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Tracking the Emergence of Location-based Spatial
Representations in Human Scene-Selective Cortex

Sam C. Berens1,2 , Bárður H. Joensen1,3,4, and Aidan J. Horner1,5

Abstract

■ Scene-selective regions of the human brain form allocentric

representations of locations in our environment. These represen-

tations are independent of heading direction and allow us to know

where we are regardless of our direction of travel. However, we

know little about how these location-based representations are

formed. Using fMRI representational similarity analysis and linear

mixedmodels, we tracked the emergence of location-based repre-

sentations in scene-selective brain regions. We estimated patterns

of activity for two distinct scenes, taken before and after partici-

pants learnt they were from the same location. During a learning

phase, we presented participants with two types of panoramic

videos: (1) an overlap video condition displaying two distinct

scenes (0° and 180°) from the same location and (2) a no-overlap

videodisplaying twodistinct scenes fromdifferent locations (which

served as a control condition). In the parahippocampal cortex

(PHC) and retrosplenial cortex (RSC), representations of scenes

from the same location became more similar to each other only

after they had been shown in the overlap condition, suggesting

the emergence of viewpoint-independent location-based repre-

sentations. Whereas these representations emerged in the PHC

regardless of task performance, RSC representations only emerged

for locations where participants could behaviorally identify the two

scenes as belonging to the same location. The results suggest that

we can track the emergence of location-based representations in

the PHC and RSC in a single fMRI experiment. Further, they

support computational models that propose the RSC plays a key

role in transforming viewpoint-independent representations into

behaviorally relevant representations of specific viewpoints. ■

INTRODUCTION

Rapidly learning the spatial layout of a new environment

is a critical function that supports flexible navigation.

This ability is thought to depend on the emergence of

location-based representations in scene-selective brain

regions that signal where we are irrespective of our cur-

rent heading direction. As we are unable to sample all

possible viewpoints from a given location simultaneously,

the formation of location-based representations requires

the integration of scenes from differing viewpoints.

Despite evidence for the existence of location-based rep-

resentations in scene-selective regions (e.g., Marchette,

Vass, Ryan, & Epstein, 2015; Vass & Epstein, 2013), we

know little about how such representations emerge.

Models of spatial navigation suggest that distinct brain

regions are responsible for supporting allocentric (viewpoint-

independent) and egocentric (viewpoint-dependent) repre-

sentations of our environment (Julian, Keinath, Marchette,

& Epstein, 2018; Byrne, Becker, & Burgess, 2007). Specifically,

the parahippocampal cortex (PHC) and hippocampus

are thought to encode allocentric spatial representations

related to navigational landmarks/boundaries (Epstein,

Patai, Julian, & Spiers, 2017; Burgess, Becker, King, &

O’Keefe, 2001) and spatial context more broadly (Epstein

& Vass, 2014). The hippocampus also supports a wider

variety of spatial and nonspatial associative/configural

functions in the service of memory and navigation (e.g.,

Henson & Gagnepain, 2010; Hannula & Ranganath, 2009;

Kumaran et al., 2007;O’Keefe&Burgess, 2005; Eichenbaum,

2004). Here, we focus on the PHC given its more specific

role in spatial allocentric processing relative to the hippo-

campus. In contrast, the parietal lobe is thought to support

egocentric representations of specific viewpoints that

underpin route planning (Calton & Taube, 2009; Byrne

et al., 2007). To enable efficient route planning, a transfor-

mation between allocentric and egocentric representations

is thought to occur in the retrosplenial cortex (RSC), cueing

allocentric representations from egocentric inputs and vice

versa (Bicanski & Burgess, 2018; Byrne et al., 2007).

In support of these models, human fMRI studies using

representational similarity analyses (RSA) have found

evidence for viewpoint-independent representations of

specific locations (henceforth referred to as “location-based

representations”) in a network of brain regions including the

PHC and RSC (Marchette, Vass, Ryan, & Epstein, 2014;

Vass & Epstein, 2013). More recently, panoramic videos

have been used to experimentally induce the formation

of location-based representations (Robertson, Hermann,

Mynick, Kravitz, & Kanwisher, 2016). Assessing pattern

similarity for distinct scenes taken from the same location,

Robertson et al. provided evidence for greater pattern sim-

ilarity in the RSC and occipital place area (OPA) after
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participants had seen a panoramic video showing that two

scenes were from the same location. This effect was not ev-

ident when participants could not learn that two sceneswere

from the same location. Interestingly, they also provided ev-

idence for an effect in the PHC that occurred inboth video

conditions—that is, regardless of whether participants could

learn the scenes were from the same location—suggesting a

more general associative role for the PHC.

Despite these results, we still know little about (1) how

quickly such representations are formed, (2) what types

of spatial information they encode, and (3) under what

conditions they are evoked. First, it remains unclear

whether location-based representations emerge rapidly

after short exposures to a new environment or whether

they only develop after prolonged experience. Robertson

et al. had participants watch videos outside the scanner,

over the course of 2 days, before assessing pattern simi-

larity inside the scanner. To test whether location-based

representations can form rapidly, we developed a proto-

col that permitted us to scan participants before and after

a short learning phase, allowing us to estimate changes in

pattern similarity as a function of learning in a single fMRI

experiment. Second, without tracking the formation of

location-based representations, it is difficult to determine

exactly what type of information they are representing.

For instance, shared representations across viewpoints

may relate to long-term semantic knowledge that is in-

voked when seeing different views of a well-known loca-

tion (see Marchette, Ryan, & Epstein, 2017). In contrast,

rapidly learning representations that are shared across

different viewpoints of a new environment implies that

the information being encoded is more likely to be spa-

tial rather than semantic in nature.

Third, we do not know whether location-based repre-

sentations are involuntary retrieved during visual pro-

cessing. Computational models of spatial navigation

predict that allocentric representations are automatically

activated and updated by egocentric viewpoints (Bicanski

& Burgess, 2018; Byrne et al., 2007). Furthermore, elec-

trophysiological studies in rodents have shown that allo-

centric representations are automatically activated and

updated during exploration (e.g., Monaco, Rao, Roth, &

Knierim, 2014; O’Keefe & Dostrovsky, 1971). However,

evidence in humans is lacking. Robertson et al. required

participants to recall whether scenes were presented on

the left or right of the screen, introducing a task that

explicitly required them to recall the panorama, and

the position of the specific scene within the panorama.

Suggesting some level of involuntary retrieval, one fMRI

study found that viewpoint-independent representations

of specific buildings may be activated when participants

judge whether the building is well known to them

(Marchette et al., 2014). In the current study, participants

performed an unrelated low-level attentional task as the

scenes were presented. The activation of location-based

representations under these conditions would suggest that

they can be retrieved in a relatively automatic manner.

Here, we test whether location-based representations of

novel environments can be learnt by integrating visual in-

formation across different scenes. Although location-based

representations are predicted bymodels of spatial navigation,

they may also be consistent with various other cognitive

models (see Discussion). As such, we define location-

based representations to be any type of information that

encodes the relationship between different, nonoverlap-

ping views of the same location. We recorded patterns of

BOLD activity as participants passively observed a number

of scenes depicting different views of novel locations.

Subsequently, using an experimental manipulation intro-

duced by Robertson et al. (2016), participants watched

videos showing these scenes as part of a wider panorama.

Half of the videos allowed participants to learn the spatial

relationship between two scenes from the same location

(overlap condition). The remaining videos acted as a

control by presenting scenes from different locations

(no-overlap condition). After the videos, we again recorded

patterns of activity for each of the scenes.Whereas Robertson

et al. (2016) only assessed scene representations after

video presentation, we also scanned before and during

the videos; see Clarke, Pell, Ranganath, and Tyler (2016)

for a similar preexperimental versus postexperimental

design focused on changes in object representations. This

allowed us to track the potential emergence of location-

based representations using RSAs as well as assess neural

activity when these representations were being formed.

Using generalized linear mixed models, we show that

patterns evoked by different scenes become more similar

in scene-selective regions of the PHC and RSC after the

presentation of the video panoramas. This increase in sim-

ilarity was specific to the “overlap” video condition, where

scenes from the same location were presented together,

and was not observed in the no-overlap condition. This

suggests the emergence of location-based representations

in the PHC and RSC. Importantly, whereas this increase in

pattern similarity emerged in the PHC regardless of behav-

ioral performance, the same pattern was only present in

the RSC when participants could remember which scenes

came from the same location. This finding supports

computational models that propose the RSC is critical in

translating viewpoint-independent representations in the

medial temporal lobe into more behaviorally relevant

egocentric representations.

METHODS

Participants

Twenty-eight right-handed participants were recruited

from theUniversity of York, United Kingdom. These partic-

ipants had no prior familiarity with the locations used as

stimuli in the experiment (see below). All participants gave

written informed consent and were reimbursed for their

time. Participants had either normal or corrected-to-

normal vision and reported no history of neurological or
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psychiatric illness. Data from five participants could not be

included in the final sample because of problemswith fMRI

data acquisition (one participant), excess ofmotion-related

artifacts in the imaging data (three participants), and a

failure to respond during one of the in-scanner tasks

(one participant). As such, analyses included 23 partici-

pants (10 men) with a mean age of 21.96 years (SD =

3.22 years). The study was approved by a local research

ethics committee at the University of York.

Stimuli

We generated 12 panoramic images of different urban

locations from the City of Sunderland, and Middlesbrough

town center, United Kingdom (Figure 1; osf.io/cgy97).

These panoramas spanned a 210° field-of-view horizontally

but were restricted in the vertical direction to limit the

appearance of proximal features (<2 m from the camera).

Throughout the experiment, 24 “endpoint images” display-

ing 30° scenes taken from either end of each panorama

were shown (i.e., centered at 0° and 180°; Figure 1A).

These images were shown both inside and outside the

scanner to assess participants’ spatial knowledge of the

depicted locations and for the RSA (see below).

Endpoints were also shown in a series of videos (see

osf.io/cgy97). In overlap videos, Images A1 and A2 (taken

fromopposite ends of the samepanorama) were presented

such that their spatial relationship could be inferred

(Figure 1B). Here, a camera panned from each endpoint

to the center of the panorama showing that A1 and A2

belonged to the same location. In contrast, a no-overlap

video featured endpoints from two unrelated panoramas

(Images B1 and C2). Again, these videos showed an end-

to-center camera pan from each image. However, because

there was no visual overlap between the video segments,

observers could only infer that Endpoints B1 and C2

belonged to different locations. The no-overlap condition

acted as a control condition, ensuring Endpoints B1 and

C2 were seen in a similar video to endpoints in the overlap

condition (A1 and A2), with the same overall exposure and

temporal proximity. To ensure that the occurrence of a

visual overlap was easily detectable, all videos alternated

the end-to-center sweep from each endpoint over two

repetitions.

Pairs of endpoints from the same panorama were

grouped into sets of three. The first pair in each set was

assigned to the overlap video condition (A1 and A2). Two

endpoints from different panoramas were assigned to the

no-overlap video condition (B1 and C2). The remaining

endpoints belonged to an “unseen video” condition as they

were not shown during any video (B2 and C1). These

assignments were counterbalanced across participants

such that each image appeared in all three conditions an

equal number of times. The order of camera pans during

videos (e.g., A1 first vs. A2 first) was also counterbalanced

both within and across participants. Analyses showed the

visual similarity of image endpoints was matched across

experimental conditions as measured by the Gist descrip-

tor (Oliva & Torralba, 2001) and local correlations in lumi-

nance and color information (osf.io/6sr9p/ ). Pilot data

Figure 1. Stimuli used during,

and analyses performed on,

the in-scanner tasks. (A) An

example location panorama

with two endpoint images.

Single endpoints were shown

during the in-scanner target

detection task. As in Robertson

et al. (2016), full panoramas

were never shown as whole

images but were presented

during the in-scanner videos.

(B) Depiction of the two video

conditions: overlap versus

no-overlap videos. Overlap

videos showed camera pans

from each endpoint of a given

panorama (denoted A1 and A2)

to the center of that panorama.

The central overlap allowed

participants to learn a spatially

coherent representation that

included both A1 and A2.

No-overlap videos involved

pans between endpoints from

two different locations (denoted B1 and C2), meaning that there was no visual overlap. (C) Similarity contrast matrices used to model changes in

representational similarity between endpoints (i.e., between A1, A2, B1, B2, C1, and C2). Red squares indicate positively weighted correlations, and

blue squares indicate zero-weighted correlations. From left to right, the matrices account for the representational similarity of endpoints: (1) from

the same location regardless of video condition, (2) that were seen in the same video (including overlap and no-overlap videos), (3) in the unseen

condition specifically, and (4) in the overlap condition specifically. Linear combinations of these matrices, along with their interactions with a session

regressor (pre-videos vs. post-videos), accounted for each RSA effect across all experimental conditions.
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revealed that participants could not reliably identify which

endpoints belonged to the same location without having

seen the videos (osf.io/kgv64/).

Procedure

Before entering the scanner, participants performed a

behavioral task to assess their ability to infer which image

endpoints were from the same location. Once in the scan-

ner, they undertook a functional localizer task to identify

scene-selective regions of the PHC and RSC. They were

then shown each image endpoint multiple times (per-

forming a low-level attentional task) to assess baseline

representational similarity between each image endpoint

(i.e., before learning). During a learning phase, overlap

and no-overlap videos were presented, with participants

instructed to identify whether the endpoints in each video

belonged to the same location or not. After this video

learning phase, each image endpoint was again presented

multiple times to assess postlearning representational

similarity between image endpoints. Finally, outside the

scanner, participants performed the same behavioral task

(as before scanning) to assess the extent to which partic-

ipants had learnt which image endpoints belonged to the

same location (and a further test of associative memory;

see below). A figure illustrating the order and approxi-

mate duration of each experimental task is available at

osf.io/zh8f2/.

Prescanner/Postscanner Tasks

Participants were tested on their ability to identify which

endpoints belonged to the same location both before

and after scanning (both outside the scanner). On each

trial, one endpoint surrounded by a red box was presented

for 3 sec. After this, five other endpoints were displayed

in a random sequence, each shown alongside a number

denoting the order of appearance (i.e., 1–5; Figure 2A;

2 sec per image, 500-msec ISI). One image in the sequence

(the target) was taken from the same panorama as the

cue. The remaining four endpoints (lures) belonged to

panoramas in the same set of stimuli. As such, if Endpoint

B1 was presented as the cue, B2 would be the target, and

A1, A2, C1, and C2 would be lures (i.e., a five-alternative

forced choice, 5-AFC). After the five alternatives had been

shown, participants were prompted to select the target using

a numeric key press (1–5). Across 24 trials, each endpoint

was used as a cue image.

After scanning and the second block of the location iden-

tity task described above, participants were also asked to

identify which images appeared together in the same video.

Note that this is slightly different to the previous task

because participants could have known that Endpoints B1

and C2 appeared in the same video, despite not knowing

which endpoints were from the same location (i.e., B2

and C1, respectively). Using a similar procedure to that

described above, endpoints from either the overlap or

no-overlap video conditions were cued and participants

were asked to select the appropriate endpoint from the

five alternatives in the same set.

In-scanner Tasks

Functional localizer. Before the main experimental

task, participants undertook a functional localizer scan with

the purpose of identifying four scene-selective ROIs—in

particular, the left and right PHC as well as the left and right

RSC. This involved presenting four blocks of scene images

(coasts, mountains, streets, and woodlands) interleaved

with four blocks of face images (male and female). In each

block, 10 unique images were shown in quick succession

with a display time of 700 msec per image and an ISI of

200 msec. Blocks were separated with a 9-sec interblock

interval, and their running order was counterbalanced

across participants. The scene images used here were

different to those in the main experiment, and none was

repeated during the localizer itself. All images were shown

in grayscale andwere presentedwith a visual angle of∼14°.

To ensure localizer images were being attended to, partic-

ipants were tasked with detecting an oddball target that

Figure 2. Behavioral task and

results (A) A schematic illustration

of the pre-video and post-video

behavioral task. One endpoint

was first presented as a cue

(enclosed by red box), followed

by five numbered alternatives.

Participants were then prompted

to select which one of the

alternatives belonged to the

same location as the cue. (B)

Performance on the pre-video

and post-video behavioral tasks

plotted by video condition.

Error bars represent 95%

confidence intervals, and the

dashed line at p = .2 reflects

5-AFC chance level.
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was superimposed onto one of the images in each block.

The target was a small red dot with a 3-pixel radius. When

this was seen, participants were required to respond

with a simple button press as quickly as possible (mean

detection performance: d0 = 3.116, SD = 0.907).

Presentation of endpoint images. Participants were

shown all 24 endpoint images during an event-related

functional imaging task. The task was optimized to mea-

sure multivariate patterns of BOLD activity specific to in-

dividual endpoints and was run both before and after

participants had seen the panoramic videos (Session 1:

pre-videos; Session 2: post-videos). All endpoints were

presented nine times for both the pre-video and post-video

functional run. Images were displayed for 2.5 sec with

an ISI of 2 sec. The order of stimuli in each functional

run was optimized to facilitate the decoding of unique

BOLD patterns across endpoints (optimization algorithm

available at osf.io/eh78w/). No image was presented on

successive trials to avoid large adaptation effects, and

the design included 12 null events in each functional

run (i.e., 10% of all events). Like the functional localizer,

participants were tasked with detecting an oddball target

that was superimposed onto a small proportion of the

images. Here, the target was a group of three small red

dots (3-pixel radius, <0.2°), with each dot drawn at a ran-

dom position on the image. Targets were present on one

of every nine trials such that eight repetitions of each

endpoint image were target free (target trials were not

used to estimate BOLD patterns). As above, participants

were required to respond to these targets with a simple

button press (mean detection performance, d 0, were

3.362 [SD = 0.642, pre-videos] and 3.659 [SD = 0.485,

post-videos]).

Panoramic video task. Participants watched all video

clips from the overlap and no-overlap video conditions

while being scanned. Each video lasted 20 sec and was

followed by a 10-sec rest period. In the first 3 sec of this

rest period, participants were prompted to indicate

whether each video segment depicted scenes from the

same or different locations. Responses were recorded

with a left/right button press. This question was asked

to ensure that participants were attending to the visual

overlap across segments (mean discrimination perfor-

mance: d0 = 3.220, SD = 0.373). All videos were repeated

three times in a pseudorandom order to allow for suffi-

cient learning. Before entering the scanner, participants

were asked to remember which endpoints were seen

together in the same video, even if they appeared in a

no-overlap video. Participants were told that a test after

the scan would assess their knowledge of this.

MRI Acquisition

All functional and structural volumes were acquired on a

3-T Siemens MAGNETOM Prisma scanner equipped with

a 64-channel phased array head coil. T2*-weighted scans

were acquired with EPI, 35 axial slices (approximately 0°

to the AC–PC line; interleaved), and the following param-

eters: repetition time = 2000 msec, echo time = 30 msec,

flip angle = 80°, slice thickness = 3 mm, and in-plane

resolution = 3 × 3 mm. The number of volumes acquired

during (a) the functional localizer, (b) the video task, and

(c) each run of the endpoint presentation task was 75, 363,

and 274, respectively. To allow for T1 equilibrium, the first

three EPI volumes were acquired before the task started

and thendiscarded. Subsequently, a fieldmapwas captured

to allow the correction of geometric distortions caused by

field inhomogeneity (see the MRI Preprocessing section

below). Finally, for purposes of coregistration and image

normalization, a whole-brain T1-weighted structural scan

was acquired with a 1-mm3 resolution using a magnetiza-

tion prepared rapid gradient echo pulse sequence.

MRI Preprocessing

Image preprocessing was performed in SPM12 (www.fil.ion

.ucl.ac.uk/spm). This involved spatially realigning all EPI

volumes to the first image in the time series. At the same

time, images were corrected for field inhomogeneity based

geometric distortions (as well as the interaction between

motion and such distortions) using the Realign and Unwarp

algorithms in SPM (Hutton et al., 2002; Andersson, Hutton,

Ashburner, Turner, & Friston, 2001). For the RSA, multi-

variate BOLD patterns of interest were taken as t statistics

from a first-level general linear model (GLM) of un-

smoothed EPI data in native space. Aside from regressors

of interest, each first-level GLM included a set of nuisance

regressors: six affine motion parameters, their first-order

derivatives, regressors censoring periods of excessive

motion (rotations > 1° and translations > 1 mm), and a

Fourier basis set implementing a 1/128-Hz high-pass

filter. For the analyses of univariate BOLD activations, EPI

data were warped to Montreal Neurological Institute space

with transformation parameters derived from structural

scans (using the DARTEL toolbox; Ashburner, 2007).

Subsequently, the EPI data were spatially smoothed with

an isotropic 8-mm FWHM Gaussian kernel before GLM

analysis (regressors included the same nuisance effects

noted above).

ROIs

We generated four binary masks per participant to repre-

sent each ROI in native space. To do this, a first-level GLM

of the functional localizer datamodeled BOLD responses to

scene and face stimuli presented during the localizer task.

Each ROI was then defined as the conjunction between a

“scene > face” contrast and an anatomical mask of each

region that had been warped to native space (left/right

PHC sourced from Tzourio-Mazoyer et al., 2002; left/right

RSC sourced from Julian, Fedorenko, Webster, & Kanwisher,

2012). Thus, the ROIs were functionally defined but
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constrained to anatomical regions known to be spatially

selective. Normalized group averages of these ROIs are

available at osf.io/gbznp/ and neurovault.org/collections

/4819.

Recent evidence suggests that the RSC is composed of at

least two functionally distinct subregions, both of which

may be scene selective: (1) a retinotopically organized

medial place area in posterior sections of the RSC and (2)

a more anterior region corresponding to BAs 29 and 30

associated with more integrative mnemonic processes

(Silson, Steel, & Baker, 2016). In the current study, we

focus on the functionally defined RSC as a whole and do

not differentiate between these subregions. However,

the functional ROIs that we identified for each participant

principally cover anterior sections of the RSC corre-

sponding to BAs 29 and 30 and show little overlap with

the retinotopic areas identified by Silson et al.

The OPA has also been implicated as a critical scene-

selective region (e.g., Robertson et al., 2016; Marchette

et al., 2015). Recent research suggests that this region

is principally involved in representing environmental

boundaries and navigable paths during visual perception

(Malcolm, Silson, Henry, & Baker, 2018; Bonner & Epstein,

2017; Julian, Ryan, Hamilton, & Epstein, 2016). However,

computational models of spatial navigation do not predict

that the OPA maintains location-based representations that

are viewpoint invariant (Bicanski & Burgess, 2018; Byrne

et al., 2007). In addition, we were only able to reliably

delineate the OPA bilaterally in 6 of the 23 participants in

our sample. As such, we did not focus on this region in

the current study; instead, we restricted our main analyses

and family-wise error (FWE) corrections to the PHC and RSC

bilaterally. Nonetheless, for completeness, we generated an

OPAmask using a normalized group-level contrast and ran

the location-based RSA analyses reported below on this

region separately (statistical outputs available at osf.io

/d8ucj/). No effects of interest were identified in either

the left or right OPA.

RSAs

Our general approach to the RSA involved modeling the

observed similarity between different BOLD patterns as

a linear combination of effects of interest and nuisance

variables. Here, the similarity between BOLD responses

was taken as the correlation of normalized voxel intensi-

ties (t statistics) across all voxels in an ROI. The resulting

correlation coefficients were then Fisher-transformed

before being subjected to statistical analysis. This trans-

form ensures that the sampling distribution of similarity

scores is approximately normal to meet the assumption

of normality for statistical inference. We then entered all

the transformed similarity scores under test from each

participant and stimulus set into a general linear mixed-

effects regression model. Although underused in the

neurosciences (although see Motley et al., 2018), these

models are common in the psychological literature as

they offer a robust method of modeling nonindependent

observations with few statistical assumptions (Baayen,

Davidson, & Bates, 2008). Here, we used mixed-effects

models to predict observed representational similarity

between endpoints with a set of fixed-effects and random-

effects predictors (discussed below).

Importantly, mixed-effects models allow us to include

estimates of pattern similarity across individual items

(endpoints) and participants in the same statistical model.

The fixed-effects predictors in each model specified key

hypotheses of interest. The random effects accounted for

statistical dependencies between related observations at

both the item and participant levels. RSAs of fMRI data typ-

ically either assess patterns across all items (regardless of

condition) or average across items in the same condition,

meaning that important variation within conditions is

ignored. Our modeling approach allows us to examine

changes in representational similarity at the level of both

items and conditions simultaneously while controlling for

statistical dependencies between related observations.

Raw similarity data and mean similarity matrices are

available on the Open Science Framework (osf.io/cgy97).

This page also includes MATLAB functions for estimating

each statistical model as well as the model outputs.

Visual Representations of Specific Endpoints

We first examined whether the passive viewing of end-

point images evoked stimulus-specific visual representa-

tions in each of our four ROIs (left and right PHC and

RSC). Multivariate BOLD responses to the endpoints

were estimated for Session 1 (pre-videos) and Session 2

(post-videos) separately. We then computed the similar-

ity of these responses across sessions by correlating

BOLD patterns in Session 1 with patterns in Session 2.

This resulted in a nonsymmetric, 24 × 24 correlation ma-

trix representing the similarity between all BOLD pat-

terns observed in Session 1 and those observed in

Session 2. The correlation coefficients (n = 576 per par-

ticipant) were then Fisher-transformed and entered as a

dependent variable into a mixed-effects regression model

with random effects for participants and endpoints. The

main predictor of interest was a fixed effect that con-

trasted correlations between the same endpoints (e.g.,

A1–A1, B1–B1; n = 24 per participant) with correlations

between different endpoints (e.g., A1–A2, A1–B1; n =

552 per participant) across the two sessions.

As well as running this analysis in each ROI, we per-

formed a complementary searchlight analysis to detect

endpoint-specific representations in other brain regions.

Here, local pattern similarity was computed for each brain

voxel using spherical searchlights with a 3-voxel radius

(the mean number of voxels per searchlight was 105.56;

searchlights were not masked by gray-/white-matter tissue

probability maps). Fisher-transformed correlations for

same versus different endpoints were contrasted at the first

level before running a group-level random-effects analysis.
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Location-based Memory Representations

We next tested our principal hypothesis—whether repre-

sentations of Endpoints A1 and A2 became more similar to

one another as a result of watching the overlap videos—in

each ROI. Using the multivariate BOLD responses from

Sessions 1 and 2, we computed the neural similarity

between endpoints that were presented within the same

image set and the same session. This resulted in eight sym-

metric, 6 × 6 correlationmatrices for each participant—one

per set in Session 1 and one per set in Session 2. All the

correlation coefficients from the lower triangle of these

matrices (n = 15) were then Fisher-transformed and

entered as a dependent variable into a mixed-effects regres-

sion model (see Figure 1C). As such, the model included

120 correlation coefficients per participant (2 sessions ×

4 sets × 15 similarity scores).

One fixed-effects predictor modeled unspecific changes

in similarity between sessions (hereafter referred to the

session effect) by coding whether similarity scores were

recorded in Session 1 or Session 2. Similarly, a further three

fixed-effects predictors modeled similarity differences

attributable to (1) endpoints in the overlap condition

(i.e., A1–A2), (2) endpoints shown in the same video

(A1–A2, B1–C2), and (3) endpoints that were not shown

in any video (C1–B2)—shown in Figure 1C. Together,

these predictors and their interactions constituted a 2 ×

3 factorial structure (Session [1 vs. 2] × Condition [overlap

vs. no-overlap vs. unseen]) and so were tested with a

Session × Condition F test. Nonetheless, our principal

hypothesis holds that there will be a specific interaction

between the Session and Overlap predictors (referred to

as the Session × Overlap effect), which we report along-

side the F test. Themodel also included a predictor indicat-

ing whether endpoints were from the same location

(A1–A2, B1–B2, C1–C2), thereby allowing us to estimate

changes in similarity between them. This ensured that

variance loading onto the Session × Overlap effect was

properly attributable to the learning of spatially coherent

representations rather than some combination of other

factors (e.g., same location + seen in the same video).

Note that this model term quantifies similarity differences

between overlap endpoints and all other endpoints that

“change” between Session 1 and Session 2. A positive effect

may indicate either an increase in similarity in the overlap

condition or a decrease across all other similarity scores

regardless of condition (or both). As such, the model is

structured to account for any systematic change in the

baseline level of similarity across sessions (see Results).

Furthermore, the Session × Overlap term is only sensitive

to a learning effect that causes relative shifts in similarity

scores specific to the overlap condition and cannot be

attributed to any other combination of effects.

Finally, the model included a behavioral predictor spec-

ifying whether participants were able to match Endpoints

A1–A2 in the postscanner task (mean centered with three

levels: 0, 1, or 2 correct responses per pair). This examined

whether changes in representational similarity were

dependent on participants’ ability to identify that end-

points from the overlap condition belonged to the same

location after scanning (i.e., a three-way interaction:

Session × Overlap × Behavior). Random effects in the

model accounted for statistical dependencies across

image sets, sessions, and participants.

To complement the ROI analyses, we ran a searchlight

analysis that tested for RSA effects across the whole brain

(searchlight radius: 3 voxels). Here, first-level contrast esti-

mates compared the Fisher-transformed correlations

between overlap endpoints (i.e., A1–A2) and all other

endpoint correlations (e.g., B1–B2, B1–C1). A group-level

analysis then compared these similarity contrasts between

sessions to test the Session × Overlap interaction. To test

for a Session ×Overlap × Behavior interaction, the group-

level model also included a behavioral predictor specifying

a participant’s average performance in matching A1 to A2

during the postscanner task (mean centered). Note that

this searchlight analysis is not able to control for the poten-

tial contributions of other important factors (i.e., same

location, same video) that our mixed-effects approach

explicitly controls. It is complementary, but secondary, to

the ROI analyses.

Statistical Validation and Inference

To ensure that each mixed-effects regression model was

not unduly influenced by outlying data points, we systemat-

ically excluded observations that produced unexpectedly

large residuals more than 2.5 SDs above or below model

estimates. This was conducted regardless of condition

and so did not bias the analyses to finding an effect (if no

effect were present). Furthermore, a highly similar pattern

of results was seen when not excluding outliers, supporting

the robustness of our findings (see osf.io/dzy3p). Following

these exclusions, Kolmogorov–Smirnov tests indicated that

residuals were normally distributed across all the linear

mixed-effects models. In addition, visual inspection of scat-

terplots showing residual versus predicted scores indicated

no evidence of heteroscedasticity or nonlinearity. Where

effects size estimates are contrasted across different

models, we report the result as an unequal variance t test

with the degrees of freedom being approximated using

the Welch–Satterthwaite equation (Welch, 1947).

All p values are reported as two-tailed statistics. FWE cor-

rections related to the multiple comparisons across our

four ROIs are made for each a priori hypothesis (denoted

pFWE). In addition, we report whole-brain effects from

searchlight andmass univariate analyses when they survive

FWE-corrected thresholds ( pFWE< .05) at the cluster level

(cluster-defining threshold: p < .001 uncorrected). All

other p values are noted at uncorrected levels. As well as

reporting null hypothesis significance tests, we present

the results of complimentary Bayesian analyses. Unlike

the frequentist statistics, these indicate whether the null

is statistically preferred over the alternative hypothesis.
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As such, we use the Bayesian analyses to determine

whether there is evidence for the null when frequentist

tests are nonsignificant. For each t test, a Bayes factor in

favor of the null hypothesis (BF01) was computed with a

Cauchy prior centered at zero (i.e., no effect) and a scale

parameter (r) of
ffiffiffiffiffiffiffi

0:5
p

(see Gelman, Jakulin, Pittau, & Su,

2008). Bayes factors greater than 3 are taken as evidence in

favor of the null hypothesis, whereas those less than 1/3 are

taken as evidence in favor of the alternative (Kass& Raftery,

1995). Finally, alongside the inferential statistics, we report

Cohen’s d effect sizes for each t test. When effects are

tested in the context of a mixed-effects model, estimates

of Cohen’s d are computed from the fixed effects only

and exclude variance attributed to random effects.

RESULTS

Behavioral Performance

We first analyzed behavioral responses to the prescanner

and postscanner tasks to determine (a) whether partici-

pants were able to identify which endpoints belonged to

the same location and (b) whether performance in-

creased as a result of watching the overlap videos. A gen-

eralized linear mixed-effects analysis modeled correct

versus incorrect matches between cue and target end-

points as a function of Session (pre-videos vs. post-

videos) and Experimental Condition (overlap, no overlap,

and unseen). As such, the model constituted a 2 × 3 fac-

torial design with random intercepts and slopes for both

participants and endpoints.

The results, displayed in Figure 2B, revealed significant

main effects of Session, F(1, 1098) = 47.302, p< .001, and

Condition, F(2, 1098) = 6.500, p = .002, as well as an in-

teraction between them, F(2, 1098) = 11.231, p < .001.

The interaction indicated that performance was at chance

level across all conditions before the videos (min: p =

.249, BF01 = 2.531, d = −0.241) but substantially in-

creased in the overlap video condition after the videos,

t(1098) = 6.867, p < .001, BF01 < 0.001, d = 1.432

(post-video > pre-video). This increase was not seen in

the no-overlap condition, t(1098) = 1.761, p = .079,

BF01 = 1.212, d = 0.3672; however, a significant increase

was seen in the unseen condition, t(1098) = 3.159, p =

.002, BF01 = 0.105, d= 0.659. The performance increases

in the control conditions (only significant in the unseen

condition) were likely the result of participants being able

to exclude overlap endpoints as nontarget alternatives in

the 5-AFC test (i.e., a recall-to-reject strategy, disregarding

A1 and A2 when cued with either B1, B2, C1, or C2).

Consistent with this, Session 2 performance in the no-

overlap andunseen conditionswas not significantly different

fromchance level in a 3-AFC test (0.33, as opposed to 0.2 in a

5-AFC test; no-overlap: t(1098) =−1.494, p= .135, BF01 =

1.729, d = −0.312; unseen: t(1098) = −0.054, p = .957,

BF01 = 4.567, d = −0.011). Nonetheless, performance in

the overlap condition did significantly differ from this

adjusted chance level, t(1098) = 4.514, p < .001, BF01
= 0.006, d = 0.941.

Participants’ increased ability to match endpoints in

the overlap condition was not characteristic of a general

tendency to match endpoints that appeared in the same

video (i.e., selecting B1 when cued with C2). This was ev-

ident because matches between no-overlap endpoints

were not more likely in Session 2 compared with

Session 1, t(366) = 0.646, p = .519, BF01 = 3.785, d =

0.135. In contrast, performance increases in the overlap

condition (i.e., the post-video > pre-video effect report-

ed above) were significantly larger than this general effect

of matching all endpoints that appeared in the same vid-

eo, t(949.20) = 5.027, p < .001, BF01 = 0.002, d = 1.048.

In addition, participants were unable to explicitly match

no-overlap endpoints shown in the same video during

the final behavioral task (comparison to 0.2 chance level:

t(334) = −0.467, p = .641, BF01 = 4.141, d = −0.097).

In summary, participants rapidly learnt which scenes

were from the same location; however, this was only

seen in the overlap condition (and not in the no-overlap

condition).

Visual Representations of Specific Endpoints

First, we report the results of the mixed-effects model

testing for representations of specific endpoints that re-

mained relatively unchanged across sessions (i.e., pre-

videos to post-videos). This revealed that correlations

between the same endpoints (e.g., A1–A1, B1–B1) were

greater than correlations between different endpoints

(e.g., A1–A2, A1–B1) in both the right PHC, t(13224) =

5.229, pFWE < .001, BF01 = 0.001, d = 1.090, and the left

PHC, t(13200) = 6.351, pFWE < .001, BF01 < 0.001, d =

1.324. This effect was not significant in either the right

or left RSC, t(13210) = 1.185, pFWE = .945, BF01 = 2.454,

d = 0.247, and t(13202) = −0.231, pFWE = .999, BF01 =

4.463, d = −0.048, respectively.

The searchlight analysis that tested for consistent rep-

resentations of specific endpoints across the whole brain

revealed representations in one large cluster that peaked

in the right occipital lobe (area V1; t(22) = 11.50, pFWE <

.001, k = 5202, BF01 < 0.001, d = 2.398) and extended

into the areas V2, V3, and V4 and the fusiform gyri bilat-

erally. Three smaller clusters were also detected in the

right precuneus, t(22) = 4.64, pFWE = .011, k = 44,

BF01 = 0.005, d = 0.968, right inferior parietal lobule,

t(22) = 4.40, pFWE = .028, k = 37, BF01 = 0.008, d =

0.918, and right RSC, t(22) = 4.32, pFWE = .025, k =

38, BF01 = 0.008, d = 0.901. The latter effect overlapped

considerably with the right RSC ROI identified for each

participant. However, the effect size estimated in the

ROI analysis was weaker than the peak searchlight effect,

principally because it was variable across endpoints and

as such largely accounted for by random effects in the

model. Unthresholded statistical maps of these effects

are available at neurovault.org/collections/4819.
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In summary, we find evidence that the PHC (bilaterally),

the right RSC, and a number of early visual areas main-

tained consistent representations of specific endpoints

across scanning sessions. Note that whether a region codes

such representations across scanning sessions is indepen-

dent of whether it may learn location-based memory rep-

resentations in the second session; these effects are, in

principle, dissociable.

As part of a supplementary analysis, we also tested for

visual representations of specific scenes that remained

stable within (but not necessarily across) scanning sessions

(see osf.io/exzba/). To quantify the BOLD similarity of spe-

cific scenes within each session, we required two indepen-

dent pattern representations per session. Thus, across

both sessions, we estimated voxel patters derived from

four distinct periods: (a) first half of Session 1 (pre-videos),

(b) second half of Session 1 (pre-videos), (c) first half of

Session 2 (post-videos), and (d) second half of Session 2

(post-videos). As a result, each of these voxel representa-

tions was only derived from four endpoint presentations.

Nonetheless, when similarity scores were modeled in a

mixed-effects regression, each ROI showed greater levels

of similarity between representations of the same endpoint

relative to the similarity between different endpoints

(weakest effect in the left PHC: t(26492) = 2.211, p =

.027, BF01 = 0.606, d = 0.461). Furthermore, this analysis

revealed that representations of the same endpoints be-

came more similar to one another after the videos in the

right RSC and left PHC (weakest effect: t(26492) = 2.598,

p = .009, BF01 = 0.308, d = 0.542). This latter effect was

insensitive in the right PHC and left RSC (weakest effect:

t(26492) = 1.671, p = .095, BF01 = 1.375, d = 0.348).

Location-based Memory Representations

Effects in the Right PHC

Next, we report the results of the mixed-effects model

examining whether pattern similarity between different

endpoints changed across sessions as a result of watching

the videos. This revealed a significant Session × Condition

interaction in the right PHC, F(2, 2739)= 6.827, pFWE= .004

(average similarity matrices shown in Figure 3; condition

estimates and confidence intervals plotted in Figure 4A).

Post hoc tests showed that this effect was driven by a

difference between pre-video to post-video sessions for

endpoints in the overlap condition, t(2739) = 2.923, p =

.004, BF01 = 0.167, d = 0.610. This difference was not ob-

served in any other condition (no overlap: t(2739) = 0.756,

p = .450, BF01 = 3.533, d = 0.156; unseen: t(2739) =

−0.970, p = .332, BF01 = 3.001, d = −0.202).

Furthermore, a significant Session × Overlap interaction

highlighted that the similarity differences in the overlap

condition were attributable to the video manipulation

alone rather than some combination of other factors, t

(2739) = 2.549, pFWE = .043, BF01 = 0.337, d= 0.532.

Importantly, before the videos were shown, pairs of

endpoints from the same location (i.e., A1–A2, B1–B2,

and C1–C2) were found to evoke neural patterns that

were more similar to each other than pairs of endpoints

from different locations in the right PHC (e.g., A1–B2,

B1–C2), t(2739) = 2.498, pFWE = .050, BF01 = 0.369,

d = 0.521 (see osf.io/uxhs9 for a plot of this effect). This

“same-location” effect suggests that, even before the spa-

tial relationship between scenes were known, the right

PHC encoded visual properties of those scenes that gen-

eralized across different views. These data demonstrate

that, despite controlling for similarity across stimuli using

both the GIST descriptor and a pixel-wise correlation,

and despite participants being unable to infer which end-

points were from the same location before watching the

videos, we still found evidence for a “same-location” ef-

fect in the right PHC. This underlies the critical role of

estimating pattern similarity before learning to identify

significant increases in similarity post-video relative to

pre-video (cf. Robertson et al., 2016). Note that this

“same-location” effect is only seen when collapsing across

Figure 3. Mean representational

similarity between endpoints in

the right PHC, averaged across all

participants and image sets. (A)

Similarity between endpoints

before the panoramic videos

were shown (i.e., in Session 1).

(B) Similarity between endpoints

after the panoramic videos were

shown (i.e., in Session 2). (C)

Change in similarity that followed

the panoramic videos (i.e.,

Session 2 minus Session 1). Color

bars indicate both raw and

baseline-adjusted Fisher z

statistics (above and below the

color bar, respectively). Adjusted

statistics account for trivial differences in similarity across scanning sessions caused bymotion and scanner drift. This is achieved by subtracting out a baseline

level of similarity between nonassociated endpoints (i.e., endpoints that were not from the same location, video, or experimental condition). Note that the

baseline-adjusted statistics are shown for illustrative purposes only; each RSA was conducted on the raw Fisher z statistics alone. Crosshatchings along the

diagonal elements represent perfect correlations between identical BOLD responses and so were not included in the analyses.
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all endpoint pairs and is not evident in the Session 1

Overlap condition alone (osf.io/uxhs9).

Effects in the Right RSC

The Session × Condition and Session × Overlap interac-

tions were not significant in any other ROI (Fs < 2.775,

pFWEs > .250; similarity estimates for the right RSC plotted

in Figure 4C). However, we saw a significant Session ×

Overlap × Behavior interaction in the right RSC, t(2728) =

2.886, pFWE = .016, BF01 = 0.179, d = 0.602 (Figure 4D).

This suggests that the RSC only encoded viewpoint-

independent representations when the spatial relation-

ships between endpoints could be retrieved during the

postscanner test. No other ROIs showed a significant

Session × Overlap × Behavior interaction (largest effect:

t = 0.050, pFWE = 1, BF01 = 4.567, d = −0.010).

Differentiating the PHC and RSC

We next assessed whether there was evidence for disso-

ciable roles of the right PHC and RSC, given that both

represented location-based information but were differ-

ently associated with behavioral performance. Specifically,

we assessed whether location-based representations in

the RSC were significantly more associated with partici-

pants’ ability to match endpoints from the same location

compared to representations in the PHC. This would sug-

gest that the RSC plays a greater role in guiding behavioral

performance than the PHC. We therefore tested whether

the Session × Overlap × Behavior (three-way) effect was

larger in the RSC than the PHC. A comparison of effect sizes

did show evidence for such a dissociation, t(5311.9) =

3.931, p < .001, BF01 = 0.021, d = 0.820.

This implies that the right PHC might have exhibited

above-baseline pattern similarity between A1 and A2

endpoints even when those endpoints were not subse-

quently remembered as belonging to the same location.

We directly tested this by rerunning the RSA having ex-

cluded A1–A2 pairs that were consistently remembered

as belonging to the same location (i.e., having two correct

responses during the postscanner test). Despite these

exclusions, pattern similarity differences in the overlap

condition remained significant, t(1188) = 2.364, p = .018,

Figure 4. Results of the RSAs in

the right PHC (rPHC; top row)

and right RSC (rRSC; bottom

row). (A) rPHC similarity

estimates of scenes in the pre-

video and post-video sessions,

plotted by experimental

condition. There was a significant

change in similarity estimates

between sessions in the overlap

condition, t(2739) = 2.923, p =

.004,BF01=0.167,d=0.610, that

was not present in the no-overlap

and unseen conditions, t(2739)=

0.756, p = .450, BF01 = 3.533,

d= 0.158, and t(2739) =−0.970,

p = .332, BF01 = 3.001, d =

−0.202, respectively. (B) In the

rPHC, pre-video to post-video

changes in representational

similarity for the overlap

condition plotted against the

number of correct matches

between overlap endpoints in the

post-video behavioral task. This

association was not significant,

t(2739) = −0.892, p = .373,

BF01=3.199, d=−0.186. (C and

D) Same as A and B but for the

rRSC ROI. The rRSC showed no

overall similarity changes in any

of the experimental conditions

(t(2728) = 0.870, t(2728) =

1.419, and t(2728) = −1.059 for

the overlap, no-overlap, and

unseen conditions, respectively;

all ps > .156, BF01s > 1.895, ds < 0.296). Nonetheless, there was a significant association between behavioral performance and similarity changes in the

overlap condition, t(2728) = 2.886, p= .004, BF01=0.179, d=0.602. All bars plot baseline-corrected similarity estimates having subtracted out correlations

between nonassociated endpoints (e.g., A1–B1, A1–B2). As such, the zero line in A and C denotes the average similarity of these nonassociated endpoints in

each session. Error bars indicate 95% confidence intervals.
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BF01 = 0.528, d = 0.493, and were not seen in any other

condition (no-overlap: t(1188) = 0.324, p = .746, BF01 =

4.359, d = 0.068; unseen: t(1188) = −0.585, p = .559,

BF01 = 3.915, d = −0.122; see Figure 4B that plots the

size of the Session × Overlap effect in the right PHC at

each level of behavioral performance. In contrast, the right

RSC only showed above-baseline pattern similarity

when the endpoints were consistently remembered as

belonging to the same location. Rerunning the RSA on

these remembered pairs alone revealed similarity increases

between consistently remembered endpoints in the

overlap condition, t(1538) = 2.449, p = .014, BF01 =

0.402, d = 0.511 (see Figure 4D), that were not seen in

any other condition (no-overlap: t(1538) = 1.107, p =

.269, BF01 = 2.651, d = 0.230; unseen: t(1538) = −1.316,

p = .188, BF01 = 2.134, d = −0.274).

In summary, we saw an increase in pattern similarity in

the right PHC and right RSC between different scenes of

the same location after they had beenpresented in an over-

lap video. Furthermore, we observed a dissociation

between the PHC and the RSC. Whereas the PHC showed

increased pattern similarity regardless of performance on

the postscanner test, the RSC only showed increased pat-

tern similarity when participants were able to subsequently

identify those scenes as belonging to the same location.

Across-Session Decreases in Pattern Similarity

Our mixed-effects regression models were conducted on

the raw Fisher z scores computed from each pair of

endpoints. This ensured that effects were not driven by

complex datamanipulation or scaling, and so the data were

not adjusted to account for across-session shifts in the

similarity of all multivariate patterns (see Methods).

Interestingly however, we did observe that Fisher z scores

decreased from pre-video to post-video across all pairs of

endpoints regardless of condition, in each ROI (see figure

at osf.io/2y3pm). This is reflected by a notable session

effect in each mixed-effects model indicating reduced

levels of similarity between nonassociated endpoints (i.e.,

endpoints not belonging to the same location, video, or

experimental condition; minimum effect size: t(2736) =

−1.529, p = .126, BF01 = 1.655, d = 0.319). As the size

of this session effect was relatively large, the Session ×

Overlap and Session × Overlap × Behavior interactions

involved less of a decrease in similarity scores relative to

all other conditions (see Figure 3).

Given that similarity scores decrease across all endpoint

pairs, it is unlikely that the Session effect was a direct result

of our video manipulation (i.e., learning-induced neural

differentiation). A mass differentiation on this scale would

imply implausibly large amounts of information gain as the

uniqueness (or entropy) of all neural representations

would have to increase. Instead, it is more likely that the

reduced levels of similarity were caused by systematically

higher levels of noise in the second session. Most signifi-

cantly, increases in temperature caused by radio frequency

absorption during scanning will shift the thermal equilib-

rium that governs how many hydrogen nuclei are aligned

to the external magnetic field (B0) and can therefore con-

tribute to the MR signal (see osf.io/8kns6/). In this case, we

would expect to see similar shifts in the level of similarity

across the entire brain. To test this, we measured pattern

similarity in the genu of the corpus callosum, a region that

should exhibit negligible levels of BOLD activity. On the ba-

sis of a seed voxel at Montreal Neurological Institute of [0,

26, 6],multivariate patternswere taken from the 122white-

matter voxels closest to that seed in native space. The size

of this ROI was chosen to reflect the average size of our a

priori ROIs. A mixed-effects regressionmodel of these data

did indeed show reduced levels of neural similarity from

Session 1 to Session 2, t(2739) = −2.167, p = .030, BF01 =

0.651, d = −0.452 (similar in magnitude to the session

effect in all other regions; see osf.io/p9qzx/).

In summary, we conclude that the overall decrease in

pattern similarity across sessions was not driven by any

meaningful change in neural representations and, once con-

trolled for, reveals a significant increase in pattern similarity

in both the right PHC and RSC in the overlap condition,

indicative of viewpoint-independent representations.

Laterality of RSA Effects

The above analyses identified location-based representa-

tions in both right-hemisphere ROIs but no similar effects

in the left hemisphere. Given this, we explored whether

each RSA effect was significantly stronger in the right versus

left hemisphere. Comparing the Session × Overlap effects

in the PHC did indeed reveal a significantly stronger effect in

the right hemisphere, t(5390.5) = 3.798, p < .001, BF01 =

0.028, d = 0.792. Similarly, comparing the Session ×

Overlap×Behavior interactions in the RSC revealed a signif-

icantly stronger effect in the right hemisphere, t(5427.4) =

2.708, p = .007, BF01 = 0.251, d = 0.565. Note that

Robertson et al. (2016) collapsed their analyses across hemi-

sphere, potentially masking laterality effects. These results

are consistent with observations and theoretical models that

the right hemisphere may preferentially process spatial in-

formation in humans as a consequence of predominantly

left-lateralized language function (Shulman et al., 2010;

Vallortigara & Rogers, 2005; Smith & Milner, 1981).

Searchlight RSA

The searchlight analysis that tested for a Session×Overlap

interaction across the whole brain revealed one small

cluster in the right inferior occipital gyrus (Area V4), t(21) =

4.78, pFWE= .010, k=38,BF01<0.003, d=0.997. However,

when BOLD similarity in the cluster was modeled with the

full mixed-effects analysis described above, the Session ×

Overlap effect was found to not be significant, t(2740) =

1.734, p = .083 (uncorrected), BF01 = 1.259, d = 0.361.

Model parameter estimates suggested that the searchlight

effect was driven by below-baseline BOLD similarity in the
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overlap condition before the videos were shown (95% CI

[−0.116, −0.021]), a result that is not consistent with any

effect of interest. No other areas showed a significant

Session × Overlap or Session × Overlap × Behavior inter-

action in the searchlight analysis. Nonetheless, both of the

previously reported effects in the PHC and RSC are evi-

dent in the searchlight analysis at subthreshold levels,

t(21) > 2, d>0.417 (see neurovault.org/collections/4819/).

Univariate Responses to Endpoints

We investigated whether each of our ROIs produced uni-

variate BOLD activations consistent with a Session ×

Condition interaction or a three-way interaction with

behavior. No such effects were found, all Fs < 1.140,

ps > .288. Furthermore, a mass univariate analysis testing

for these effects at the whole-brain level yielded no sig-

nificant activations.

Univariate Responses to Videos

Finally, we investigated whether univariate BOLD re-

sponses to the video clips differed between the overlap

and no-overlap conditions or as a function of scene mem-

ory in the postscanner test. A group-level model was spec-

ified with predictors for (1) video type (overlap vs.

no-overlap), (2) post-video performance in matching A1

and A2 endpoints, and (3) the interaction between video

type and behavioral performance. This revealed two clus-

ters that produced significantly greater BOLD responses

during overlap versus no-overlap videos (Figure 5, hot

colors). The largest of these peaked in the medial pFC

and extended into the anterior cingulate, left frontal pole,

and left middle frontal gyrus, t(21)= 5.53, pFWE< .001, k=

600, BF01<0.001, d=1.153. The second cluster peaked in

the left supramarginal gyrus, t(21)= 5.40, pFWE= .004, k=

185, BF01 = 0.001, d = 1.126, adjacent to a smaller, sub-

threshold effect in the left angular gyrus.

No effects for the reverse contrast (i.e., no overlap >

overlap) reached statistical significance at the whole-brain

level (subthreshold effects shown in Figure 5, cool colors).

However, a small volume correction for the PHC and RSC

bilaterally revealed two clusters with a significant no-

overlap > overlap effect. These were found in the right

RSC, t(21) = −4.84, pFWE = .032, k = 26, BF01 = 0.003,

d = −1.001, and right PHC, t(21) = −4.77, pFWE = .026,

k= 30, BF01 = 0.003, d=−0.995, extending into the fusi-

form gyrus. Subthreshold effects for the no-overlap>over-

lap contrast were also evident in the left RSC and PHC.

These results were mirrored by a linear mixed-effects

model contrasting overlap and no-overlap video responses

averaged across each ROI in native space. Here, both the

right PHC and right RSC exhibited greater BOLD activity

in the no-overlap video condition relative to the overlap

condition, t(42) = −3.638, pFWE = .003, BF01 = 0.039,

d = −0.759, and t(42) = −3.499, pFWE = .004, BF01 =

0.052, d = −0.730, respectively. Effects in the left PHC

and left RSC were below threshold and considerably

weaker, t(42) = −1.828, pFWE = .299, BF01 = 1.101, d =

−0.381, and t(42) = −2.212, pFWE = .130, BF01 = 0.605,

d=−0.461, respectively. Neither the whole-brain analysis

nor the mixed-effects model identified BOLD responses

to the videos that significantly correlated with memory

performance in the postscanner test.

In summary, we saw greater activity in the medial pFC

during the overlap videos relative to the no-overlap videos.

In contrast, the PHC andRSC showed greater activity during

the no-overlap relative to overlap videos. In other words,

themedial posterior regions that showed increased pattern

similarity after presentation of the overlap video showed

decreased activity while participants were watching the

videos.

DISCUSSION

We show that scene-selective brain regions rapidly learn

location-based representations of novel environments by

integrating information across different viewpoints. Once

participants observed the spatial relationship between

two viewpoints from a given location, BOLD pattern sim-

ilarity between viewpoints increased in the right PHC and

RSC, implying the emergence of location-based represen-

tations. In the right PHC, these representations appeared

regardless of whether participants could identify which

scenes were from the same location. In contrast, repre-

sentations in the right RSC only emerged for scene pairs

that participants could subsequently identify as being

from the same location.

The results provide further evidence that the PHC and

RSC support spatial representations that are not solely

driven by visual features in a scene (Robertson et al., 2016;

Marchette et al., 2015; Vass & Epstein, 2013; cf. Watson,

Hartley, & Andrews, 2017). Using a similar panoramic video

manipulation, Robertson et al. (2016) suggested that the

RSC and OPA maintain viewpoint-independent representa-

tions but found a more general associative effect in the

PHC. Our results further identify the PHC in this process

Figure 5. Univariate BOLD effects showing differences in activity

between the two video conditions (thresholded at t(21) > 3, p < .004

uncorrected, BF01 < 0.143, d > 0.626). Hot colors indicate areas

showing a greater response to overlap versus no-overlap videos. Cool

colors indicate areas showing a greater response to no-overlap versus

overlap videos. An unthresholded statistical map of this contrast is

available at neurovault.org/collections/4819.
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and highlight that RSC representations are more tightly

linked to behavior. Note that the OPA was not one of our

a priori ROIs, and we therefore make no claims in relation

to this region supporting location-based representations

(see ROIs section for further details). Our results also place

constraints on models that describe how location-based

representations are used. Unlike Robertson et al., we show

that viewpoint-independent representations are evoked

during passive viewing, in the absence of any explicit

memory task (although we cannot rule out the possibility

that participants engaged in active imagery, as explicitly re-

quired in Robertson et al.; see below).

Furthermore, we show that the learning of location-

based representations can take place rapidly (in a single

scanning session), with few exposures to the spatial layout

of a location. Consistent with this, the firing fields of place

cells have been shown to emerge rapidly in the rodent

hippocampus (Monaco et al., 2014). Novel locations,

where rats engaged in head-scanning behavior (i.e., explo-

ration), were associated with place fields the next time the

rat visited the same location. Our results provide evidence

that location-based representations form after only three

learning exposures to the videos. Although wewere specif-

ically interested in the emergence of viewpoint-independent

spatial representations, a similar approach could be used to

track the emergence of viewpoint-independent represen-

tations of other stimulus categories (e.g., objects or faces;

see Clarke et al., 2016, for a similar approach), opening

the door to understanding how such representations are

formed, or modulated, across the visual system.

We also found that the right RSC only exhibited location-

based representations when participants were able to iden-

tify which scenes belonged to that location in a postscanner

test (PHC representations emerged regardless of behav-

ioral performance on the postscanner test). This implies

that the ability to identify differing scenes as from the same

location is perhaps more dependent on representations

in the RSC than PHC. Computational models hold that

medial posterior and temporal regions (including the

PHC and RSC) perform distinct but complementary func-

tions in support of spatial navigation and imagery

(Bicanski & Burgess, 2018; Byrne et al., 2007). Specifically,

the PHC is thought to represent allocentric information

related to the spatial geometry of the environment.

Conversely, the posterior parietal cortex supports egocen-

tric representations that allow the organism to actively

navigate. The RSC transforms allocentric representations

in the MTL into egocentric representations in the parietal

cortex (and vice versa). Critically, the models predict that

spatial navigation and planning is carried out in an egocen-

tric reference frame. Thus, the RSC is critical to the transla-

tion of allocentric to more behaviorally relevant, egocentric

information.

Our task required participants to match distinct scenes

from the same location. This likely requires transformation

from the presented egocentric viewpoint to an allocentric

representation (egocentric-to-allocentric; i.e., A1 to the

allocentric representation A*). In turn, the allocentric

representation may allow for the retrieval of the associ-

ated viewpoint from the same location (allocentric-to-

egocentric; i.e., A* to A2). Under this assumption, the

RSC is likely to bemore tightly coupled to behavior relative

to the PHC, as shown in the present data. This is because

allocentric representations in the PHC only require the ini-

tial egocentric-to-allocentric transformation to be retrieved

(A1–A*). If only the egocentric-to-allocentric transforma-

tion occurs, participants will not be able to perform the

task. As such, it is possible to see evidence for allocentric

PHC representations in the absence of accurate behavior.

For allocentric representations in the RSC to be retrieved,

both the initial egocentric-to-allocentric (A1–A*) and sub-

sequent allocentric-to-egocentric (A*–A2), transformation

is required. If both transformations occur, then partici-

pants should be able to perform the task accurately.

Thus, location-based representations in the RSC may only

be seen in the presence of accurate behavior and may

reflect the transformation between reference frames rather

than reflecting an allocentric representation per se.

A related possibility is that, during the passive viewing of

specific scenes, participants engaged in active imagery of

the associated scenes, leading to subsequent improve-

ments in behavior for scenes from the same location.

However, we note that the task did not explicitly require

memory retrieval; participants responded to oddball tar-

gets leaving little time for active imagery (see Linde-

Domingo, Treder, Kerrén, & Wimber, 2019). In addition,

participants would only be able to engage in active imagery

on the overlap trials alone. Despite this, we did not ob-

serve any univariate BOLD effects indicative of additional

processing on these trials. As such, the activation of these

representations does not appear to depend on any task-

specific memory demands. It is possible that the retrieval

of PHC representations (i.e., egocentric-to-allocentric

mapping) occurs relatively automatically, consistent with

the proposal that allocentric representations in the MTL

are automatically updated during self-motion in an envi-

ronment (Bicanski & Burgess, 2018; Byrne et al., 2007).

However, the retrieval of associated egocentric represen-

tations (i.e., allocentric-to-egocentric mapping) may not

occur automatically during passive viewing, consistent

with the observation that viewpoint-independent repre-

sentations in the RSC are abolished when participants en-

gage in a task that prevents them from active retrieval of

spatial information (Marchette et al., 2015). Importantly,

both of the above accounts are consistent with the pro-

posal that the RSC plays a critical role in mapping between

allocentric and egocentric representations.

Although consistent with models of allocentric process-

ing, it is possible that the location-based representations

we observed reflect other forms of associative learning

(e.g., O’Reilly & Rudy, 2001). On this view, Scene A1 may

become bound to A2 via a simple associative representa-

tion such that, after seeing the videos, A2 is covertly

retrieved when presented with A1 (leading to increased
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pattern similarity). However, contrary to our findings, this

simple account may also predict increased similarity in the

no-overlap condition, where B1 and C2 are shown in the

same video—particularly given that models of associative

learning often rely on prediction error signals to account

for incidental encoding (Den Ouden, Friston, Daw,

McIntosh, & Stephan, 2009), which could be strongest in

the no-overlap condition. A second possibility is that the

overlapping content in the overlap videos (relative to the

no-overlap videos) increases the probability of a direct

association between A1 and A2. Indeed, it is the overlap-

ping content that likely drives the increase in pattern

similarity between overlap endpoints. Our current study

is not able to discern whether the resulting “location-

based” representations are associative, or truly allocentric,

in nature.

In terms of associative learning, a related possibility is

that the overlapping content supports amore complex tran-

sitive representation (e.g., A1–AX and A2–AXwhere X is the

overlapping scene in the center of the panorama). On this

account, presentation of A1 cues the retrieval of AX and

subsequently A2 (similar in nature to AB–AC inference par-

adigms; see Joensen, Gaskell, & Horner, 2020; Schlichting,

Mumford, & Preston, 2015; Horner & Burgess, 2014;

Schlichting, Zeithamova, & Preston, 2014; Zeithamova,

Dominick, & Preston, 2012). Representations that encode

these transitive relationships between scenes are possible

and may support spatial navigation but are not directly pre-

dicted by models of spatial memory (Bicanski & Burgess,

2018; Byrne et al., 2007). Furthermore, the hippocampus

and medial PFC (mPFC) are more typically associated with

transitive inference (Schlichting et al., 2014, 2015;

Zeithamova et al., 2012), yet we only found evidence of

location-based representations in scene-selective regions.

In addition, Robertson et al. have demonstrated that asso-

ciative memory for scenes belonging to different locations

is poor (comparable to their no-overlap condition) even

when those scenes are presented in a “morphed”panorama

such that they are associated with a common context. As

such, our data are suggestive of processes that go beyond

associative or transitive learning and provide support for

models of allocentric processing, although we cannot rule

out an “associative” explanation.

Finally, it is noteworthy that certain nonspatial models

may be able to account for our findings. In particular,

models of directed attention may predict increased levels

of pattern similarity in the overlap condition if the over-

lap videos alerted participants to visual features that are

shared across scenes (e.g., Luo, Roads, & Love, 2020;Mack,

Preston, & Love, 2013). Further work will be needed

to fully establish the true nature of the location-based

representations that we report here. To fully match all

visual features across scenes in each condition, one pos-

sibility would be to experimentally manipulate the central

section of continuous panoramas so that no coherent

spatial representation can be learned. Furthermore, to fully

distinguish between allocentric and transitive (A1–AX–A2)

representations, an imaging study incorporating the pano-

ramic morph manipulation used by Robertson et al. may

be used.

Although we directly link to computational models of

spatial navigation and imagery, as well as rodent studies

on spatial navigation, it is important to note that we have

assessed pattern similarity during visual presentation of

static scenes. This is a common approach in human

fMRI (Bonner & Epstein, 2017; Robertson et al., 2016;

Marchette et al., 2015; Marchette et al., 2014), as it allows

one to control for many potential experimental con-

founds that might be present in a more ecologically valid

experimental setting (e.g., using virtual reality; Julian

et al., 2016; Doeller, Barry, & Burgess, 2010). However,

this approach has the issue of being further removed

from real-world spatial navigation. Interestingly, we saw

evidence for increases in pattern similarity despite using

a low-level attentional task, speaking to the potential

automaticity of retrieving more location-based represen-

tations. Across the literature, there are numerous exam-

ples of evidence for spatial learning in humans and

rodents during goal-directed navigation (Aoki, Igata,

Ikegaya, & Sasaki, 2019; Howard et al., 2014), non-goal-

directed navigation (e.g., O’Keefe & Dostrovsky, 1971;

Tolman, 1948), mental imagery (e.g., Bellmund, Deuker,

Schröder, & Doeller, 2016; Horner, Bisby, Zotow, Bush,

& Burgess, 2016), and viewing of static images (e.g.,

Robertson et al., 2016; Marchette et al., 2015; Vass &

Epstein, 2013). Our study adds to this growing literature

suggesting that these representations can be assessed

across diverse experimental environments with multiple

methodologies.

The PHC has been proposed to represent several com-

plementary spatial representations, including geometric

information regarding one’s location in relation to bear-

ings and distances to environmental features (e.g.,

boundaries; Park, Brady, Greene, & Oliva, 2011). The

representations that we observed in PHC may reflect en-

riched spatial representations relating specific scenes to

environmental features outside the current field of view.

Also consistent with our results, the PHC may represent

spatial contexts more broadly (Epstein & Vass, 2014). The

experimental manipulation used here could be modified

to learn novel locations in the same spatial context,

potentially dissociating between the above accounts. A

further proposal is that viewpoint-independent represen-

tations in the PHC reflect prominent landmarks that are

visible across viewpoints (Marchette et al., 2015). Although

this proposal yields similar predictions to above, it is less

able to account for our finding of shared representations

of views that did not contain any of the same landmarks.

Our PHC results are somewhat inconsistent with those

of Robertson et al. (2016). Whereas our similarity increases

were specific to the overlap condition, Robertson et al. saw

effects in both their overlap and no-overlap conditions.

One possibility is that our results reflect a Type II error,

in that we failed to find an effect in the no-overlap
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condition when one is present. A second possibility is that

Robertson et al. either (1) found an effect in the no-overlap

condition when one is not present (i.e., a Type I error) or

(2) failed to find a similarity effect in the overlap condition

that was significantly larger than in the no-overlap condi-

tion (a Type II error). Notably, the “overlap > no-overlap”

effect size that we observed in the PHC is considerably

larger than the same effect reported by Robertson et al.

(0.610 relative to −0.062) and more in line with their RSC

and OPA effects (0.470 and 0.415, respectively). Thus, it

seems plausible that the disagreement stems from a Type

I error in Robertson et al. Despite this, without further

information, it is not possible to draw clear conclusions.

However, one important caveat is that we also saw

evidence for a “same-location” effect in the PHC before

learning had occurred. This effect was seen despite con-

trolling for visual similarity across stimuli using the GIST

descriptor, accounting for pixel-wise correlations in lumi-

nance and color content, and despite participants being

unable to identify which endpoints were from the same lo-

cation before the videos. It is therefore possible that the

PHC effects in Robertson et al. could have been driven

by a similar effect not dependent on learning. This under-

lines the importance of including a prelearning versus post-

learning estimate of pattern similarity, to definitively rule

out trivial effects driven by preexisting similarities between

images that are difficult to control for.

RSC representationsmay reflect the retrieval of spatial or

conceptual information associated with the environment

(Marchette et al., 2015). Further evidence suggests that

the RSC contains multiple viewpoint-dependent and

viewpoint-independent (Vass & Epstein, 2013), as well as

local and global (Jacob et al., 2017; Marchette et al., 2014),

spatial representations. This multitude of representations

fits with the proposed role of the RSC as a transformation

circuit, mapping between allocentric and egocentric repre-

sentations. The heterogeneity of representations, relative

to the PHC, may also be a further reason why we did not

see clear evidence for location-based representations with-

out taking behavior into account. Our RSC results are con-

sistent with those of Robertson et al. in that they saw a clear

effect after more extensive learning across 2 days (where

behavioral performance was likely higher than in our study).

However, we extend these findings to show that these effects

are specifically associated with the locations that each

individual participant has learned (i.e., a within-participant

correlation that is consistent across participants). Regardless

of the exact nature of such representations, our results

provide clear evidence that we can track their emergence

in both the PHC and RSC.

Although more explorative, we also examined activity

during learning of new spatial relationships (i.e., video

presentation). BOLD activations in medial posterior brain

regions (including but not limited to the PHC and RSC

ROIs) were greater for no-overlap videos compared to

overlap videos. This effect perhaps reflects greater fMRI

adaptation during the overlap videos because they

presented the central viewpoint of the panorama more

frequently than no-overlap videos (Figure 1). However,

it is interesting that the same cortical regions that

showed increased pattern similarity after presentation

of the overlap video showed decreased activity when par-

ticipants were watching the videos. This underlines the

complex relationship between univariate activity during

learning and resultant changes in patterns of activity after

learning. More theoretically driven research would be

needed to provide a robust explanation for this finding.

In addition, we found that mPFC showed a greater

BOLD response in the overlap than no-overlap condition.

This may reflect a mnemonic integration process that

guides the learning of viewpoint-independent represen-

tations. Similar effects in mPFC have been observed in

tasks that require integrating overlapping memories to

support inference and generalization (Milivojevic, Vicente-

Grabovetsky, & Doeller, 2015; Schlichting et al., 2015).

Indeed, mPFC has been implicated in detecting new

information that is congruent with previously learnt

materials so that it can be integrated into a generalized

representation (van Kesteren, Ruiter, Fernández, &

Henson, 2012). Our results are broadly in line with this

proposal, where mPFC may be detecting the presence of

overlapping spatial information during the overlap videos,

resulting in the integration of previously learnt represen-

tations into more coherent viewpoint-independent repre-

sentations in posterior medial regions. Despite this, our

results do not exclude the possibility that mPFC activa-

tions reflect disinhibition from medial–posterior inputs

(which showed reduced activity) or attentional differences

related to the behavioral task.

We have shown that brain regions in the scene network,

specifically the right PHC and RSC, rapidly learn represen-

tations of novel environments by integrating information

across different viewpoints. They appear to be relatively

viewpoint-independent in that they become active regard-

less of which part of an environment is in the current field

of view. We show that the PHC and RSC have potentially

dissociable roles, consistent with models that propose

the RSC plays a role in translating viewpoint-independent

representations into a behaviorally relevant egocentric

reference frame. Finally, our experimental approach allows

for tracking the emergence of viewpoint-independent

representations across the visual system.
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