

This is a repository copy of Synthesis of poly(stearyl methacrylate)-poly(2-hydroxypropyl methacrylate) diblock copolymer nanoparticles via RAFT dispersion polymerization of 2-hydroxypropyl methacrylate in mineral oil.

White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/168815/

Version: Supplemental Material

Article:

György, C., Hunter, S.J. orcid.org/0000-0002-9280-1969, Girou, C. et al. (2 more authors) (2020) Synthesis of poly(stearyl methacrylate)-poly(2-hydroxypropyl methacrylate) diblock copolymer nanoparticles via RAFT dispersion polymerization of 2-hydroxypropyl methacrylate in mineral oil. Polymer Chemistry, 11 (28). pp. 4579-4590. ISSN 1759-9954

https://doi.org/10.1039/d0py00562b

© 2020 Royal Society of Chemistry. This is an author-produced version of a paper subsequently published in Polymer Chemistry. Uploaded in accordance with the publisher's self-archiving policy.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Supporting Information for:

Synthesis of poly(stearyl methacrylate)-poly(2-hydroxypropyl methacrylate) diblock copolymer nanoparticles via RAFT dispersion polymerization of 2-hydroxypropyl methacrylate in mineral oil

Csilla György, Saul J. Hunter, Chloé Girou, Matthew J. Derry and Steven P. Armes*

Figure S1. RAFT solution polymerization of SMA in toluene at 50% w/w solids and 70 °C using CPDB as a RAFT agent (target PSMA DP = 5; CPDB/initiator molar ratio = 5.0). (a) Conversion vs. time (blue circles) and corresponding $\ln([M]_0/[M])$ vs. time (red triangles) plots. (b) Evolution in M_n (red diamonds) and M_w/M_n (blue circles) obtained by THF GPC analysis using a series of near-monodisperse poly(methyl methacrylate) calibration standards.

Figure S2. Semilogarithmic plots obtained for the RAFT dispersion homopolymerization of either HPMA or BzMA in mineral oil at 90 °C targeting either 15% w/w PSMA9-PHPMA₁₅₀ vesicles (red triangles) or 18% w/w PSMA9-PBzMA₁₅₀ vesicles (open green diamonds).

Tanget Composition	Solids Content	THF G	PC	DLS		TEM
Target Composition	(% w/w)	$M_{\rm n}$ (g mol ⁻¹)	$M_{\rm w}/M_{\rm n}$	D (nm)	PDI	Morphology
PSMA9 macro-CTA	-	4,500	1.12	-	-	-
PSMA9-PHPMA30	15	8,100	1.16	23	0.20	Spheres
PSMA9-PHPMA50	15	10,000	1.16	26	0.09	Spheres
PSMA9-PHPMA60	15	11,000	1.16	34	0.18	Spheres
PSMA9-PHPMA70	15	11,900	1.19	40	0.12	Spheres
PSMA9-PHPMA80	15	12,800	1.19	57	0.12	Mixed
PSMA9-PHPMA90	15	13,600	1.22	104	0.11	Mixed
PSMA9-PHPMA100	15	14,400	1.25	153	0.25	Mixed
PSMA9-PHPMA105	15	14,300	1.22	170	0.16	Mixed
PSMA9-PHPMA110	15	14,700	1.24	204	0.28	Mixed
PSMA9-PHPMA115	15	15,000	1.26	156	0.11	Mixed
PSMA9-PHPMA125	15	16,400	1.26	156	0.05	Mixed
PSMA9-PHPMA130	15	17,000	1.29	162	0.03	Vesicles
PSMA9-PHPMA150	15	18,800	1.37	170	0.07	Vesicles

Table S1. Summary of the GPC, DLS and TEM data obtained for a series of $PSMA_9$ -PHPMA_x diblock copolymer nano-objects prepared at 15% w/w in mineral oil. The $PSMA_9$ precursor is also included as a reference.

Taugat Commonition	Solids Content	THF GPC		DLS		TEM
Target Composition	(% w/w)	$M_{\rm n}$ (g mol ⁻¹)	$M_{\rm w}/M_{\rm n}$	<i>D</i> (nm)	PDI	Morphology
PSMA9-PHPMA30	20	7,700	1.15	19	0.12	Spheres
PSMA9-PHPMA50	20	10,100	1.16	27	0.10	Spheres
PSMA9-PHPMA55	20	10,500	1.18	30	0.12	Spheres
PSMA9-PHPMA60	20	12,000	1.24	34	0.12	Spheres
PSMA9-PHPMA65	20	11,500	1.19	53	0.14	Mixed
PSMA9-PHPMA70	20	12,400	1.31	76	0.16	Mixed
PSMA9-PHPMA75	20	12,300	1.20	87	0.16	Mixed
PSMA ₉ -PHPMA ₈₀	20	13,600	1.30	148	0.22	Mixed
PSMA9-PHPMA90	20	14,400	1.34	420	0.73	Mixed
PSMA9-PHPMA100	20	14,200	1.23	162	0.17	Mixed
PSMA9-PHPMA105	20	14,300	1.24	176	0.13	Mixed
PSMA9-PHPMA110	20	15,700	1.25	177	0.14	Mixed
PSMA9-PHPMA115	20	16,300	1.26	169	0.11	Vesicles
PSMA9-PHPMA120	20	16,700	1.27	182	0.14	Vesicles
PSMA9-PHPMA125	20	17,100	1.32	233	0.22	Vesicles
PSMA9-PHPMA130	20	17,600	1.28	211	0.14	Vesicles
PSMA9-PHPMA150	20	20,100	1.37	573	0.11	Vesicles

Table S2. Summary of the GPC, DLS and TEM data obtained for a series of PSMA₉-PHPMA_x diblock copolymer nano-objects prepared at 20% w/w in mineral oil.

Tanget Composition	Solids Content	THF GPC		DLS		TEM
Target Composition	(% w/w)	$M_{\rm n}$ (g mol ⁻¹)	$M_{\rm w}/M_{\rm n}$	D (nm)	PDI	Morphology
PSMA9-PHPMA50	25	9,900	1.15	31	0.19	Spheres
PSMA9-PHPMA60	25	11,000	1.17	85	0.42	Mixed
PSMA9-PHPMA70	25	12,600	1.19	156	0.54	Worms
PSMA ₉ -PHPMA ₈₀	25	12,700	1.19	1715	0.80	Mixed
PSMA ₉ -PHPMA ₈₅	25	13,000	1.22	437	0.75	Mixed
PSMA9-PHPMA90	25	13,300	1.21	276	0.40	Mixed
PSMA9-PHPMA100	25	14,700	1.23	256	0.35	Mixed
PSMA9-PHPMA105	25	15,000	1.24	210	0.16	Mixed
PSMA9-PHPMA110	25	15,700	1.24	189	0.16	Mixed
PSMA9-PHPMA115	25	16,000	1.25	318	0.35	Vesicles
PSMA9-PHPMA120	25	16,000	1.25	246	0.24	Vesicles
PSMA9-PHPMA125	25	17,200	1.26	445	0.19	Vesicles
PSMA9-PHPMA150	25	18,700	1.28	448	0.27	Vesicles

Table S3. Summary of the GPC, DLS and TEM data obtained for a series of PSMA₉-PHPMA_x diblock copolymer nano-objects prepared at 25% w/w in mineral oil.

Table S4. Summary of the GPC, DLS and TEM data obtained for a series of PSMA₉-PHPMA_x diblock copolymer nano-objects prepared at 30% w/w in mineral oil.

Tanget Composition	Solids Content	THF GPC		DLS		TEM
Target Composition	(% w/w)	$M_{\rm n}$ (g mol ⁻¹)	$M_{\rm w}/M_{\rm n}$	D (nm)	PDI	Morphology
PSMA9-PHPMA40	30	9,000	1.15	22	0.15	Spheres
PSMA9-PHPMA50	30	9,900	1.16	26	0.07	Mixed
PSMA9-PHPMA60	30	10,200	1.16	46	0.12	Mixed
PSMA9-PHPMA67	30	11,400	1.18	157	0.58	Worms
PSMA9-PHPMA70	30	12,100	1.21	736	0.91	Worms
PSMA9-PHPMA80	30	12,300	1.22	471	0.60	Mixed
PSMA9-PHPMA90	30	14,300	1.24	715	0.66	Mixed
PSMA9-PHPMA100	30	15,000	1.27	923	1.00	Mixed
PSMA9-PHPMA110	30	16,000	1.26	219	0.21	Mixed
PSMA9-PHPMA120	30	16,900	1.31	1400	0.97	Mixed
PSMA9-PHPMA130	30	17,800	1.35	764	0.26	Mixed

Figure S3. Representative TEM image recorded for a mixed phase of PSMA₉–PHPMA₇₀ vesicles and worms (prepared at 25% w/w solids) obtained after oscillatory rheology studies.

Figure S4. Digital photographs obtained for the Pickering emulsions prepared at 20 °C *via* high-shear homogenization at 13 500 rpm for 2 min using 1.0% w/w PSMA₉–PHPMA₅₀ spheres in mineral oil at water volume fractions (V_w) of 0.25, 0.50 or 0.75. Sedimentation of the denser aqueous droplets occurs for the emulsion prepared at a water volume fraction of 0.25, indicating the formation of a water-in-oil emulsion. In contrast, preparing the emulsions at a water volume fraction of 0.50 or 0.75 leads to droplet creaming, indicating the formation of (mainly) oil droplets within an aqueous continuous phase.

Figure S5. Fluorescence microscopy image recorded for an emulsion prepared using 1.00% w/w PSMA₉-PHPMA₅₀ diblock copolymer spheres in mineral oil at a water volume fraction of 0.875. The location of the oil-soluble Nile Red dye suggests the formation of a (mainly) oil-inwater emulsion. However, some of the droplets contain dark domains, indicating the formation of a water-in-oil-in-water double emulsion.

0.03% w/w 0.06% w/w 0.125% w/w 0.25% w/w 0.50% w/w 1.00% w/w

Figure S6. Digital photographs recorded for a series of Pickering emulsions prepared at 20 °C *via* high-shear homogenization at 13 500 rpm for 2 min using 0.03 to 1.00% w/w PSMA₉– PHPMA₅₀ spheres at water volume fractions (V_w) of (a) 0.75, (b) 0.50 or (c) 0.25.

Figure S7. Variation in number-average droplet diameter (estimated from optical microscopy images by analyzing at least 100 droplets in each case) with copolymer concentration obtained for water-in-oil Pickering emulsions produced *via* high-shear homogenization (13 500 rpm for 2 min at 20 °C) of PSMA₉-PHPMA₅₀ diblock copolymer spheres in mineral oil at a constant water volume fraction of 0.25. Inset: representative optical microscopy images recorded for aqueous droplets prepared using copolymer concentrations of 0.0625, 0.25 or 1.00% w/w, respectively.

Figure S8. Fluorescence microscopy images recorded for the emulsions formed *via* high-shear homogenization at the stated stirring rate using 1.00% w/w PSMA9-PHPMA50 diblock copolymer spheres in mineral oil and a constant water volume fraction of 0.50. Lower stirring rates (either 3 500 or 7 500 rpm) lead to the formation water-in-oil emulsions, whereas higher stirring rates (15 500 or 20 000 rpm) generate water-in-oil-in-water double emulsions.