles). Results shown for σ/λ0 = 0.06, α0 = 4, κ0/k0 = 0.34, κ1/k0 = 3.4, k0a0 = 7.4,
ψ0 = π/3 rad, Nm = 34, z0/λ0 = 18.

4. Experimental Validation

4.1. Experimental Setup

Experimental tests were performed using an array of 34 1/4” microphones (G.R.A.S. 40PH) and
a loudspeaker (Visaton G 25 FFL) positioned above a set of two rigid rough surfaces with known
profiles. The surfaces were milled on one side of two tiles made of medium density fiberboard405

(MDF) and aluminum, respectively. The opposite side of the tiles was flat. The MDF surface
had a power-function spectrum like the one described by Eq. (26), with σ0 = 1 mm, α0 = 5,
κ0 = 2π/0.05 rad m−1, κ1 = 2π/0.01 rad m−1, and had dimensions of 0.6 × 0.4 m2. Being
asymmetric and aperiodic, this surface could be tested twice after a 180◦ rotation, effectively
yielding two different surfaces with similar properties (surface A and B, Fig. 13d and e, in black).410

The aluminum surface had the shape of a sinusoid with wavelength 50 mm and peak-to-peak
amplitude of 3 mm (surface C, Fig. 13f, in black).

For the experiments, the speaker was mounted at a height z0 = 230 mm, and with an angle
of 60◦. The directivity of the speaker was measured, and the equivalent radius was estimated as
approximately a0 = 20 mm. The spacing between microphones was 20 mm. The experimental415

setup differed slightly from the simplified model described thus far, in that the microphones were
higher than the speaker, zm = 295 mm. This was chosen to minimize the direct field. The overall
length of the array was 660 mm, and the effective reconstruction domain had size Λ = 284 mm.

The speaker was energized with both single frequency harmonic signals and with a random
white noise with higher cut-off frequency of 51.2 kHz. The signals were recorded at a frequency420

of 102.4 kHz. The complex amplitude of the recorded signal was calculated by means of a Fourier
transform with a segment duration of 0.02 s, the result was divided by the transform of the
input signal to remove the time-dependence, and then averaged over 40 s with no overlap. No
significant difference between the measurements with harmonic signals and those obtained at the
same frequency by a Fourier transform of the white noise were observed. All results presented425

here have been obtained from the white noise, by selecting only the frequencies of interest from
the wider spectrum.

Calibration of each microphone in amplitude and phase was performed in situ, as follows: (i)
the sound field reflected by a flat surface (the flat side of each tile) was recorded, and denoted as
P̃0(Mm, k); (ii) the same flat-surface reflection was calculated with Eq. (3), based on the known430

position of the speaker and microphones, and denoted as P0(Mm, k); (iii) a frequency-dependent
calibration factor was calculated for each microphone as C(Mm, k) = P0(Mm, k)/P̃0(Mm, k). Every
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Figure 12: A photograph of the experimental setup.

subsequent measurement obtained with the rough surfaces (after turning the tile upside down) was
corrected by means of a multiplication by the complex factor C(Mm, k). Numerical simulations
were performed alongside each experimental test using the known setup and surface geometry as435

input, to aid the interpretation of the results.

4.2. Experimental Results

The results of the experimental tests obtained with the SA0 method are exemplified in Fig. 13.
The SA0 method was chosen because it was expected to yield the best results according to the
numerical analysis in section 3. The single-frequency reconstruction was performed independently440

at frequencies ranging between 10 kHz and 25 kHz. This corresponds to values of σ0/λ0 between
0.03 and 0.07. Since only three surfaces were tested, a statistical analysis of the reconstruction
error was not possible, and the three error metrics defined in section 3 could not be calculated.
Instead, the reconstruction error was quantified in terms of the rms spatial average of the local
difference ε(xr) = ζ̃(xr)− ζ(xr) over the effective reconstruction domain. These errors are shown445

in Fig. 13a-c with blue dots, for the experimental data.
With this definition, the error in the single-frequency reconstruction exhibits a strong sensitivity

to the operational frequency. The target surface profiles are shown in black in Figs. 13d, e, and f
for surfaces A, B and C, respectively. An example of monochromatic reconstruction, obtained at
a frequency of 17.5 kHz (σ0/λ0 = 0.05), is shown in blue in the same figures. The monochromatic450

reconstruction is reasonably close to the actual surface shape for surfaces B and C (Fig. 13e and f),
while little resemblance to the target was found for surface A (Fig. 13d) at this frequency. For the
case shown in Fig. 13d, e, and f, the measured relative errors εrms/λ0 were 0.44 (surface A), 0.27
(surface B), and 0.038 (surface C). The percentage of frequencies (relative to all tested frequencies
shown in Fig. 13a-c) that had a relative reconstruction error larger than 0.1 was 46 % for Surface455

A, 40 % for Surface B, and 50 % for Surface C. These percentages can be assumed to be indicative
of an equivalent probability of failure of the reconstruction. The reconstruction in Fig. 13d (surface
A) is one typical example of such failure, but also in Fig. 13e the large rms error is due to the strong
departure from the target profile near xr = 0.1 m. Excluding the obvious failures, the relative error
εrms/λ0 was found increasing with σ0/λ0, as expected, and was generally between 0.03 and 0.06,460

or between 60 % and 80 % of σ0/λ0. The limiting condition εrms/σ0 = 1 is shown in Fig. 13a-c
with a purple dashed line. To determine if these figures were in line with the expectations, the
reconstruction was applied to synthetic signals obtained based on the same known surface profiles.
The expected values of εrms/λ0 calculated without artificial noise (σξ = σχ = 0) are indicated with
a dashed line in Fig. 13a-c, and were considerably smaller, at ≈ 0.02, or between 30 % and 40 %465

of σ0/λ0. The addition of 5 % uncertainty to the amplitude and phase of the synthetic signal
yielded values more in line with the measurements, also bringing the failure rate to between 38 %
(surface B) and 63 % (surface A). The ‘noisy’ synthetic data points are indicated with black dots
in Fig. 13a-c and show a sensitivity to frequency similar to that of the experimental cases.

Given the choice of acoustic stimulus used for the measurement (white noise), data at multiple470
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Figure 13: Surface shape reconstruction using experimental data. Surfaces A (a, d), B (b, e), and C (c, f). (a,
b, and c): non-dimensionalised rms-averaged local reconstruction error, for various acoustic frequencies and for
three different surfaces. All results shown were obtained with the SA0 method and its broadband extension. ( )
: reconstruction based on experimental data; ( ): reconstruction based on synthetic data, without noise; ( ):
reconstruction based on synthetic data, with 5 % amplitude and phase noise; ( ): reconstruction obtained with the
multiple frequencies extension with bandwidth Wk = 148 rad m−1 and center frequency shown at the abscissa;
( ): εrms = σ0. (d, e, and f): examples of surface reconstruction. ( ): target ‘known’ surface geometry;
( ) : reconstruction based on experimental data at 17.5 kHz (σ0/λ0 = 0.05); ( ): reconstruction obtained
with the multiple frequencies extension with f0 = 17.5 kHz, Wk/k0 = 0.46.
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frequencies was easily collected simultaneously for the three surfaces. This data was analyzed
with the multiple frequency extension of the SA0 method, selecting portions of the overall signal
spectrum with a constant bandwidth of Wk = 148 rad m−1 (6 kHz), and a range of different
center frequencies from 12.5 kHz to 22.5 kHz. The corresponding rms errors are shown with red
rectangles in Fig. 13a-c, for each center frequency. Examples of reconstruction obtained with a475

center frequency of 17.5 kHz (σ0/λ0 = 0.05) are also shown in red in Fig. 13d-f. Compared to the
single frequency reconstruction (blue line), the multiple frequency reconstruction appeared closer
to the known surface profile. The measured relative rms errors for a center frequency of 17.5 kHz
were 0.017 (surface A), 0.020 (surface B), and 0.022 (surface C), corresponding to 33 %, 38 %, and
41 % of σ0. Unlike the single frequency case, the reconstruction was similarly accurate for all three480

surfaces, and the error varied less with the center frequency. Even with the multiple frequency
extension, however, the probability of failure of the reconstruction was not zero, as revealed by
the large rms error observed in Fig. 13c for surface C, at σ0/λ0 = 0.07. However, all remaining
cases showed errors close to the theoretical limit, represented here by the synthetic results without
noise.485

The results obtained with the SA and SP methods (not shown in Fig. 13) mostly confirmed
the results obtained in section 3 with synthetic data. In the single-frequency case, reconstruction
errors larger than 0.1λ0 were observed at between 72 % and 84 % of frequencies (between 64 % and
80 % with synthetic noisy data) for the SA method, and at between 32 % and 43 % of frequencies
(between 9 % and 18 % with synthetic noisy data) for the SP method, which confirms a lack490

of robustness of the SA method. The relative error εrms/λ0 at the center frequency of 17.5 kHz
was found to vary between 0.09 and 0.49 for the measurements with the SA method (between
0.16 and 0.37 with synthetic data), and between 0.033 and 0.067 for the measurements with the
SP method (between 0.028 and 0.048 with synthetic data). Note that for the three surfaces that
were tested here, σ0/λ0 < 0.1, which was within the range where the performance of the SP and495

SP0 method were expected to be comparable (see Fig. 9a-c). For the SP method, the multiple
frequency extension effectively reduced the relative error to values between 0.02 and 0.03, close to
the theoretical limit. For the SA method, the multiple-frequency reconstruction error decreased
substantially for surface A (approximately 0.02), while it remained relatively large for surface B
(between 0.03 and 0.1) and for surface C (between 0.03 and 0.08). For both surfaces, the largest500

errors were observed at the highest frequencies.

5. Discussion

The numerical results presented in section 3 suggested overall better performance of the SA0
method compared to the SA and SP alternatives, for the cases considered here. The SA0 method
was less affected by bias at small σ0/λ0 compared to SA, and had smaller deviation Sε/λ0 than505

the SP method at large σ0/λ0. A possible explanation for the bias of the SA method at small
σ0/λ0 can be identified in the regularization of the inverse problem in the sense of Tikhonov.
The solution obtained by means of the Tikhonov regularization minimizes a weighted sum of the
inversion residual and of the norm of the solution itself [46]. The latter is represented here by the
vector E. However, for the SA method, a solution that minimizes the norm of E does not minimize510

ζ. This could explain the bias at low σ0/λ0, when the regularization is expected to have a stronger
impact due to the smaller sensitivity of the scattered field. By removing the bias of the solution
vector E, the SA0 method effectively restores the applicability of the Tikhonov regularization, thus
improving the performance of the reconstruction. The relative weight of the two norms minimized
by the Tikhonov regularization is governed by the regularization parameter, which was determined515

here by means of the generalized cross-validation method. It is possible that further improvements
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could be obtained by means of alternative regularization approaches. These should be evaluated
in future studies, using the error analysis framework introduced here.

Amongst all parameters that affect the accuracy of the reconstruction, the relative roughness
standard deviation σ0/λ0 had the strongest influence. Considering the SA0 method, lower σ0/λ0520

was associated with smaller values of all three error metrics. However, at σ0/λ0 < 0.1, the deviation
Sε was found very close to σ0. This would be unacceptable in most cases, since the uncertainty
needs to be considerably lower than the characteristic amplitude of roughness. To increase the
ratio Sε/σ0, one would need to increase the frequency of the signal (hence σ0/λ0). This would also
improve the ability to reconstruct shorter scales on the surface, as shown with Fig. 10, but it would525

in turn increase very rapidly the probability of failure. The quality of the reconstruction must rely
on a compromise between accuracy and robustness, which is often made even more difficult by a
lack of prior knowledge about the surface properties.

The severity of the robustness issue was highlighted by the experimental results shown in
Fig. 13. Here, a relatively small amount of noise in the data was shown making the reconstruction530

fail for more than 40 % of the cases, for a given surface, merely because of the different frequency
used for the analysis. This is of notice, especially since the theoretical probability of failure for
the same surfaces, without noise, was close to zero, as shown by the numerical simulations. A
multiple-frequency extension applicable to all methods was here proposed as a possible solution to
maintain accuracy and improve robustness. With synthetic data, the impact of the extension on535

the analysis was somehow limited, although a substantial decrease of the probability of failure was
demonstrated for the SA method in presence of noise. When applied to the experimental data, the
extension gave results that were considerably more reliable and accurate than any single-frequency
reconstruction, with an accuracy close to the theoretical limit calculated numerically.

6. Conclusions540

This work provided a systematic comparison of various approaches to reconstruct a rough
surface from measurements of the scattered acoustic field with a linear array of microphones.
For all approaches, and for the range of conditions examined in this work, the linearization of
the scattering equations proposed in [17] was found having a small effect on the reconstruction
error. Instead, large errors were found arising from the inversion itself, likely as a result of the545

underdetermined and ill-posed nature of the problem. The reconstruction error was found to be
strongly influenced by the ratio between roughness height and acoustic wavelength. Accuracy and
resolution were found to improve at higher frequencies, at the expense of robustness.

One of the new approaches proposed here, which addresses an inconsistent use of the Tikhonov
regularization in [17] by introducing a pre-conditioning of the problem, was found giving the550

best overall results. A further improvement was introduced via a multiple-frequency extension of
the reconstruction procedure, which allows to combine information at multiple frequencies into
a single, potentially overdetermined, linear problem. Application of this extended approach to
the experimental data collected simultaneously over a broad range of frequencies, using a white
noise as stimulus, demonstrated its efficacy in improving the robustness and reliability of the555

reconstruction, while providing errors close to the theoretical limit for the three tested surfaces.
The main advantage of the surface reconstruction methodology under exam is its capability to

estimate the surface shape using a relatively small number of sensors. This makes the technique
fast, inexpensive, and simple to set up, calibrate, and operate. Although the method is derived
for acoustic waves interacting with a sound-rigid surface, the extension to electromagnetic waves560

and/or Dirichlet boundary conditions should be feasible. Application to surfaces with larger or
smaller scales should be possible as long as all quantities including the signal frequency are scaled
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consistently, and the Kirchhoff approximation can be assumed valid. The results presented here
can inform the design of measurement arrays for a variety of potential applications, while providing
an indication of the limitations and uncertainties of the method.565
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Appendix A. Kirchhoff approximation for a cylindric surface

Consider scattering of sound with wavenumber k generated by a point source with co-ordinates
S, scattered by a rough surface z = ζ(x, y), and recorded at location Mm. A point on the surface is
identified by the vector ρ = (x, y, ζ(x, y)). Assuming the validity of the Kirchhoff approximation,
the complex potential at Mm is [41, p. 226-228]

P (Mm, k) = 4π

∫ ∫

n · ∇ [Pi(S,ρ, k)G0(Mm,ρ, k)]
dxdy

√

1 + |∇ζ|2
, (A.1)

where the term inside the square root in Eq. (A.1) arises by changing variable of integration from
the curvilinear surface-following variable to the Cartesian variables x and y. n is the unit vector
normal to the surface, G0 is the far-field Green’s function,

G0(r, r
′) = − 1

4π

eik|r
′−r|

|r′ − r| , (A.2)

Pi is the incident field,

Pi(S,ρ, k) = p0e
−i2πftD(θ(ρ− S))

k
G0(S,ρ), (A.3)

t is time, and p0 is the signal amplitude, which carries the dimensions of an acoustic potential.575

Without loss of generality, hereafter it is assumed p0e
−i2πft = 1, so that P (Mm, k0) takes the

meaning of a normalized complex Fourier coefficient.
Substituting Eq. (A.2) and Eq. (A.3) into Eq. (A.1), assuming a slowly varying directivity,

yields an equation of the form

P (Mm, k) =

∫ ∫

C(S,Mm,ρ, k) exp {ik [|ρ− S|+ |Mm − ρ|]} dxdy, (A.4)

where

C(S,Mm,ρ, k) =
i

4π

D(θ(ρ− S))

|ρ− S||Mm − ρ|

×
{[

1 +
i

k|ρ− S|

] [

−(x− xs)

|ρ− S|
∂ζ

∂x
− (y − ys)

|ρ− S|
∂ζ

∂y
+

(ζ − zs)

|ρ− S|

]

+

[

1 +
i

k|Mm − ρ|

] [

− (x− xm)

|Mm − ρ|
∂ζ

∂x
− (y − ym)

|Mm − ρ|
∂ζ

∂y
+

(ζ − zm)

|Mm − ρ|

]}

.

(A.5)
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The source and microphone are assumed to lie on the x − z plane, ym = ys = 0. Assuming no
variation of ζ along y, ∂ζ/∂y = 0, then the complex exponential in Eq. (A.4) has a stationary phase
point at y = 0. Applying a stationary phase expansion [e.g., 53, ch. 6.5, p. 276], and integrating
along y, yields

P (Mm, k) ≈ eiπ/4
√

2π

k

∫

√

R(S,ρ0)R(Mm,ρ0)

R(S,ρ0) +R(Mm,ρ0)
C(S,Mm,ρ0, k)

× exp {ik [R(S,ρ0) +R(Mm,ρ0)]} dx,
(A.6)

where ρ0 = (x, 0, ζ(x)). This leads to Eq. (3).
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