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Abstract The electron fluxes at geostationary orbit measured by Geostationary Operational

Environmental Satellite (GOES) 13, 14, and 15 spacecraft are modeled using system identification

techniques. System identification, similar to machine learning, uses input‐output data to train a model,

which can then be used to provide forecasts. This study employs the nonlinear autoregressive moving

average exogenous technique to deduce the electron flux models. The electron fluxes at geostationary

orbit are known to vary in space and time, making it a spatiotemporal system, which complicates the

modeling using system identification/machine learning approach. Therefore, the electron flux data are

binned into 24 magnetic local time (MLT), and a separate model is developed for each of the 24 MLT bins.

MLTmodels are developed for six of the GOES 13, 14, and 15 electron flux energy channels (75 keV, 150 keV,

275 keV, 475 keV, >800 keV, and >2MeV). The models are assessed on separate test data by prediction

efficiency (PE) and correlation coefficient (CC) and found these to vary by MLT and electron energy. The

lowest energy of 75 keV at the midnight sector had a PE of 36.0 and CC of 59.3, which increased on the

dayside to a PE of 66.9 and CC of 81.6. These metrics increased to the >2MeV model, which had a low PE

and CC of 63.0 and 81.8 on the nightside to a high of 80.3 and 90.8 on the dayside.

1. Introduction

The energetic electrons in the radiation belt are a particular interest to space weather as they are known to

cause damage to spacecraft that transit the region (Baker et al., 1987). The influence of the different mechan-

isms that cause the variations in the energetic electron fluencies is still unclear. However, we do know that it

is some balance between transport (Elkington et al., 1999; Ingraham et al., 2001), radial diffusion (Boscher

et al., 2000; Fujimoto & Nishida, 1990; Hilmer et al., 2000), local acceleration caused by wave particle inter-

actions (Horne & Thorne, 1998; Li et al., 1997; Summers et al., 1998; Temerin et al., 1994), magnetopause

shadowing (Loto'aniu et al., 2010; Ohtani et al., 2009), and precipitation into the atmosphere (Lorentzen

et al., 2001; Summers & Ma, 2000). Although the different loss and enhancement mechanisms in the radia-

tion belt have been identified, the number of mechanisms involved, which interact with each other, makes

the system complex and intrinsically difficult to model.

A number of different methods have been applied in the attempt to model the radiation belts, from

physics‐based numerical codes that solve the Fokker‐Plank equations to machine learning. One of the

first models, and the one that is used by the National Oceanic and Atmospheric Administration

(NOAA) in the United States and Met Office in the United Kingdom, was developed by Baker et al. (1990)

and is often referred to as the Relativistic Electron Forecast Model (REFM). REFM forecasts the daily

averaged >2MeV electron fluxes at GEO and is based on a simple linear prediction filter that uses past mea-

surements of the electron flux and solar wind velocity as inputs to the model. With more computational

power, physics‐based numerical models have become possible for real‐time operations such as the British

Antarctic Survey Radiation Belt Model (BAS‐RBM) (Horne et al., 2013). Another method to model the radia-

tion belts that is becoming increasingly popular is based on machine learning/system identification. These

use input‐output data to automatically deduce amodel using amachine learning algorithm. One suchmodel

was developed by Boynton et al. (2015) using a method based on Nonlinear AutoRegressive Moving Average

eXogenous (NARMAX) models that forecasts the daily averaged >2MeV electron fluxes at GEO, similar to

the REFM. As such, Balikhin et al. (2016) compared the two models and found the NARMAXmodel to per-

form better using a number of performance metrics. One issue with REFM and Boynton et al. (2015) models
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is that they are limited in both temporal and spatial resolution, taking a spatial average over all GEO and tem-

poral average of a day. Boynton et al. (2019) aimed to use the NARMAX method to develop a model with

increased spatial and temporal resolution for the 40 keV electron fluxes. This was achieved by binning the

data by magnetic local time (MLT) along GEO and deducing a separate NARMAX model for each MLT

bin, resulting in 24 separate spatial models with a temporal resolution of 1 hr, and then conjugated them into

a spatiotemporal model for the 40 keV electron fluxes.

The aim of this paper is to develop similar electron flux models to those by Boynton et al. (2019), but for the

other energies provided by the Geostationary Operational Environmental Satellite (GOES) 13, 14, and 15

spacecraft. This is achieved by binning the electron flux data for the 75 keV, 150 keV, 275 keV, 475 keV,

>800 keV, and >2MeV into 24 MLT bins to develop a separate model for each energy and MLT bin, which

is discussed in section 3. The NARMAX system identification methodology, which is described in section 2,

is used to train the models with solar wind inputs. The resultant models are displayed in section 4, and the

performance of the models are calculated.

2. Methodology

The NARMAX system identification technique that is used to deduce the models in this study was originally

developed by Leontaritis and Billings (1985a, 1985b) and has been used in a diverse range of scientific fields

from biology (Friederich et al., 2009; Krishnanathan et al., 2012) to space physics (Boaghe et al., 2001). In

space physics, the NARMAX methodology was first used to model the Dst index and analyze it in the fre-

quency domain (Balikhin et al., 2001; Boaghe et al., 2001). Various models of the Dst index (Boynton,

Balikhin, Billings, Sharma, et al., 2011;Wei et al., 2004; Zhu et al., 2006), Kp index (Ayala Solares et al., 2016),

and the AE index (Gu et al., 2018) have been developed using a NARMAXmethodology. Due to the physical

interpretability of the NARMAX models, the technique has been used to analyze the control parameters for

the Dst index (Balikhin et al., 2010; Boynton, Balikhin, Billings, Wei, et al., 2011), GEO electron flux

(Balikhin et al., 2010, 2012; Boynton, Balikhin, Billings, Reeves, et al., 2013; Boynton, Mourenas, et al., 2016;

Boynton et al., 2019), GPS orbit electron fluxes (Boynton et al., 2017), GEO proton fluxes (Boynton, Balikhin,

Billings, & Amariutei, 2013), and lower band chorus waves (Boynton et al., 2018).

A NARMAX model can be represented by

ŷðtÞ ¼ F½ yðt − ny1Þ; …; yðt − nyiÞ;
u1ðt − nu11Þ; …; u1ðt − nu1 iÞ;
u2ðt − nu21Þ; …; u2ðt − nu2 iÞ; …
umðt − num1Þ; …; umðt − numiÞ;
eðt − ne1Þ; …; eðt − neiÞ�þeðtÞ;

(1)

where the estimate of the output ŷ at time t is a nonlinear function F of past outputs y, m inputs u, and

errors e ( y ¼ y − ŷ) and n represents the chosen lags for the corresponding variable. The first part of the

NARMAX methodology is to set out the NARMAX model. This involves choosing the nonlinear function

F, which is usually a polynomial; however, it can be a number of other options such as rational functions

or wavelet basis functions (Wei et al., 2004). The choice of inputs also needs to be decided, as well as the

lags for the output, inputs, and error. Once the NARMAX model is decided, the resultant model will most

likely be made up of many terms. For example, for a third‐degree polynomial model with six inputs, with

each of the inputs, output, and error having six lags, the number of monomials that make up the polyno-

mial will be 20,825. Most the monomials will be similar to each other, and many may have no influence

over the output. The aim of the NARMAX methodology is to find a small subset of monomials, or terms,

from the initial NARMAX model as described in Equation 1. This is achieved by the forward regression

orthogonal least squares (FROLS) algorithm (Billings et al., 1989). Here, each monomial is assessed with

respect to its influence on the output using the error reduction ratio (ERR), where the ERR is the propor-

tion of the variance that the monomial contributes toward the output. The model term with the highest

ERR is selected as the first model term. In the subsequent steps, the terms are orthogonalized with respect

to all of the previously selected model terms and then the ERR is calculated for each orthogonalized term

and the one with the highest ERR is selected as the next model term. This is repeated until the point
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where the addition of a new model term no longer has any significant contribution to the output variance.

Once the final model structure is selected, the algorithm computes the coefficients of each term, resulting

in the final polynomial model. This study employs a variant of the FROLS algorithm called the iterative

orthogonal forward regression, which has been shown to deduce a more accurate model structure by

exploring multiple orthogonalization paths (Gao et al., 2014).

3. Electron Flux and Solar Wind Data

The solar wind data, which were used as inputs to the NARMAX models, were from OMNIweb (https://

omniweb.gsfc.nasa.gov/). Here, the measurements are taken from the Advanced Composition Explorer

(ACE), Wind and Deep Space Climate Observatory (DSCOVR) spacecraft, which are situated at Lagrange

L1. OMNIweb then propagates the solar wind values to the bow shock nose (King & Papitashvili, 2005).

The inputs used for the electron flux model are the solar wind velocity v, solar wind number density n, the

square root of the solar wind dynamic pressure
ffiffiffi

p
p

, and interplanetary magnetic field (IMF) factor Bf ¼ BT

sin6ðθ=2Þ from Boynton, Balikhin, Billings, Wei, et al. (2011) (whereBT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B2
y þ B2

z

q

andθ ¼ arctanðBy=BzÞ).

The electron flux data come from the Magnetospheric Electron Detector (MAGED) (Hanser, 2004b) and

Electron Proton Alpha Detector (EPEAD) (Hanser, 2004a) onboard the GOES 13, 14, and 15. The

MAGED operates on five energy channels (40, 75, 150, 275, and 475 keV) and has nine telescopes pointing

in different directions. The EPEAD operates three energy channels (>800 keV, >2MeV, and >4MeV) and

has two telescopes pointing east and west. This study employs the 75, 150, 275, and 475 keV electron flux

channels from theMAGED and the >800 keV and >2MeV from the EPEAD as the outputs that are modeled

using the NARMAX method.

For each of the electron flux channels, the data were binned by the same MLT as Boynton et al. (2019). The

data were sampled at 1 hr time resolution and at 1 hr MLT, smoothing over 12 min MLT around each hour

MLT and averaging over the nine telescopes for theMAGED from each spacecraft with pitch angles between

20° and 160° and averaging over the east and west telescope for the EPEAD. For each of the six energy chan-

nels, this resulted in 24 time series data sets for each MLT, which were then individually modeled using the

NARMAXmethodology described in section 2. Here, the time series of the logarithmic electron flux at time t,

energy E, and MLT is the output data, J(MLT, E, t). The majority of the individual output data sets will be

empty since there will be no spacecraft at that MLT for most of the day.

The time lags included in the model for the past outputs were set to 24 hr. The lags for the solar wind input

were set to be 1, 2, 3,…, 12, 14, 16,…, 24, 28, 32,…, 60 hr. Noise terms were not included in the model reducing

it to the Nonlinear AutoRegressive eXogenous (NARX) model:

Ĵ ðE; MLT; tÞ ¼ F½ JðE; MLT; t − 24Þ;
vðt − 1Þ; vðt − 2Þ; …; vðt − 60Þ;
nðt − 1Þ; nðt − 2Þ; …; nðt − 60Þ;
ffiffiffi

p
p ðt − 1Þ; ffiffiffi

p
p ðt − 2Þ; …; ffiffiffi

p
p ðt − 60Þ;

Bf ðt − 1Þ; Bf ðt − 2Þ; …; Bf ðt − 60Þ�:

(2)

The nonlinear function Fwas chosen to be a cubic polynomial, which means that the model can include lin-

earmonomials of the lagged inputs and outputs and cross‐coupled combinations of the lagged inputs and out-

puts to the third degree. Some model terms with small lags were excluded from the structure selected if they

were different from the majority of the time lags. This was done to maximize the forecast horizon of each of

the models. For example, the lags less than 12 hr were excluded for the >800 keV and >2MeV models.

4. Electron Flux Models

All the models were trained on data from 00:00 UTC 1 January 2011 to 23:00 UTC 28 February 2013. The

NARMAX algorithm requires less training data than other machine learning methods (Billings, 2013),

and as such, this training period is large enough and has enough variation in the electron fluxes to capture

the dynamics of the system. The training resulted in 144 individual models, 24 for each of the six energies,
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which were then assessed on data from 00:00 UTC 1 March 2013 to 23:00 UTC 31 December 2017. The

assessment was made using the performance metrics: mean square error (MSE) (Equation 3), correlation

coefficient (CC) (Equation 4), and prediction efficiency (PE) (Equation 5), also known as R2.

MSE ¼ 1

N
∑
N

t ¼ 1
yðtÞ−ŷðtÞð Þ2 (3)

CC ¼
∑
N

t ¼ 1

yðtÞ−yð Þ ŷðtÞ−ŷ
� �� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
N

t ¼ 1

yðtÞ−yð Þ2
� �

∑
N

t ¼ 1

ŷðtÞ−ŷ
� �2
h i

s 100% (4)

PE ¼ 1 −

∑
N

t ¼ 1

yðtÞ−ŷðtÞð Þ2
� �

∑
N

t ¼ 1

yðtÞ−yð Þ2
� �

2

6

6

6

4

3

7

7

7

5

100%; (5)

where N is the length of data, y is the measured output at time t, ŷ is the model estimate, and the bar

represents the mean. The variance of the measured output

σ
2 ¼ 1

N
∑
N

t ¼ 1

yðtÞ−yð Þ2 (6)

was also calculated because both CC and PE are normalized with respect to the output variance.

Figure 1. The model performance metrics versus the MLT. Panel (a) shows the PE, (b) the CC, (c) the MSE, and (d) the

measured variance of the electron flux, for the six energies: 75 keV (blue), 150 keV (orange), 275 keV (yellow), 475 keV

(purple), >800 keV (green), and >2MeV (cyan).
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Figure 1 shows the model performance metrics versus the MLT for the six energies; panel (a) shows the PE,

(b) the CC, (c) the MSE, and the measured variance of the electron flux is shown in panel (d). The six ener-

gies are represented by different colors: blue for 75 keV, orange for 150 keV, yellow for 275 keV, purple for

475 keV, green for >800 keV, and cyan for >2MeV, as shown in the legend. The model performance metrics

and variance were calculated using the logarithmic electron fluxes from all the GOES spacecraft that were

operational in this assessment period.

The PE and CC show that the performance of the models is higher on the dayside than the nightside and the

models have higher performance with increases in energy (apart from >800 keV). However, when inspect-

ing theMSE, the >2MeVmodels, which have the highest PE and CC, also have the highest MSE. This can be

explained by the >2MeV electron fluxes having the highest logarithmic variance and both PE and CC are

normalized with respect to the variance. It should be noted that the variance of the logarithmic electron flux

differs from the variance of the electron fluxes, as you would expect the 75 keV electron flux to have a higher

variance than the >2MeV electron flux, with the 75 keV electron fluxes varying between 1 × 103 and 1 × 105

and the >2MeV fluxes varying between 1 × 100 and 1 × 104. However, when taking the logarithm, the loga-

rithmic >2MeV electron fluxes will vary more. The lower energies of 75 and 150 keV also have more of a

drop‐off in performance from the dayside to the nightside; for example, the >2MeV decreases from a CC

of 90.8% to 81.8% and a reduction of 9%, while for the 75 keV, the CC decreases from 80.6% to 53% and a

Figure 2. The model‐estimated 75 keV electron flux for the month of November 2017. Panel (a) shows the electron flux

estimate at all MLTs. Panel (b) shows a comparison of the electron flux measured by GOES 13 (blue, 1 min data; red,

1 hr sampled data) and the model estimate at the GOES 13 location (green). Panel (c) shows the log‐flux error

e between the model prediction and measured GOES 13 data ( eðtÞ ¼ log10ðJðtÞÞ− log10ðĴ ðtÞÞ). Panel (d) shows
the Dst index. Panel (e) shows the hourly averaged AE index.
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decline of 27.5%. This could be due to injections of 10 to 100 keV electrons from the tail caused by substorms,

which are very difficult to forecast due to their chaotic nature.

There is also an asymmetry of the performance metrics in the dawn‐dusk sectors. This can be seen particu-

larly in theMSEwith >2MeV electron fluxes where theMSE is at its lowest in the prenoon sector, between 7

and 12 MLT. The >800 keV electron fluxes also exhibit this pattern and, to some extent, so do the 475 keV

electrons, with the minimumMSE between 10 and 12 MLT. The 150 and the 275 keV electrons appear more

symmetrical apart from the postmidnight peak, which is likely due to the injections. The 75 keV has an

opposite asymmetry to the >2MeV electron fluxes, where the MSE minimum occurs postnoon, between

12 and 18 MLT; however, unlike the >2MeV electrons, this pattern is reflected in the variance, which also

reaches a minimum in the post‐noon sector. The MSE asymmetry with the 475 keV, >800 keV, and >2MeV

electron flux models could mean that the models in the postnoon sector could potentially be improved or

that the postnoon electron fluxes are more stochastic.

Figures 2–7 show the model‐estimated electron flux for each of the energies for the month of November

2017. Figure 2 shows the electron flux estimate at all MLTs, with MLT on the y axis, time on the x axis,

and the electron fluxes on the color bar in panel (a). Panel (b) shows a comparison of the electron flux

measured by GOES 13 (blue, 1 min data; red, 1 hr sampled data) and the model estimate at the GOES 13

location (green). Panel (c) shows the log‐flux error e between the model prediction and measured GOES

13 data (eðtÞ ¼ log10ðJðtÞÞ−log10ðĴ ðtÞÞ). Panel (d) shows the Dst index and panel (e) the hourly averaged

AE index. Figures 3–7 show the same as Figure 2, without the Dst index and AE index.

The comparison figures, in the middle panel, of Figures 2–7 show that all the models generally follows the

measured electron fluxes. In Figure 2, the 75 keVmodel is able to forecast the lower‐frequency variations but

misses the high‐frequency positive and negative spikes that appear in the measured 75 keV electron

flux data.

The 150 keV electron flux (Figure 3) has less of the positive spikes in the data than the 75 keV electron fluxes,

and this trend continues as the energy increases. For example, the measured 150 keV electron flux has

Figure 3. The model‐estimated 150 keV electron flux for the month of November 2017. The top panel shows the electron

flux estimate at all MLTs. The middle panel shows a comparison of the electron flux measured by GOES 13 (blue, 1 min

data; red, 1 hr sampled data) and the model estimate at the GOES 13 location (green). The bottom panel shows the

log‐flux error e between the model prediction and measured GOES 13 data ( eðtÞ ¼ log10ðJðtÞÞ− log10ðĴ ðtÞÞ).

10.1029/2020JA028262Journal of Geophysical Research: Space Physics

BOYNTON ET AL. 6 of 13



Figure 4. The model‐estimated 275 keV electron flux for the month of November 2017. The top panel shows the electron

flux estimate at all MLTs. The middle panel shows a comparison of the electron flux measured by GOES 13 (blue, 1 min

data; red, 1 hr sampled data) and the model estimate at the GOES 13 location (green). The bottom panel shows the

log‐flux error e between the model prediction and measured GOES 13 data ( eðtÞ ¼ log10ðJðtÞÞ− log10ðĴ ðtÞÞ).

Figure 5. The model‐estimated 475 keV electron flux for the month of November 2017. The top panel shows the electron

flux estimate at all MLTs. The middle panel shows a comparison of the electron flux measured by GOES 13 (blue, 1 min

data; red, 1 hr sampled data) and the model estimate at the GOES 13 location (green). The bottom panel shows the

log‐flux error e between the model prediction and measured GOES 13 data ( eðtÞ ¼ log10ðJðtÞÞ− log10ðĴ ðtÞÞ).
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Figure 6. The model‐estimated >800 keV electron flux for the month of November 2017. The top panel shows the

electron flux estimate at all MLTs. The middle panel shows a comparison of the electron flux measured by GOES 13

(blue, 1 min data; red, 1 hr sampled data) and the model estimate at the GOES 13 location (green). The bottom panel

shows the log‐flux error e between the model prediction and measured GOES 13 data ( eðtÞ ¼ log10ðJðtÞÞ− log10ðĴ ðtÞÞ).

Figure 7. The model‐estimated >2MeV electron flux for the month of November 2017. The top panel shows the electron

flux estimate at all MLTs. The middle panel shows a comparison of the electron flux measured by GOES 13 (blue, 1 min

data; red, 1 hr sampled data) and the model estimate at the GOES 13 location (green). The bottom panel shows the

log‐flux error e between the model prediction and measured GOES 13 data ( eðtÞ ¼ log10ðJðtÞÞ− log10ðĴ ðtÞÞ).
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multiple spikes between 22 and 24 November but the 275 keV elec-

tron flux in Figure 4 appears roughly flat during the same period

but does still have some positive spikes, while the higher‐energy

channels in Figures 5, 6 and 7 have none. These spikes could be

due to substorm‐associated injections from the tail, which have ener-

gies of 10–100 keV and therefore would not be in the higher energies.

These spikes partly explain why the performance of the models, in

terms of CC and PE, increases with the energy. The high‐frequency

spikes in the data are absent in the higher energies. These are very

difficult to forecast and missing these large fast variations will

increase the model error, reducing the CC and PE.

Another feature in Figures 2–7 is a daily sinusoid superimposed on

the signal, where the amplitude of the sinusoid increases as the

energy of the electron channel increases relative to the rest of the sig-

nal variation. At 75 keV, there appears to be very little sinusoidal var-

iation in Figure 2, particularly between 3 and 7 November. For the

same period in Figure 3, a small‐amplitude sinusoidal variation can

be seen for the 150 keV electrons. The amplitude is larger still in

Figure 4 for the 275 keV electron, and this pattern can be seen in

475 keV, >800 keV, and >2MeV electrons, Figures 5, 6, and 7, respec-

tively, where the amplitude of the sinusoid represents a much larger

proportion of the fluxes variance. This sinusoidal variation is attribu-

ted to the compressed and elongated configuration of the dipole,

making high‐energy electron fluxes higher on the dayside than the

nightside.

The PE, CC, and MSE of the conjugated models with respect to the

GOES 13 spacecraft as it orbits the Earth and the variance of the mea-

sured GOES 13 flux for the period shown in Figures 2–7 are shown in

Table 1, along with the forecast horizon of the models. The PE, CC, MSE, and variance are also split up by

midnight, dawn, noon, and dusk sectors, where the midnight sector is between 3 and 21 MLT, dawn is

between 3 and 9MLT, noon is between 9 and 15MLT, and dusk is between 15 and 21MLT. These show some

agreement with the metrics in Figure 1, which was carried out over all spacecraft and for a longer period;

however, it can be seen that there are some differences for the month of November 2017. For example,

the highest PE and CC for the 275 keV model is in the midnight sector, which is in contradiction to the

PE and CC for the longer validation period shown in Figure 1. This means that for some periods, the models

perform better at certain MLTs than other periods but, when taken over a longer period, reflect the informa-

tion shown in Figure 1. Videos of the model‐predicted electron fluxes for each energy at different MLTs for

the period in Figures 2–7 are in the supporting information. Each video shows a map of the changes in pre-

dicted electron flux over time for the corresponding energy at GEO for each MLT (00–23 MLT).

5. Discussion

The development of electron fluxes at GEO for the six energy ranges and 24 MLT coverage resulted in 144

individual NARX models. These NARX models are simple polynomial functions, comprised 10–30 terms,

which are made up of coupled combinations of the inputs and past outputs, as shown in Equation 2, to

the third degree. One of the advantages of NARMAXmethods is that themodels are physically interpretable;

that is, the polynomial can be examined, and the factors that cause an increase or decreases in the output can

easily be identified. The task of investigating the NARMAX‐selected inputs of all 144 models would be ardu-

ous, but a few points can be gleamed from inspection. The first is that the main inputs into the models,

selected with the highest ERR, are based around solar wind velocity and the southward IMF factor many

times coupled together to various degrees. This agrees with many previous studies that found a relationship

between electron fluxes at GEO and solar wind velocity (Boynton, Balikhin, Billings, Reeves, et al., 2013;

Table 1

PE, CC, and MSE of the Conjugated Models With the GOES 13 Spacecraft as It

Orbits the Earth and the Variance of the Measured GOES 13 Flux for the

Period From 00:00 UTC 1 November 2017 to 23:00 UTC 30 November 2017,

Along With the Forecast Horizon of the Models

Energy

75

keV

150

keV

275

keV

475

keV

>800

keV

>2

MeV

Forecast horizon

(hours) 2 4 6 6 12 12

PE 56.9 57.7 61.5 64.7 60.6 73.7

Midnight PE 34.7 48.0 65.3 64.1 45.9 60.7

Dawn PE 59.8 53.1 54.4 71.8 70.9 67.8

Noon PE 65.7 58.9 51.7 44.3 67.1 81.2

Dusk PE 53.1 55.7 51.0 48.3 44.7 77.1

CC 77.2 78.2 81.0 83.1 83.1 88.9

Midnight CC 65.1 76.5 82.6 82.1 76.1 83.2

Dawn CC 79.8 75.2 76.4 85.3 86.5 87.1

Noon CC 82.7 79.6 80.1 78.7 85.9 91.3

Dusk CC 73.3 75.2 76.1 79.0 80.6 90.9

MSE 0.077 0.073 0.079 0.095 0.160 0.265

Midnight MSE 0.108 0.079 0.088 0.125 0.240 0.392

Dawn MSE 0.103 0.099 0.101 0.085 0.123 0.280

Noon MSE 0.043 0.046 0.046 0.076 0.102 0.176

Dusk MSE 0.055 0.069 0.083 0.092 0.172 0.210

σ
2

0.179 0.173 0.206 0.269 0.406 1.008

Midnight σ
2

0.166 0.153 0.254 0.351 0.446 1.005

Dawn σ
2

0.258 0.212 0.223 0.304 0.424 0.874

Noon σ
2

0.124 0.112 0.096 0.138 0.311 0.938

Dusk σ
2

0.118 0.158 0.170 0.178 0.313 0.921

Note. The PE, CC, MSE, and variance are also split up by midnight, dawn,
noon, and dusk sectors.
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Paulikas & Blake, 1979; Reeves et al., 2009) and further studies that suggested that southward IMF increase

electron flux enhancements (Boynton et al., 2019; Miyoshi & Kataoka, 2008).

For the 75 keV electron fluxmodels, the autoregressive term, J(75keV,MLT, t− 24), is identified in only 14 of

the 24 MLT models, while for all other energies, the past electron flux term is selected in every model. This

suggests that the 75 keV electron fluxes are less relatable to the previous day's value than the higher energies.

Another point of information that can be gained from inspecting the models is the relationship between the

lags of the inputs and the energy of electrons. As the energy increases, the minimum input time lags that the

FROLS algorithm selected in the models also increase. This relationship between energy and time lag has

been reported in a number of previous studies (Balikhin et al., 2012; Boynton, Balikhin, Billings, Reeves,

et al., 2013; Li et al., 2005) as it takes more time to accelerate the electron to higher energies. The time scales

of electron acceleration can, to some extent, be inferred from the time lags where the source (tens of keV)

population reacts quickly to the solar wind inputs, 2 hr for the 75 keV model, which leads to increased

chorus wave activity causing the seed population (30–300 keV) to be accelerated to higher energies

(Thorne et al., 2013), where in the NARMAX models, the >2MeV model has a minimum input time lag

of 12 hr. However, some of these time lags within the models could also be responsible for loss within the

model rather than acceleration. A possible way to use the NARMAX‐FROLS algorithm to isolate the accel-

eration would be to model just the electron flux increase. The solar wind time lags of such models could then

be used to investigate the time scales of electron acceleration.

The forecast horizon of NARMAX models is determined by the minimum time lag of the exogenous inputs

within the model. For a NARMAX model of the form

JðtÞ ¼ a Jðt − 24Þ þ b nðt − 5Þ þ c Bf ðt − 8Þ þ d vðt − 3Þnðt − 4Þ; (7)

where a, b, c, and d are the coefficients of the input terms and the minimum exogenous input lag will be 3

hr due to the v(t− 3)n(t− 4) term. At present time, t, given that all the past inputs are available, the model

is able to forecast 3 hr into the future using

Jðt þ 3Þ ¼ a Jðt − 21Þ þ b nðt − 2Þ þ c Bf ðt − 5Þ þ d vðtÞnðt − 1Þ (8)

Therefore, the above model has a forecast horizon of 3 hr.

The 01MLT 475 keV electron fluxmodel has the term v(t− 6)Bf (t− 6), which is theminimum exogenous lag

in the model. Given that the solar wind measurements are available at the present time, it will be possible to

estimate the electron flux value 6 hr (plus solar wind transit time from L1 to Earth) into the future. The fact

that the minimum exogenous lag in the models increases with electron energy means that the forecast hor-

izon also increases with energy, as shown in the sixth column of Table 1, where the 75 keVmodel can predict

2 hr ahead and the >2MeV model can forecast 12 hr ahead. Moreover, the performance metrics of the mod-

els also increase with energy, so not only are the higher‐energy models forecasting further into the future,

they are also forecasting more accurately. When deducing the models, the lower time lags could be excluded

from the FROLS algorithm; thus, it will only be able to select exogenous terms with high lags, extending the

forecast horizon. However, by excluding these low time lags, the model may not be able to capture some of

the dynamics and so there will be a sacrifice of model performance to achieve increased forecast horizon.

Another way to increase the forecast horizon of the models is to couple the electron flux models presented

in this paper with a solar wind forecast that uses observations of the Sun.

Injections of 10 to 100 keV electrons from the tail caused by substorms, which are very difficult to model,

may be one of the reasons why the lower‐energy models have lower performance metrics than the higher

energies. It could be possible to model these injections by including the AL index as an input into the

algorithm, as the AL index is a good metric for substorms. However, such a model will not be able to pro-

vide a forecast as a substorm registered by the AL index will simultaneously occur with the increase in 10 to

100 keV electron fluxes, meaning there will be no lead time, thus making the model a nowcast rather than a

forecast. Another issue with the inclusion of the AL index into the model is that there is no real‐time data,

meaning a real‐time nowcast could not be generated and such a model could only be used to pastcast pre-

vious events once the AL index data are available.
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The main use of the models is to provide forecasts of the electron radiation at GEO for satellites. The

increased spatial resolution will help deliver better situational awareness for GEO satellite operators.

These models have been implemented to work in real time. This involves automatically downloading the

real‐time solar wind data from the Space Weather Prediction Centre, which provides real‐time data for both

the ACE and the DSCOVR, situated at L1. The solar wind data, from both ACE and DSCOVR, are then auto-

matically shifted to the magnetopause using a simple ballistic propagation method then processed by calcu-

lating the pressure and IMF factor and hourly averaging to construct the input parameters for the models.

These are fed into the model to produce a real‐time forecast of the electron fluxes.

Although most of the models use autoregressive past electron flux values in the model to compute future

values of the electron fluxes, this does not mean that the models require the measurement of the electron

flux to run. Instead, the model can use previous estimates of the electron fluxes and feed these back into

the model to calculate a forecast of the electron fluxes, which will then also be fed back into the model to

calculate a further forecast, and so on. This means the models can still provide a forecast of the electron

fluxes at these energies even though GOES 13, 14, and 15 went off‐line at the end of 2019 and their replace-

ments, GOES 16 and 17, measure different energy ranges (apart from the >2MeV channel).

Another possible use for the models is to employ them as the outer boundary conditions to numerical diffu-

sion codes that model the radiation belts, such as the BAS‐RBM (Horne et al., 2013, 2018). BAS‐RBM cur-

rently uses measurements from GOES spacecraft as the outer boundary to produce the forecast; however,

persistence is assumed to project this value into the future. Using the forecast model of the electron fluxes

from this paper as the outer boundary condition could improve the performance of BAS‐RBM throughout

the radiation belts. A similar method was used by Pakhotin et al. (2013) where they used the electron flux

models by Boynton et al. (2015) as an outer boundary to a numerical diffusion code. This method of using

machine learning to supplement physics‐based models, where previously simple empirical models were

used, could be applied in other areas, for example, usingmachine learning‐based wavemodels instead of sta-

tistical wave models to calculate diffusion coefficients within the BAS‐RBM, or even developing an outer

boundary condition for the SATRAD model by Woodfield et al. (2018), which adapted the BAS‐RBM to

simulate the Saturn radiation belts.

6. Conclusions

The aim of this paper was to develop a set of electron flux models for GEO that could take into account the

spatial differences in flux observed at GEO and improve on the temporal resolution of the previous daily

average electron flux models (Baker et al., 1990; Boynton et al., 2015; Boynton, Balikhin, et al., 2016) by

developing 1 hr resolution models.

The models developed in this study were able to forecast the 75 keV to >2MeV electron fluxes at GEO with

PE between 36.0 and 80.3 and CC between 59.3 and 90.8 between 00:00 UTC 1 March 2013 to 23:00 UTC 31

December 2017. The performance of the models varies with both energy and MLT. With MLT, the model

performance is highest at the dayside and smallest at the nightside for each of the energies, while with

the energy, the model performance increases with energy even though the forecast horizon also increases

with energy.

These models have been implemented in real time to provide online forecasts of the electron fluxes at GEO.

These forecasts can be found online (http://www.ssg.group.shef.ac.uk/USSW2/UOSSW.html), which can be

used by spacecraft operators or can be used as the outer boundary conditions to physics‐based numerical

models that solve the Fokker‐Planck equation.

Data Availability Statement

The GOES 13, 14, and 15 electron flux data were from NOAA (https://www.ngdc.noaa.gov/stp/satellite/

goes/). The solar wind and geomagnetic index data were from OMNIweb (https://omniweb.gsfc.nasa.gov/

ow_min.html). Forecasts of the models developed in this study can be found online (http://www.ssg.

group.shef.ac.uk/USSW2/UOSSW.html). Videos of the model‐predicted electron fluxes for each energy at

different MLTs for the period in Figures 2–7 are in the supporting information.
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