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Abstract: Quantum networks are essential for realising distributed quantum computation and

quantum communication. Entangled photons are a key resource, with applications such as

quantum key distribution, quantum relays, and quantum repeaters. All components integrated in

a quantum network must be synchronised and therefore comply with a certain clock frequency.

In quantum key distribution, the most mature technology, clock rates have reached and exceeded

1GHz. Here we show the Ąrst electrically pulsed sub-Poissonian entangled photon source

compatible with existing Ąber networks operating at this clock rate. The entangled LED is based

on InAs/InP quantum dots emitting in the main telecom window, with a multi-photon probability

of less than 10% per emission cycle and a maximum entanglement Ądelity of 89%. We use

this device to demonstrate GHz clocked distribution of entangled qubits over an installed Ąber

network between two points 4.6km apart.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further

distribution of this work must maintain attribution to the author(s) and the published article’s title, journal

citation, and DOI.

1. Introduction

For implementation of various kinds of advanced quantum network schemes [1Ű4], entanglement

must be distributed between nodes [5Ű8]. The most widely used sources are currently based on

spontaneous non-linear processes [9,10], though the efficiency of these sources is intrinsically

limited if multi-photon emission is to be minimised. This limit does not apply to entangled photon

sources with sub-Poissonian statistics, such as semiconductor quantum dots (QD)s [11,12], with

the prospect of deterministic entangled pair generation [13].

For an entangled photon source to be embedded in a quantum network, it must further conform

to the basic requirements of operating clock rate and wavelength. State-of-the art quantum

key distribution (QKD) systems operate at clock frequencies of 1GHz and above [14,15], with

photons in the telecom C-band most suitable for distribution over standard optical Ąbers.

Epitaxially grown semiconductor QDs can be readily incorporated into PIN diode structures,

enabling the fabrication of light sources using standard semiconductor processing techniques

[11,16]. As QDs embedded within diodes can be electrically excited [17], it is possible to create

entangled photon sources that can be conveniently operated similar to other standard light sources,
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such as telecom laser diodes. InAs/InP QDs emit in the lowest-loss silica Ąber window [18],

which makes them prime candidates for transmission over standard Ąber networks.

Entangled LED (ELED) telecom C-band sources have been demonstrated with DC excitation

[19]. Pulsed single [16,20,21] and entangled [11,17,22Ű25] photon sources based on semicon-

ductor QDs have been developed but are either at short wavelengths, and therefore incompatible

with existing Ąber networks, or only operate at repetition rates too slow for current quantum

network applications. Entanglement distribution experiments over installed networks have used

low repetition rates [6Ű8] while GHz clock rates, necessary for synchronisation with high clock

rate QKD systems, have only been demonstrated with nonlinear sources over long Ąber in a

laboratory [26,27]. In this work, we show the distribution of entangled qubits from a 1GHz

driven sub-Poissonian source over an installed standard telecom network.

2. GHz clocked single photon source

The fabrication of ELED devices used in this work was developed to be simple, with only two etch

steps and two metal depositions. An image of a device is shown in Fig. 1(a). This design allows

for fast electrical operation at GHz frequencies, with dimensions close to the limit imposed by

the size of a bond ball as can be seen in Fig. 1(a). The ELED shows good electrical performance

as a diode, with the resistance reaching 50Ω beyond the turn-on voltage. The wafer structure,

described in Supplement 1, is designed for QD emission in the telecom C-band. The emission

spectrum shown in Fig. 1(b) comes from a QD that is located within a 5µm connected pillar, as

can be seen in Fig. 1(a), and so can be readily relocated. The device was mounted onto the centre

of a radio-frequency compatible FR4 packaging with conductive paint before wire bonding to a

Au layer on one end of 50Ω impedance matched tracks, ending with a low-proĄle micro-coaxial

connector as illustrated in the inset of Fig. 1(b).

Fig. 1. A quantum dot LED for 1GHz pulsed electrical excitation. (a) A false colour

scanning electron microscope image of a device; an oval mesa with connected pillars,

electrically isolated from the surrounding wafer. (b) An electroluminescence (EL) spectrum

of a quantum dot showing the X and XX emission lines. The inset shows an illustration of

the radio frequency compatible packaging; the ELED is wire bonded to impedance matched

tracks (p-type and n-type bond are shown in yellow and purple respectively) which Ąnish at

a low-proĄle micro-coaxial connector.

In QDs, single photons are emitted via the radiative recombination of conĄned electron-hole

(e-h) pairs [28]. Entangled photon pairs are emitted via the biexciton cascade [11] where a QD

initialised in the doubly excited biexciton (XX) state decays to the singly excited exciton (X) state

via emission of the Ąrst photon. This state subsequently decays via emission of a second photon,

leaving the QD in the ground state. Due to conservation of angular momentum, the two emitted

photons are maximally entangled in their polarization.

https://doi.org/10.6084/m9.figshare.13172930
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To assess the sub-Poissonian photon emission from the ELED, we measure the second order

autocorrelation function (g(2)) of X photons as shown in Fig. 2(a). This measurement requires

isolation of the X spectral line as in Fig. 1(b). Since the QD emits at telecom wavelengths,

a compact spectral wavelength Ąltering unit can be used that is based on an optical add-drop

multiplexer as shown in Fig. 2(b) (FWHM <0.25nm, 1.31dB loss), a common component in

classical telecommunication technology.

Fig. 2. Measurement of 1 GHz pulsed single photon emission. (a) Experimental setup for

measuring the second order autocorrelation (g(2)). Light from the ELED passes through a

Ąber-based spectral Ąlter unit followed by a Ąber 50:50 beam splitter (BS), with each output

detected using superconducting nanowire single photon detectors and a time correlated

single photon counter (TCSPC). (b) A diagram of the Ąlter unit, with a circulator followed

by a Ąber bragg grating which reĆects the X photons to the Ąber output. (c) Time resolved

coincidences of 1GHz clocked X photons for 6 consecutive emission cycles (72ps time

bins) as a function of detection time with respect to the clock. Time bins with no photon

coincidences are black. (d) A histogram of normalised coincidences with 1ns bins for 21

relative time delays.

The ELED was electrically driven with ∼130ps FWHM pulses with a high of 1.5V and a low

of 0.3V; the arrival times of photons at each detector were recorded with respect to the 1GHz

clock of these pulses. Photon correlations acquired over 90 minutes can be seen in Fig. 2(c). The

1ns squares along the bottom-left to top-right diagonal contain coincidences of photons emitted

within the same excitation cycle. These are strongly reduced compared to the rest of the grid,

corresponding to an excellent suppression of multi-photon emission within the same excitation

cycle. Coincidences in the 1ns squares adjacent to the bottom-left to top-right diagonal are also

reduced, as the cascade is not fully reinitialised each cycle by this electrical driving condition.

Coincidences in Fig. 2(c) are also suppressed in a grid pattern with spacing of 1ns. This

pattern occurs due to the electrical excitation pulse at the start of each 1ns cycle, when the QD is

reinitialised. During this reinitialisation period, the population in the X level is depleted due to

excitation to higher energy levels such as the XX. The 1ns squares containing coincidences of
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photons emitted in different excitation cycles appear to have an almost Ćat distribution. This is

due to the long natural lifetime of the X state of 1.9ns and the dynamics involved in populating

the X state via decay from the XX state, which has a lifetime of 0.5ns.

Photon coincidences in each 1ns square were then normalised using coincidences in cycles with

completely uncorrelated detection events. Fig. 2(d) shows that the g(2) for X photons emitted in

the same 1ns cycle is 0.097±0.002 without application of any temporal post-selection. This is far

below the classical limit, proving strongly sub-Poissonian emission. The g(2)(0) is limited by the

non-resonant excitation scheme used here, likely due to interactions with the charge environment.

3. GHz clocked entanglement

As entangled photons are critical for quantum network applications, we now show the generation

of 1GHz clocked entangled photon pairs from our ELED. The device was driven similarly

to before, using pulses with a high of 1.5V and a low of 0.5V. The XX and X photons were

separated with a spectral Ąlter and each were detected with a polarization analyser comprising

of an electronic polarisation controller (EPC) and a polarising beam splitter (PBS) followed by

superconducting nanowire single photon detectors (SNSPD)s as in Fig. 3(a). When detecting

photons in a polarization basis PQ, P polarized XX photons were measured at detector 1 in

Fig. 3(a), with X photons of P and Q polarizations measured at detectors 2 and 3 respectively.

As only one output of the XX PBS was sent to a detector, only half of all possible photon

coincidences were recorded. Photon arrival times for each detector with respect to the 1GHz

clock signal divided by 64 were recorded with a time correlated single photon counter (TCSPC),

with photon correlations and entanglement Ądelity evaluated in postprocessing.

Photon pair correlations in the horizontal-vertical (HV) basis covering three consecutive

excitation cycles can be seen in Fig. 3(b). Within a 1ns cycle both co (HH) and cross (HV)

-polarized photon correlations are suppressed for time bins corresponding to the arrival of an

X photon before a XX photon, due to the cascaded emission of the two photons of a pair. For

time bins corresponding to the arrival of a XX photon before an X photon, only correlations

for co-polarized photons are observed, as expected for the maximally entangled Bell φ+ state.

Importantly, correlations do not extend beyond each 1ns excitation cycle. The cascade can be

seen to decay to the uncorrelated level within 1 excitation cycle (Supplement 1, Fig.S3), verifying

a clean reinitialisation of photon pair emission at a 1GHz rate.

The resulting Ądelity to the maximally entangled Bell φ+ state, calculated as explained in

Supplement 1, is shown in Fig. 3(c). For most of the grid in Fig. 3(c), the entanglement Ądelity is

∼0.25, corresponding to completely random polarization correlations. For XX and X photons

from the same 1ns cycle, the entanglement Ądelity rises above the classical limit of 0.5 for X

photons arriving after XX photons, before decaying with oscillations due to the Ąne structure

splitting (FSS) of the QD of 6.0µeV [29]. These oscillations are caused by a quantum beat in the

superposition bases, as can be seen in Supplement 1, Fig.S1.

Each vertical column of time bins in Fig. 3(c) contains photon coincidences with the same

relative XX-X time delay, but different arrival times within the 1ns emission cycles. One can

see that the entanglement Ądelity drops for time bins at the start and end of the 1ns cycles due

to reinitialisation of the emission (∼130ps). Therefore, to give an idea of the highest possible

value, XX and X photon arrival times were additionally gated to 0.864ns around the center of

1ns cycles (shown as a white dashed box in Fig. 3(c)). The average of each column is plotted in

Fig. 3(d), where one can again observe the time dependent oscillation of the Ądelity due to the

Ąnite Ąne structure splitting of the QD. The resulting maximum Ądelity to the Bell φ+ state is

0.89±0.02 with comparable correlation contrasts in the three principal polarisation bases (see

Supplement 1 for further information). However, this value corresponds to a bin size of 72ps,

which is not compatible with post-selection free detection schemes.

https://doi.org/10.6084/m9.figshare.13172930
https://doi.org/10.6084/m9.figshare.13172930
https://doi.org/10.6084/m9.figshare.13172930
https://doi.org/10.6084/m9.figshare.13172930
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Fig. 3. Measurement of entanglement. (a) The experimental setup with a free-space spectral

Ąlter separating XX and X photons. Electronic polarization controllers (EPC)s followed by

polarizing beam splitters (PBS)s set the detection polarization basis, with time correlated

single photon counters (TCSPC)s recording photon arrivals at superconducting nanowire

single photon detectors. (b) Photon correlations of horizontally (H) and vertically (V)

polarized XX and X photons, with co- and cross-polarized detection (left and right panels

respectively) as a function of XX and X delay with respect to the 1GHz clock (72ps time

bins). (c) The Ądelity to the maximally entangled Bell φ+ state with the same XX and X

photon time bins as (b) but rotated by 135◦. Photon arrival times gated to the central 0.864ns

of each 1ns are shown by the dashed white square. A gate of 0.168ns is shown by the dashed

black square. (d) The Ądelity to the maximally entangled Bell φ+ state as a function of

relative delays between XX and X photons (72ps time bins). The horizontal orange line

shows the classical limit of the entanglement Ądelity.
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Detectors used in state-of-the-art QKD systems operating at 1GHz clock rates have typical

detection gate widths of <170ps [14,30]. To assess the performance of the pulsed ELED with

these non-research grade detectors, we position a single 168ps integration window to give

maximum entanglement Ądelity, shown as a black dashed box in Fig. 3(c). This results in a

Ądelity of 0.86±0.03, in the regime compatible with error correction in quantum key distribution

applications [31]. The drop in Ądelity when increasing the time window size is within the errors,

showing that the QD FSS is not limiting the Ądelity achievable with typical gated detectors.

Analysing the X autocorrelation data from Fig. 2 in a similar fashion gives a g(2) of 0.04±0.01.

However, only 3.4% of the detected photon pairs originating from the same excitation cycle

arrive within this 168ps time window. For future compatibility of deterministic GHz clocked

entangled photon pair sources with gated detectors for post-selection-free operation, high source

efficiencies are crucial. In addition, XX and X lifetimes similar to the detector gate width are

necessary to increase the number of photon pairs arriving within the active gate window of the

detectors. This could be achieved via Purcell enhancement, which reduces XX and X lifetimes,

for example with micropillar designs [32] or circular bragg gratings [13,33].

Given the GHz clock rate, an overall efficiency of the optical system including detectors of

approximately 0.6% (see Supplement 1), and average XX and X photon rates at each detector of

52000 and 83000 counts per second, we estimate an intrinsic efficiency of around 2% for the ELED

to generate a photon per excitation pulse. Efficiencies are currently low for non-resonantly excited

telecommunication wavelength QDs, which are still undergoing signiĄcant development and are

not as well established as short-wavelength InAs/GaAs dots. Telecommunication wavelength QDs

are larger than their short-wavelength counterparts, making them more susceptible to Ćuctuations

in the surrounding charge environment. This typically results in the presence of multiple charged

states with radiative and non-radiative decay paths. Techniques to enhance emission from the

neutral XX and X states rather than charged complexes may increase the photon pair efficiency

for ELEDs in the future [34]. Perhaps counter-intuitively, truncating the cascade by reinitialising

the QD at a high clock rate does not intrinsically limit the photon generation rates; we have

recently shown that photon generation rates can surpass those achievable with DC driving for

some pulsed regimes [25].

4. Entanglement distribution

To demonstrate network compatibility of the pulsed entangled photon pair source we distributed

entanglement over 4.6km between the Toshiba Cambridge Research Laboratory (CRL) and the

Physics Department of the University of Cambridge as shown in Fig. 4, using installed network

Ąber. The source was operated at CRL where X photons were detected, and XX photons were

sent to a deployed detection system over 15km of installed Ąber with 6dB loss at 1550nm.

The electrical 1GHz clock signal used to drive the ELED was down-sampled to 15.6MHz and

converted to an optical signal at 1570nm and multiplexed with 1Gbit/s classical communication

data traffic at 1310nm. The communication channel was required for remote control of the

detection system and data acquisition, both classical signals were transmitted over a separate

installed Ąber. At the other end, both classical signals were demultiplexed, and the clock signal

was converted back to an electrical signal to be used as the synchronisation reference in the

deployed detection system.

In both locations, photon arrival times in two detector channels were recorded with respect

to the reference clock with TCSPCs similar to the previously discussed measurements in a

laboratory. Photon arrival times were measured in the three principal detection bases in sets of

7 minutes. Polarization drifts occurring over the network Ąber due to changing environmental

conditions were compensated for before each measurement using a similar stabilisation system

as in [35]. Photon correlations were evaluated in postprocessing.

https://doi.org/10.6084/m9.figshare.13172930
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Fig. 4. Experimental setup for distribution of 1GHz clocked entangled photon pairs across

the city of Cambridge. The entangled photon pairs were generated from an ELED at

the Toshiba Cambridge Research Laboratory, with the X photons detected locally using

detectors 1 and 2 (SNSPDs) and the XX photons detected at the Physics Department of the

University of Cambridge with detectors 3 and 4 (APDs) in a deployed detection system. The

detection polarization basis was set by EPCs followed by PBSs, with TCSPCs recording

photon arrivals at detectors. When measuring photons in an arbitrary polarization basis

PQ, detectors 1 and 3 measured P-polarized X and XX photons respectively and detectors

2 and 4 measured Q-polarized X and XX photons respectively. A polarization recovery

system compensated for drifts occurring over the installed Ąber. Classical communication

for remote control of system components was multiplexed with the reference clock signal

from a small form-factor pluggable transceiver (SFP) over a second Ąber.
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Entangled photon pairs were distributed between East and West Cambridge for 14 consecutive

hours of operation. Figures 5(a) and (b) shows results plotted in a similar way to Fig. 3 but for

distribution of entanglement rather than a measurement in a laboratory. The maximum Ądelity to

the Bell φ+ state, analysed on a 72ps grid with the reinitialisation period discarded as for the

laboratory measurement, is 0.79±0.01. Using the timing characteristics of GHz clocked detectors

as indicated in Fig. 5(a), the maximum entanglement Ądelity is 0.76±0.01.

Fig. 5. Distribution of entangled photon pairs over 15km of installed Ąber. (a) The Ądelity

to the maximally entangled Bell φ+ state for 14 hours of data acquisition as a function of XX

and X delay with respect to the 1GHz clock (72ps time bins) with gating applied similarly

to in Fig. 3(c). (b) Fidelity as a function of relative delays between XX and X photons

(72ps time bins) . The horizontal orange line shows the classical limit of the entanglement

Ądelity. (c) The maximum entanglement Ądelity from (a) for 2 hour sections throughout the

experiment. The horizontal orange lines show the classical limit of the entanglement Ądelity

(solid) and a Ądelity of 0.8 (dashed).

The 10% reduction in the Ądelity when transmitting XX photons over the installed Ąber

is attributed to an increased ratio of background events to XX photon signal at the deployed

detectors from <2% to >10%. We further observe a larger drop in polarization correlation

contrast for measured superposition bases (diagonal/antidiagonal and right-/left-hand circular,

see Supplement 1). This most likely results from a larger uncertainty in calibrating the detection

bases at the deployed detection system (see Supplement 1) which is again caused by a drop in the

signal-to-background ratio rather than the performance of the ELED itself.

Figure 5(c) shows the evolution of the maximum entanglement Ądelity for sets of 2 hours

of data. It remains around 0.79 for the entire 14 hour experiment, demonstrating the excellent

https://doi.org/10.6084/m9.figshare.13172930
https://doi.org/10.6084/m9.figshare.13172930
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stability of the 1GHz clocked ELED as a source for distributed entangled photon pairs across a

real-world Ąber network.

5. Conclusion

We have shown an electrically driven 1GHz clocked telecom ELED with strong single photon

characteristic, resulting in a two-photon probability of less than 10% without any temporal

post-selection. Using the ELED as a source of 1GHz clocked entangled photons yields a

maximum entanglement Ądelity of 89% in a 72ps post selection window. In addition, the device

is suitable for operation using standard actively gated GHz clocked detector modules as are

used in current QKD systems, with no additional software-based post-selection. However, for

real-world applications in quantum communication relying on high entangled photon pair rates,

an enhancement of the source brightness is required and the number of photons arriving within

the active gate window of such detectors must be signiĄcantly increased via the reduction of XX

and X lifetimes.

Operation of the device in the lowest-loss telecom window enabled us for the Ąrst time to

demonstrate the distribution of 1GHz clocked entangled qubits from a sub-Poissonian source

on a city scale. The achieved entanglement Ądelity of 79% proves reliability for electrically

pulsed semiconductor quantum light sources connected to installed Ąber networks. Pulsed

operation with a GHz clock frequency opens up the possibility for seamless integration with

other quantum network hardware such as QKD systems and efficient time multiplexing with

classical communication signals.

A further developed device design with integration of nano-photonic structures [13,32,33,36]

to combine high collection efficiency and Purcell enhancement has the potential to provide a

viable future workhorse for quantum communication systems, with intrinsic security and no

fundamental efficiency limitation as is the case for sources based on weak coherent laser pulses,

spontaneous parametric down-conversion or four-wave mixing.

Funding

Marie Curie (721394); China Scholarship Council; Cambridge Trust; Innovate UK; Engineering

and Physical Sciences Research Council.

Acknowledgements

The authors acknowledge partial Ąnancial support from the Engineering and Physical Sciences

Research Council and the UKŠs innovation agency, Innovate UK. Ginny Shooter and Matthew

Anderson acknowledge support from Industrial CASE awards funded by the EPSRC and Toshiba

Europe Limited. Zi-Heng Xiang acknowledges support from the Cambridge Trust and China

Scholarship Council (CSC). Jonathan R.A. Müller acknowledges support from the European

UnionŠs Horizon 2020 research and innovation programme under the Marie Skşodowska-Curie

grant agreement No 721394.

Disclosures

The authors declare no conĆicts of interest.

See Supplement 1 for supporting content.

References
1. A. K. Ekert, ŞQuantum cryptography based on bellŠs theorem,Ť Phys. Rev. Lett. 67(6), 661Ű663 (1991).

https://doi.org/10.6084/m9.figshare.13172930
https://doi.org/10.1103/PhysRevLett.67.661


Research Article Vol. 28, No. 24 / 23 November 2020 / Optics Express 36847

2. H. J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, ŞQuantum repeaters: the role of imperfect local operations in quantum

communication,Ť Phys. Rev. Lett. 81(26), 5932Ű5935 (1998).

3. B. C. Jacobs, T. B. Pittman, and J. D. Franson, ŞQuantum relays and noise suppression using linear optics,Ť Phys.

Rev. A 66(5), 052307 (2002).

4. H. de Riedmatten, I. Marcikic, W. Tittel, H. Zbinden, D. Collins, and N. Gisin, ŞLong distance quantum teleportation

in a quantum relay conĄguration,Ť Phys. Rev. Lett. 92(4), 047904 (2004).

5. P. Komar, E. M. Kessler, M. Bishof, L. Jiang, A. S. Sørensen, J. Ye, and M. D. Lukin, ŞA quantum network of clocks,Ť

Nat. Phys. 10(8), 582Ű587 (2014).

6. Q. C. Sun, Y. L. Mao, S. J. Chen, W. Zhang, Y. F. Jiang, Y. B. Zhang, W. J. Zhang, S. Miki, T. Yamashita, H. Terai,

T.-Y. Chen, L.-X. You, X.-F. Chen, Z. Wang, J.-Y. Fan, Q. Zhang, and J.-W. Pan, ŞQuantum teleportation with

independent sources and prior entanglement distribution over a network,Ť Nat. Photonics 10(10), 671Ű675 (2016).

7. R. Valivarthi, M. L. G. Puigibert, Q. Zhou, G. H. Aguilar, V. B. Verma, F. Marsili, M. D. Shaw, S. W. Nam, D. Oblak,

and W. Tittel, ŞQuantum teleportation across a metropolitan Ąbre network,Ť Nat. Photonics 10(10), 676Ű680 (2016).

8. S. Wengerowsky, S. K. Joshi, F. Steinlechner, J. R. Zichi, S. M. Dobrovolskiy, R. van der Molen, J. W. N. Los, V.

Zwiller, M. A. M. Versteegh, A. Mura, D. Calonico, M. Inguscio, H. Hübel, L. Bo, T. Scheidl, A. Zeilinger, A.

Xuereb, and R. Ursin, ŞEntanglement distribution over a 96-km-long submarine optical Ąber,Ť Proc. Natl. Acad. Sci.

116(14), 6684Ű6688 (2019).

9. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, ŞNew high-intensity source of

polarization-entangled photon pairs,Ť Phys. Rev. Lett. 75(24), 4337Ű4341 (1995).

10. X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, ŞOptical-Ąber source of polarization-entangled photons in the 1550

nm telecom band,Ť Phys. Rev. Lett. 94(5), 053601 (2005).

11. O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, ŞRegulated and entangled photons from a single quantum dot,Ť

Phys. Rev. Lett. 84(11), 2513Ű2516 (2000).

12. P. Michler, A. Imamoğlu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, ŞQuantum correlation among

photons from a single quantum dot at room temperature,Ť Nature 406(6799), 968Ű970 (2000).

13. J. Liu, R. Su, Y. Wei, B. Yao, S. F. C. da Silva, Y. Yu, J. Iles-Smith, K. Srinivasan, A. Rastelli, J. Li, and X. Wang, ŞA

solid-state source of strongly entangled photon pairs with high brightness and indistinguishability,Ť Nat. Nanotechnol.

14(6), 586Ű593 (2019).

14. Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, ŞGigahertz quantum key distribution with

ingaas avalanche photodiodes,Ť Appl. Phys. Lett. 92(20), 201104 (2008).

15. A. Boaron, G. Boso, D. Rusca, C. Vulliez, C. Autebert, M. Caloz, M. Perrenoud, G. Gras, F. Bussières, M. J. Li, D.

Nolan, A. Martin, and H. Zbinden, ŞSecure quantum key distribution over 421 km of optical Ąber,Ť Phys. Rev. Lett.

121(19), 190502 (2018).

16. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, ŞA quantum dot

single-photon turnstile device,Ť Science 290(5500), 2282Ű2285 (2000).

17. Z. L. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and

M. Pepper, ŞElectrically driven single-photon source,Ť Science 295(5552), 102Ű105 (2002).

18. J. Skiba-Szymanska, R. M. Stevenson, C. Varnava, M. Felle, J. Huwer, T. Müller, A. J. Bennett, J. P. Lee, I. Farrer, A.

B. Krysa, P. Spencer, L. E. Goff, D. A. Ritchie, J. Heffernan, and A. J. Shields, ŞUniversal growth scheme for quantum

dots with low Ąne-structure splitting at various emission wavelengths,Ť Phys. Rev. Appl. 8(1), 014013 (2017).

19. T. Müller, J. Skiba-Szymanska, A. B. Krysa, J. Huwer, M. Felle, M. Anderson, R. M. Stevenson, J. Heffernan, D. A.

Ritchie, and A. J. Shields, ŞA quantum light-emitting diode for the standard telecom window around 1,550 nm,Ť Nat.

Commun. 9(1), 862 (2018).

20. C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, ŞTriggered single photons from a quantum dot,Ť Phys.

Rev. Lett. 86(8), 1502Ű1505 (2001).

21. F. Hargart, C. A. Kessler, T. Schwarzbäck, E. Koroknay, S. Weidenfeld, M. Jetter, and P. Michler, ŞElectrically driven

quantum dot single-photon source at 2 ghz excitation repetition rate with ultra-low emission time jitter,Ť Appl. Phys.

Lett. 102(1), 011126 (2013).

22. R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, ŞA semiconductor source of

triggered entangled photon pairs,Ť Nature 439(7073), 179Ű182 (2006).

23. J. Zhang, J. S. Wildmann, F. Ding, R. Trotta, Y. Huo, E. Zallo, D. Huber, A. Rastelli, and O. G. Schmidt, ŞHigh yield

and ultrafast sources of electrically triggered entangled-photon pairs based on strain-tunable quantum dots,Ť Nat.

Commun. 6(1), 10067 (2015).

24. C. Varnava, R. M. Stevenson, J. Nilsson, J. Skiba-Szymanska, B. Dzurňák, M. Lucamarini, R. V. Penty, I. Farrer, D.

A. Ritchie, and A. J. Shields, ŞAn entangled-led-driven quantum relay over 1 km,Ť npj Quantum Inf. 2(1), 16006

(2016).

25. J. R. A. Müller, R. M. Stevenson, J. Skiba-Szymanska, G. Shooter, J. Huwer, I. Farrer, D. A. Ritchie, and A. J.

Shields, ŞActive reset of a radiative cascade for entangled-photon generation beyond the continuous-driving limit,Ť

Phys. Rev. Research (to be published).

26. T. Honjo, H. Takesue, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, and K. Inoue, ŞLong-distance distribution

of time-bin entangled photon pairs over 100 km using frequency up-conversion detectors,Ť Opt. Express 15(21),

13957Ű13964 (2007).

https://doi.org/10.1103/PhysRevLett.81.5932
https://doi.org/10.1103/PhysRevA.66.052307
https://doi.org/10.1103/PhysRevA.66.052307
https://doi.org/10.1103/PhysRevLett.92.047904
https://doi.org/10.1038/nphys3000
https://doi.org/10.1038/nphoton.2016.179
https://doi.org/10.1038/nphoton.2016.180
https://doi.org/10.1073/pnas.1818752116
https://doi.org/10.1103/PhysRevLett.75.4337
https://doi.org/10.1103/PhysRevLett.94.053601
https://doi.org/10.1103/PhysRevLett.84.2513
https://doi.org/10.1038/35023100
https://doi.org/10.1038/s41565-019-0435-9
https://doi.org/10.1063/1.2931070
https://doi.org/10.1103/PhysRevLett.121.190502
https://doi.org/10.1126/science.290.5500.2282
https://doi.org/10.1126/science.1066790
https://doi.org/10.1103/PhysRevApplied.8.014013
https://doi.org/10.1038/s41467-018-03251-7
https://doi.org/10.1038/s41467-018-03251-7
https://doi.org/10.1103/PhysRevLett.86.1502
https://doi.org/10.1103/PhysRevLett.86.1502
https://doi.org/10.1063/1.4774392
https://doi.org/10.1063/1.4774392
https://doi.org/10.1038/nature04446
https://doi.org/10.1038/ncomms10067
https://doi.org/10.1038/ncomms10067
https://doi.org/10.1038/npjqi.2016.6
https://doi.org/10.1364/OE.15.013957


Research Article Vol. 28, No. 24 / 23 November 2020 / Optics Express 36848

27. T. Inagaki, N. Matsuda, O. Tadanaga, M. Asobe, and H. Takesue, ŞEntanglement distribution over 300 km of Ąber,Ť

Opt. Express 21(20), 23241Ű23249 (2013).

28. A. Imamoglu and Y. Yamamoto, ŞTurnstile device for heralded single photons: Coulomb blockade of electron and

hole tunneling in quantum conĄned p-i-n heterojunctions,Ť Phys. Rev. Lett. 72(2), 210Ű213 (1994).

29. R. M. Stevenson, A. J. Hudson, A. J. Bennett, R. J. Young, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, ŞEvolution

of entanglement between distinguishable light states,Ť Phys. Rev. Lett. 101(17), 170501 (2008).

30. Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, ŞHigh speed single photon detection in the near infrared,Ť

Appl. Phys. Lett. 91(4), 041114 (2007).

31. H. F. Chau, ŞPractical scheme to share a secret key through a quantum channel with a 27.6% bit error rate,Ť Phys.

Rev. A 66(6), 060302 (2002).

32. A. Dousse, J. Suffczyński, A. Beveratos, O. Krebs, A. Lemaître, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart,

ŞUltrabright source of entangled photon pairs,Ť Nature 466(7303), 217Ű220 (2010).

33. H. Wang, H. Hu, T. H. Chung, J. Qin, X. Yang, J. P. Li, R. Z. Liu, H. S. Zhong, Y. M. He, X. Ding, Y. H. Deng, Q.

Dai, Y. H. Huo, S. HöĆing, C. Y. Lu, and J. W. Pan, ŞOn-demand semiconductor source of entangled photons which

simultaneously has high Ądelity, efficiency, and indistinguishability,Ť Phys. Rev. Lett. 122(11), 113602 (2019).

34. R. J. Young, S. J. Dewhurst, R. M. Stevenson, A. J. Shields, P. Atkinson, K. Cooper, and D. A. Ritchie, ŞControlling

the polarization correlation of photon pairs from a charge-tunable quantum dot,Ť Appl. Phys. Lett. 91(1), 011114

(2007).

35. Z. H. Xiang, J. Huwer, J. Skiba-Szymanska, R. M. Stevenson, D. J. P. Ellis, I. Farrer, M. B. Ward, D. A. Ritchie, and

A. J. Shields, ŞA tuneable telecom wavelength entangled light emitting diode deployed in an installed Ąbre network,Ť

Commun. Phys. 3(1), 121Ű128 (2020).

36. C. Böckler, S. Reitzenstein, C. Kistner, R. Debusmann, A. Löffler, T. Kida, S. HöĆing, A. Forchel, L. Grenouillet, J.

Claudon, and J. M. Gérard, ŞElectrically driven high-q quantum dot-micropillar cavities,Ť Appl. Phys. Lett. 92(9),

091107 (2008).

https://doi.org/10.1364/OE.21.023241
https://doi.org/10.1103/PhysRevLett.72.210
https://doi.org/10.1103/PhysRevLett.101.170501
https://doi.org/10.1063/1.2760135
https://doi.org/10.1103/PhysRevA.66.060302
https://doi.org/10.1103/PhysRevA.66.060302
https://doi.org/10.1038/nature09148
https://doi.org/10.1103/PhysRevLett.122.113602
https://doi.org/10.1063/1.2754641
https://doi.org/10.1038/s42005-020-0390-7
https://doi.org/10.1063/1.2890166

