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Figure S1. (A) Chemical structure and 1H NMR spectrum for the PGMA59 precursor. A mean DP of 59 

was calculated by comparing the integrated aromatic signals at 7.2–7.4 ppm to that of the methacrylic 

backbone at 0.0–2.5 ppm. (B) DMF GPC curve obtained for this PGMA59 precursor. Molecular weight 

data are expressed relative to poly(methyl methacrylate) calibration standards 
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Figure S2. (A) Fully assigned 1H NMR spectra recorded in CD2Cl2 at 298 K for the PEG45 precursor A 

mean degree of esterification of 94% was calculated by comparing the integrated aromatic proton signals 

(a) at 7.2–7.4 ppm against the PEG backbone (c, h-k) at 3.3-3.9 ppm. (B) THF GPC curve recorded for 
this PEG45 precursor. Molecular weight data are expressed relative to PMMA calibration standards. 

 

 

 

Figure S3. (A) Fully assigned 1H NMR spectra recorded in CD2Cl2 at 298 K for the PEG113 precursor. 
A mean degree of esterification of 95% was calculated by comparing the integrated aromatic proton 

signals (a) at 7.2–7.4 ppm against the PEG backbone (c, h-k) at 3.3-3.9 ppm. (B) THF GPC curve 

recorded for this PEG113 precursor. Molecular weight data are expressed relative to PMMA calibration 
standards. 
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Figure S4. Digital photograph recorded after the attempted PISA synthesis of PEG45-PHPMA130 diblock 

copolymer nanoparticles at 50 °C targeting 10% w/w solids. Both a yellow PEG45-PHPMAn precipitate 

and a white precipitate of PHPMA homopolymer are formed owing to colloidal instability and 

conventional free radical polymerization respectively. 
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Table S1. Summary of the target diblock copolymer compositions, GPC molecular weight data and 

copolymer morphologies for [x PEG45 + y PGMA59]-PHPMAn. 
a Calculated by 1H NMR spectroscopy. b 

Molecular weight data were determined by DMF GPC analysis and are expressed relative to PMMA 

standards. c Determined by TEM analysis. [Abbreviations: S = spheres, W = worms, V = vesicles, P = 

precipitate]. 

Mol fraction 

of PEG45 

(x) 

Target 

PHPMA DP 

(n) 

Conversiona 

(%) 

Mn 

(kg mol-1)b Mw / Mn
b Morphologyc 

0.20 90 > 99 30.9 1.12 S 

0.40 90 > 99 29.4 1.15 S 

0.60 90 > 99 24.9 1.14 S 

0.80 90 > 99 21.9 1.18 S 

1.00 90 > 99 25.3 1.91 P 

0.00 110 > 99 33.3 1.12 S 

0.20 110 > 99 31.3 1.14 S 

0.40 110 > 99 31.1 1.15 S 

0.60 110 > 99 30.9 1.12 S&W 

0.80 110 > 99 28.3 1.11 V 

1.00 110 > 99 23.1 1.61 P 

0.00 130 > 99 36.8 1.14 S&W 

0.20 130 > 99 33.6 1.13 S&W 

0.40 130 > 99 33.3 1.13 S&W 

0.60 130 > 99 33.0 1.12 V 

0.80 130 > 99 31.6 1.10 V 

1.00 130 > 99 29.4 2.14 P 

0.00 140 > 99 37.4 1.13 S&W 

0.00 150 > 99 43.6 1.15 W 

0.20 150 > 99 38.4 1.14 W&V 

0.40 150 > 99 36.7 1.15 V 

0.60 150 > 99 34.5 1.13 V 

0.80 150 > 99 36.6 1.50 V 

1.00 150 > 99 37.1 6.97 P 

0.00 160 > 99 40.0 1.10 W 

0.00 170 > 99 46.0 1.18 W&V 

0.20 170 > 99 45.7 1.14 W&V 

0.40 170 > 99 43.7 1.20 V 

0.60 170 > 99 34.4 1.16 V 

0.80 170 > 99 35.6 1.52 V 

1.00 170 > 99 27.2 1.40 P 
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Table S2. Summary of the target diblock copolymer compositions, GPC molecular weights and 

copolymer morphologies for [z PEG113 + y PGMA59]-PHPMAn. 
a Calculated by 1H NMR spectroscopy. 

b Molecular weight data were determined by DMF GPC analysis and are expressed relative to PMMA 

standards. c Determined by TEM analysis. 

Mol 

fraction of 

PEG113 

(z) 

Target 

PHPMA DP 

(n) 

Conversiona 

(%) 

Mn 

(kg mol-1)b Mw / Mn Morphologyc 

0.00 140 > 99 35.4 1.13 W&S 

0.20 140 >99 34.8 1.15 W&S 

0.40 140 >99 34.6 1.14 W&S 

0.60 140 >99 34.1 1.15 S 

0.80 140 >99 33.6 1.14 S 

1.00 140 >99 33.4 1.12 S 

0.00 160 > 99 39.2 1.15 W 

0.10 160 > 99 42.5 1.12 W 

0.20 160 > 99 34.5 1.17 W 

0.30 160 > 99 39.8 1.12 W&S 

0.40 160 > 99 32.8 1.19 W&S 

0.50 160 > 99 40.3 1.12 W&S 

0.60 160 > 99 33.5 1.18 W&S 

0.70 160 > 99 40.0 1.13 W&S 

0.80 160 > 99 33.2 1.16 W&S 

0.90 160 > 99 39.0 1.10 S 

1.00 160 > 99 37.5 1.11 S 

0.00 180 > 99 46.9 1.25 W&V 

0.10 180 > 99 39.0 1.17 W 

0.20 180 > 99 32.0 1.24 W 

0.30 180 > 99 37.4 1.16 W 

0.40 180 > 99 34.7 1.17 W 

0.50 180 > 99 42.2 1.13 W 

0.60 180 > 99 36.8 1.17 W 

0.70 180 > 99 39.0 1.14 W&S 

0.80 180 > 99 36.0 1.17 W&S 

0.90 180 > 99 38.6 1.13 W&S 

1.00 180 > 99 42.6 1.12 W&S 

0.00 200 > 99 40.1 1.20 V 

0.10 200 > 99 37.9 1.27 V 

0.20 200 > 99 32.6 1.23 V 

0.30 200 > 99 45.4 1.16 V 

0.40 200 > 99 39.9 1.20 M 

0.50 200 > 99 45.0 1.16 M 

0.60 200 > 99 45.9 1.14 M 

0.70 200 > 99 32.3 1.42 W 

0.80 200 > 99 29.6 1.19 W 

0.90 200 > 99 29.5 1.23 W 

1.00 200 > 99 28.7 1.18 W 

0.00 220 > 99 49.3 1.21 V 

0.10 220 > 99 44.2 1.20 V 

0.20 220 > 99 45.8 1.18 V 

0.30 220 > 99 46.8 1.16 V 

0.40 220 > 99 40.6 1.21 V 

0.50 220 > 99 47.0 1.17 M 

0.60 220 > 99 38.8 1.16 W 
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0.70 220 > 99 48.4 1.14 W 

0.80 220 > 99 42.2 1.17 W 

0.90 220 > 99 54.5 1.12 W 

1.00 220 > 99 42.5 1.15 W 

0.00 240 > 99 52.8 1.17 V 

0.10 240 > 99 51.5 1.18 V 

0.20 240 > 99 53.3 1.21 V 

0.30 240 > 99 44.6 1.19 V 

0.40 240 > 99 43.8 1.22 V 

0.50 240 > 99 43.9 1.22 M 

0.60 240 > 99 52.1 1.14 M 

0.70 240 > 99 40.9 1.21 M 

0.80 240 > 99 44.9 1.18 W 

0.90 240 > 99 44.1 1.19 W 

1.00 240 > 99 42.2 1.13 W 

 

 


